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Abstract—Deep learning applications are rapidly gaining trac-
tion both in industry and scientific computing. Unsurprisingly,
there has been significant interest in adopting deep learning
at a very large scale on supercomputing infrastructures for a
variety of scientific applications. A key issue in this context is
how to find an appropriate model architecture that is suitable
to solve the problem. We call this the neural architecture search
(NAS) problem. Over time, many automated approaches have
been proposed that can explore a large number of candidate
models. However, this remains a time-consuming and resource
expensive process: the candidates are often trained from scratch
for a small number of epochs in order to obtain a set of
top-K best performers, which are fully trained in a second
phase. To address this problem, we propose a novel method
that leverages checkpoints of previously discovered candidates
to accelerate NAS. Based on the observation that the candidates
feature high structural similarity, we propose the idea that new
candidates need not be trained starting from random weights, but
rather from the weights of similar layers of previously evaluated
candidates. Thanks to this approach, the convergence of the
candidate models can be significantly accelerated and produces
candidates that are statistically better based on the objective
metrics. Furthermore, once the top-K models are identified,
our approach provides a significant speed-up (1.4∼1.5× on the
average) for the full training.

Index Terms—Deep Learning; Neural Architecture Search;
Checkpointing

I. INTRODUCTION

Deep learning applications are rapidly gaining traction both
in industry and scientific computing: vision [1], [2], [3],
financial technology [4], [5], business intelligence [6], [7],
fusion energy science [8], computational fluid dynamics [9],
and cancer research [10].

A key driver for this trend has been the unprecedented
accumulation of big data, which exposes plentiful learning
opportunities thanks to its massive size and variety. Unsur-
prisingly, there has been significant interest to adopt deep
learning at a very large scale on supercomputing infrastruc-
tures. In this context, deep learning workflows are becoming
increasingly complex, featuring multiple steps: pre-processing
and augmentation of the training data, finding a suitable DNN
model architecture, training, post-processing (e.g., sensitivity
analysis to understand the robustness of the model).

A particularly laborious step is finding a suitable DNN
model architecture. This has traditionally been performed

by domain experts, using trial-and-error approaches. How-
ever, with increasing complexity, such an approach is not
feasible anymore. Over time, automated approaches called
NAS (Neural Architecture Search) [11] have been proposed as
an alternative, however, this is a time-consuming and resource
expensive process.

A typical NAS explores a large number of candidate models
from a search space that is based on a set of specifications
that define the set of possible choices that can be combined
to obtain valid candidates. This process happens in two steps:
(1) the candidates are trained from scratch for a small number
of epochs in order to obtain a set of top-K best models; (2) the
top-K best models are fully trained until they converge (or
otherwise reach a maximum number of epochs) [12], [13],
[14], [15], [16]. Finally, the domain experts pick the most
suitable models among the fully trained top-K best models
based on a trade-off between various criteria (e.g., accuracy,
size of the model, inference speed).

A key problem in this context is the “training from scratch”
approach adopted by state-of-the-art NAS, which presents two
challenges. First, the accuracy after a small number of epochs
may not be representative of the accuracy obtained after full
training. Therefore, the score of a candidate may not accurately
reflect its long-term potential, negatively impacting the ranking
of the top-K best performers. Second, the training of the top-K
best models is time-consuming, because each model eventually
needs to be fully trained from scratch until it converges, which
normally takes a large number of epochs.

To address this problem, we propose an alternative approach
that is based on a key insight: candidates from the same search
space are functionally and structurally similar with each other.
Functionally, because they have the same target problem to
solve (e.g., building a predictive model for a fixed dataset), and
structurally, because many candidates differ only in a small
number of choices (e.g., they may have a large number of
identical layers or the beginning of convolutional layers have
the same filters).

Starting from this insight, we propose the idea that new
candidates need not be trained starting from random weights,
but rather from the weights of similar layers of previously
evaluated candidates. To this end, we checkpoint the candidate
models after evaluating their scores and use them as providers
for new candidates (receivers) by transferring the weights



of similar layers. As a consequence, we face two important
challenges: first, it is not clear under what circumstances
weight transfer accelerates the convergence of the receiver
model. If these circumstances are not right, the receiver model
may converge slower than being trained from random weights.
Second, if weight transfer is beneficial, it is not clear what
provider would bring the maximum benefit. This challenge
increases in difficulty as more candidates are explored, because
all of them could become potential providers.

Our work aims to address the aforementioned challenges.
We solve the first challenge by proposing two simple yet
efficient weight transfer techniques that feature different time
complexities and transferring scope. We address the second
challenge by revisiting existing NAS strategies and leveraging
synergies that allow us to choose the provider models for
weight transfer in a straightforward fashion. To the best of
our knowledge, in the context of NAS, no prior work has
considered this avenue. We summarize our contributions as
follows:
• We propose two efficient techniques: LP (longest prefix)

and LCS (longest common subsequence) for transferring
weights selectively from a provider model to a receiver
model (with a potentially different structure) that are
specifically designed for NAS (Section IV).

• We study the circumstances under which weight transfer
from the provider model to the receiver model is benefi-
cial and establish criteria for the selection of the provider
model (Section V).

• We integrate the weight transfer techniques and provider
selection strategy into existing NAS approaches in a
lightweight fashion (Section VI).

• We evaluate our proposal using 32 GPUs and four
deep learning applications from various domains. The
results show that our approach can accelerate the con-
vergence of the models significantly, thereby enabling a
full training of the top-K best performers 1.4∼1.5× faster
than training from scratch. Furthermore, our approach
discovers better models based on the objective metrics
(Section VIII).

II. BACKGROUND

In this section, we introduce the fundamentals of Neural
Architecture Search (NAS). In a nutshell, NAS is defined by
three major components: (1) search space, (2) search strategy,
and (3) candidate estimation.
Search Space: Search space is the set of rules that specify
all possible choices that can be combined to obtain valid
candidates. It is typically defined by domain experts empir-
ically. More formally, it is a graph (V,E), where V contains
p input nodes, one or multiple output nodes, and k variable
nodes. Each variable node contains a set of valid choices. For
example, a variable node may choose from a skip connec-
tion, a dense layer with 50 neurons and a ReLU activation
function, a dense layer with 10 neurons with a sigmoid
activation function, or a layer with 50% dropout, which can
be denoted as Identity , Dense(50 , relu), Dense(10 , sig),

Conv Pooling Dense

f=3, n=4, valid
f=4, n=4, valid
f=5, n=4, valid
f=3, n=8, valid
…

Identity
size=2, stride=2
size=3, stride=3
size=4, stride=4
…

Identity
16
32
48
64
…

Dense

Identity
16
32
48
64
…

Fig. 1: A simplified search space for NT3. Circles show variable
nodes; Boxes show the operations of variable nodes.

and Dropout(0 .5 ), respectively. E encodes the connections
between the nodes, with E ⊆ V × V .

Figure 1 shows the simplified search space for NT3 [17],
a cancer research application we evaluate in our paper. Each
candidate model has four layers, each of which has a cor-
responding variable node (represented as a circle) that is
associated with a set of choices (shown in shaded boxes). A
candidate model is generated by fixing the choices of each
variable node. If each choice is denoted by its index in the list
of choices, then a candidate model can be uniquely identified
by a sequence of indices, which we denote as architecture
sequence. For example, the choices highlighted in a bold font
in Figure 1) form the architecture sequence [1, 2, 0, 2].
Search Strategy: Search strategy guides the exploration of
the search space by deciding what new candidate models to
try next. One simple example is random search, where the
candidate models are always selected randomly. Other alter-
native approaches also have been proposed such as Bayesian
optimization [18], [19], evolutionary methods [20], [21], [22],
[23], [24], [25], and reinforcement learning [13], [26].
Candidate Estimation: Candidate estimation assigns a score
to the candidate, and the score indicates how promising the
candidate is. While it is possible to fully train the candidate
models to get their actual objective metrics (e.g., validation
accuracy), this approach is not feasible in practice due to
prohibitively expensive amount of time and computational
resources. Therefore, candidate models need to be evaluated
quickly by means of partial training. For the purpose of
this work, partial training means to use a small number of
epochs [12], [13], after which we evaluate the objective metrics
to obtain the score. However, it is important to note our
proposal is general and can be applied to other estimation
approaches, because they suffer from similar issues (e.g., using
a subset of the original dataset [27], a small proxy of the
network [28], or a smaller proxy dataset [29]).

III. MOTIVATION

Prior work [12], [13], [14], [15], [16] that estimates the
candidate models by training them from scratch for a few
epochs suffers from inaccurate candidate estimation due to
slow convergence. Our work aims to address this issue by
means of weight transfer. To understand why this works,
consider an extreme case where all candidate models in the
search space are identical. In this case, if we checkpoint and
evaluate a candidate model after a few epochs, initializing the
weights of the next candidate from the checkpoint is equivalent
to resuming the training of the provider model. In other words,
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Fig. 2: A large portion of candidate models are structurally similar.

we are training the new candidate for two times more epochs,
which has two advantages: (1) it increases the accuracy of
the estimation; (2) if the candidate is selected among the top-
K best performers, training it fully until it converges will be
much faster.

It is important to note that the models generated by the
same search space are similar both functionally (because
they are part of a family of related models that aim to
solve the same problem using the same training data) and
structurally (because their architecture sequences overlap to
a large degree). Therefore, in the general case, we expect
that the weight transfer will lead to a transfer of the learning
patterns, which, just like the case of identical models, will
lead to faster convergence and more accurate estimations.
Moreover, we expect the effectiveness of the weight transfer to
increase for an increasingly higher degree of overlap between
the architecture sequences of the provider and receiver models.

To verify this intuition, our first step is to study the
structural similarity of the models. Specifically, we use DEEP-
HYPER [13] to generate NAS traces of four applications, each
of which contains at least 672 candidate models obtained by
searching for 16 node-hours in our clusters (by training each
candidate model from scratch for one epoch). The applications
and experimental setup are presented in greater detail in
Section VII.

We randomly sample 10,000 pairs from the traces without
replacement and count the number of pairs that have at
least one tensor with an identical shape. Figure 2 shows the
percentage of pairs that respect this condition (which we refer
to as “shareable”). CIFAR-10 and Uno have almost 100%
percent of shareable pairs, while MNIST and NT3 also have
54% and, respectively, 40% of shareable pairs. Thus, for each
new candidate model, there is a large number of potential
provider models that can be considered for weight transfer.

However, just because there is a large number of potential
provider models does not mean the weight transfer is trivial
to perform, not that it is beneficial. First, for each layer of
the provider model, there can be a large number of similarly
shaped layers in the receiver model for which weight transfer
is possible, which leads to a large number of possible combina-
tions. Second, a random transfer between two similarly shaped
layers does not consider their functionality, which may lead to
anomalies that cause the model to converge slower or not at all
compared with a random weight initialization. Therefore, our
goal is to design weight transfer strategies that are both fast
and that take structural patterns into consideration to maximize
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Fig. 3: Illustrating weight transfer mechanisms of two convolutional
neural networks

the likelihood of beneficial weight transfers.

IV. WEIGHT TRANSFER PROPOSAL

In this section, we propose two weight transfer techniques
that are both quick to evaluate and that leverage the structure
of the models to maximize the impact of weight transfer on
the convergence of the receiving model.

A. Tensor Matching

DNN models are typically expressed using tensor opera-
tors, which form a computation graph where each node is
a mathematical tensor operator (e.g., matrix multiplication,
convolution, etc.) [30]. The input nodes of the computation
graph do not have predecessors, while the output nodes do
not have successors.

A provider and a receiver model can have many tensors of
identical shapes (which we refer to as transferable). Therefore,
finding a mapping of the transferable tensors from the provider
to the receiver is equivalent to mapping sub-topologies of the
two corresponding computation graphs, which is related to the
graph homomorphism problem, known to be NP-complete.

To reduce the computational complexity, we need to sim-
plify the mapping problem. To this end, similarly to how
we define the architecture sequence as the string of choices
taken by the variable nodes, we define the shape sequence
as the string of tensor shapes corresponding to a computation
graph. Thus, the mapping problem can be cast as a string
matching problem where the elements of the shape sequence
corresponding to the provider model are mapped to their
counterparts of the receiver model.

Figure 3 shows an illustrative example of a convolutional
NN and its shape sequence. The neural network begins with
f × w × h filters, followed by several layers such as pooling
layer, batch normalization layer, or another convolutional layer
(omitted in the figure). Before feeding into the dense layer
with m neurons, the feature volume is flattened to a m-length
vector. The last dense layer has n neurons, so the shape of the
last tensor is (m,n). The shape sequence of the depicted NN
is [(f, w, h), ..., (m, n)].

In this context, we propose to use two string matching
heuristics: longest prefix (LP) and longest common subse-
quence (LCS). They differ both in terms of performance and
impact on the convergence of the receiver model.
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Fig. 4: Illustrating the scope and the effectiveness of LP and LCS
for random pairs of provider and receiver models. 1) We have a
large portion of transferable pairs; 2) Weight transfer from a random
provider model may lead to slower convergence (e.g., CIFAR-10).

Longest Prefix (LP): Empirically, the first layer is often
considered shareable in the machine learning community [31],
[32]. For example, the first convolutional layer often identifies
coarse-grained patterns in an image, which can be shared if
there are common patterns in the datasets [33]. Therefore, we
assume that as long as the beginning layers have identical
shapes, weight transfer will be beneficial, hence the proposal to
use the longest prefix of the shape sequences. As an example,
Figure 3 ( 1 ) illustrates the tensor that could be transferred
using LP. However, since the receiver model has an additional
convolutional layer ( 2 ), even if the shape of the last dense
layer is the same between the provider and the receiver ( 3 ),
LP cannot transfer the weights of the last dense layer. The
time complexity of calculating an LP of two shape sequences
is O(min (n,m)), where n and m are lengths of the two
sequences.
Longest Common Subsequence (LCS): In many cases, the
addition of an extra layer does not change the function of the
neighboring layers. However, LP will not be able to capture
such cases. To address this issue, we propose to compute
the longest common subsequence of the shape sequences,
which is well suited to handle insertions and additions. For
example, in Figure 3, the LCS of the provider and the receiver
models contains both ( 1 ) and ( 2 ) in the same order. We use
dynamic programming to implement LCS [34] for the two
shape sequences, whose time complexity is O(nm), where n
and m are lengths of the two sequences. Note that LP is a
subset of LCS, therefore LCS will always transfer at least as
many tensors as LP.

B. Scope and Effectiveness of Weight Transfer

Next, we evaluate the scope and the effectiveness of both
LP and LCS. We focus on two questions:

1) How likely is it when the LP or LCS is non-empty for
a pair of provider and receiver models (i.e., they are a
transferable pair)?

2) Can our weight transfer techniques accelerate the con-
vergence of the receiver model?

Experimental Setup. We sample 1,000 pairs of provider
and receiver models uniformly at random from the DEEPHY-
PER traces (discussed in Section III) for each of the four appli-
cations. We train each receiver model in two ways: (1) starting

from random weights and (2) starting from the weights of the
provider model for the layers that are included in LP and
LCS, and from random weights for the rest of the layers. The
training lasts for one epoch. If after one epoch, the objective
metrics (validation accuracy) are better when the receiver is
trained from random weight initialization, we consider this
case as negative, because it makes the training convergence
slower. Conversely, when the objective metrics are better after
weight transfer, we consider the case as positive.

Figure 4 illustrates our results:
Scope of Transferable Pairs. We observe that the transferable
pairs are not uncommon, even if we select the provider model
randomly in this experiment. For example, CIFAR-10 and Uno
can have 100% transferable pairs using LCS to transfer the
weights, while MNIST and NT3 have at least 42% transferable
pairs. As we expected, the scope of transferable pairs using
LP is less than LCS, but more than 20% of pairs are still
transferable across all evaluated applications.
Effectiveness of Weight Transfer. Figure 4 also shows
that weight transfer from a random provider model is not
always beneficial. In CIFAR-10, the number of positive pairs
is less than the number of negative pairs in both LCS and LP,
indicating that randomly select a provider model to transfer
from is likely harmful to the application. By contrast, MNIST
has 65% and 64% percentage of positive pairs among the
transferable pairs using LCS and LP, respectively. LCS and
LP generate a similar level of positive transferrable pairs for
NT3 and Uno, but all fall in the range of 53% to 57%.

In summary, by randomly picking a provider model and
receiver model, we have a large percentage of transferable
pairs. However, the weight transfer is not always guaranteed
to accelerate the convergence of the receiver models. Thus, we
need a strategy to decide what provider to pick for a receiver
model. We will discuss such a strategy next.

V. PROVIDER MODEL SELECTION AND INTEGRATION
WITH THE SEARCH STRATEGY

In this section, we introduce an approach that integrates with
the search strategy to provide a straightforward and highly
efficient provider model selection and weight transfer.

A. Which provider model is suitable for weight transfer?
Our key insight (discussed in Section III) is that weight

transfer from a similar model is likely to accelerate the
convergence of the receiver model. Hence, we use the number
of different variable node choices as the distance d to measure
the similarity of two models in the same search space. The
larger d is, the less similar the two models are. The choices
made by variable nodes are recorded in the architecture
sequences (discussed in Section II). Specifically, we define
d =

∑
arch seqA ⊕ arch seqB , where A and B are a pair

of models in the same search space. For example, d = 1 for
the architecture sequences [1, 2, 3] and [0, 2, 3], because only
the first position (variable node) differs.

To evaluate the impact of d on the convergence of the re-
ceiver model, we group the pairs (obtained from the DEEPHY-
PER traces) together based on d and run a series of experiments
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Fig. 5: The effect of transferring weights from a provider model with different similarities to the receiver model. If the provider model
and the receiver model have a large overlap in their architecture sequences, transferring the weights from the provider model is likely to
accelerate the convergence of the receiver model. In this figure, + stands for positive pairs, and − stands for negative pairs, which are
introduced in Section IV-B.

similar to the ones discussed in Section IV-B, in which we train
each receiver model using (1) random initialization, (2) LP
weight transfer (and random initialization of non-LP layers);
(3) LCS weight transfer (and random initialization of non-LP
layers).

Figure 5 illustrates our results. In general, we observe that
for an increasing d, the fraction of transferable pairs decreases
(shown in light gray color), while the fraction of positive pairs
also decreases (shown in green pairs). One exception is Uno
with LCS, where the fraction of positive pairs only decreases
marginally because many variable nodes in its search space
contain the same set of operations. Notably, when d is small
(e.g., less than 3), the number of positive pairs is significantly
larger than the number of negative pairs. Comparing LP and
LCS, we observe that LP (in bars with hatches) has a smaller
portion of transferable pairs in general, but its positive rate is
similar to LCS.

In summary, transferring the weights from a provider model
with a small d is likely to accelerate the convergence of a
receiver model. We will use these findings in the design of
the selection strategy, which is discussed next.

B. Zoom on the Selection Strategy

NAS employs a scheduler process that runs the search
strategy (responsible to propose new candidate models), and
also maintains the metadata that describes the candidates
explored so far and their scores. To select a provider model
with a small d, the scheduler must iterate over the previous
checkpointed candidates, which can introduce a significant
overhead given the large number of checkpointed candidates.

To address this issue, we revisit a popular set of genetic
(evolutionary) search algorithms [25], [22], [23], [24]. In
particular, Algorithm 1 illustrates the basic idea of a regu-
larized evolutionary algorithm [25]. The algorithm maintains
the population that contains N evaluated candidates. When a
new candidate is scored, it is pushed into the active population
(Line 4). If the size of the population is larger than N , it pops
the model that it pushed the earliest. The search strategy works
by sampling S out of N models, choosing the best provider
model out of the subset S, and then mutating it to generate
a receiver model (child) (Line 8). The mutation is done by
randomly modifying one of the choices in the architecture
sequence. Therefore, d between the provider and the receiver

Algorithm 1 Integrating Weight Transfer Mechanisms with
Genetic Algorithm
1: procedure GENETIC SEARCH STRATEGY
2: P ⇐ ∅ . P is a population of evaluated candidate models.
3: while NAS is within time budget do
4: Get scored models from the evaluators and push them to P
5: if |P | ≥ N then
6: S ⇐ sample(P ) . S is a sampled subset of P
7: parent ⇐ best of S in scores
8: child ⇐ mutate a variable node choice from the architecture sequence

of parent
9: Initialize child with the weights of parent . d between the parent

and the child is always one!
10: Evaluate the score of child
11: end if
12: end while
13: end procedure

Search 
Strategy Evaluator

Evaluator

1

2

CheckpointsCheckpointsCheckpointsCheckpoints

… 4
5 3

Fig. 6: Software Architecture of Our Implementation

model is always one. We take advantage of this situation to
enhance Algorithm 1 to perform weight transfer whenever
possible, which by construction will solve both the problem
of deciding when to perform weight transfer (always, because
d = 1 and identifying the provider candidate fast (it’s the
parent). Nevertheless, it is important to note that our approach
can be extended to other search strategies, in which case the
aforementioned issues are not straightforward.

VI. SYSTEM IMPLEMENTATION

We build our approach on top of DEEPHYPER [13], [14],
a state-of-the-art NAS framework that works for different
domains. DEEPHYPER has three components, 1) problem,
2) search strategy, and 3) evaluator. The search space of an
application is defined in the “problem” component. When NAS
starts, the search strategy which works as a scheduler launches
multiple evaluators. DEEPHYPER providers different backend
for the evaluators such as Ray [35] evaluator, MPI evaluator,
or Balsam [36] evaluator. The evaluators can be distributed to
different nodes.

Figure 6 shows the architecture of our implementations. As
discussed in Section V, we augment the regularized evolution



search strategy [25] to make use of LP and LCS based weight
transfer. We use Ray-based evaluators such that each cluster
node has a number of Ray evaluators equal to the number of
GPUs. The scheduler runs the search strategy, which begins
with generating random candidate models to be scored ( 1 ) by
the evaluators. When an evaluator finishes scoring a candidate
model, it returns the results to the scheduler ( 2 ), while
also checkpoints the model on the parallel file system ( 3 ).
Since the efficiency of checkpointing is not the focus of this
paper, we use a normal HDF5 format [37] to store the model
checkpoints. When the search strategy has trained enough new
candidates from scratch, it generates child models by mutating
one variable node of the provider models acting as parents. The
scheduler passes the architecture sequences of both parent and
the child model to the evaluators ( 4 ). Compared to the original
DEEPHYPER implementation, the only additional overhead is
due to passing the architecture sequence of the parent, so
the overhead on the scheduler is negligible. To score a child
model, each evaluator reads the checkpoint of the parent model
from the parallel file system ( 5 ).

VII. EVALUATION

This section provides an experimental evaluation of our
proposal. To summarize, we aim to answer the following
questions:
Q1. Can weight transfer accelerate the convergence of the
candidate models? (Section VIII-A)
Q2. Can we speed up the full training for the top-K candidate
models? (Section VIII-B)
Q3. How do the models discovered using weight transfer
compare with those discovered by training from scratch?
(Section VIII-C)
Q4. Are the proposed weight transfer techniques scalable?
(Section VIII-E)

A. Applications and Search Spaces

Throughout our evaluations, we use four applications rang-
ing from computer vision to cancer research. Table I shows a
summary of our evaluated applications and their search spaces.
The smallest search space contains three million models,
which requires over 8,000 node hours to evaluate them all.

TABLE I: Summary of evaluated applications and their search spaces.
CE: categorical cross-entropy; ACC: accuracy; Loss: loss function.
Obj.: objective metrics. MAE: minimum absolute error. VN: Variable
Node (introduced in Section II).

Dataset Size Search Space Problem
App. Training Validation Size #VNs Loss Obj.
CIFAR10 50K × 322 × 3 10K × 322×3 2558T 21 CE ACC
MNIST 60K × 282 10K × 282 120M 11 CE ACC
NT3 1120×60483 280× 60483 3M 8 CE ACC

Uno

9588× 1
9588× 942
9588×5270
9588×2048

2397× 1
2397×942
2397×5270
2397×2048

302T 13 MAE R2

CIFAR-10. CIFAR-10 [38] dataset contains 60,000 images
in 10 classes such as airplane, automobile, bird, etc. Each
image is 32 × 32 with three channels. Inspired by the VGG
networks [3], we stack three VGG blocks at the beginning

of the search space, followed by three “Dense” variable nodes
choosing an identity operation or a dense layer with a different
number of neurons. Each block has six variable nodes of three
types: 1) A “Convolution” variable node varies the number of
filters, “valid” or “same” paddings, and whether it has a kernel
regularizer (L2 with 0.0005 weight decay) of a convolutional
layer; 2) A “Pooling” variable node chooses from an identity
operation or a pooling layer with different sizes and strides.
3) A “BatchNorm” variable node chooses either apply or
not to apply a batch normalization operator. A VGG block
stacks Convolution, Pooling, and BatchNorm variable nodes
and repeats them twice.
MNIST. MNIST [39] database of handwritten digits has
a training set of 60,000 examples and a test set of 10,000
examples. Each image of it is 28 × 28 with one channel.
We create a search space inspired by LeNet-5 [2]. There are
five types of variable nodes in our search space: 1) Convo-
lution, which selects a convolution layer with different filter
sizes, the number of filters, and “valid” or “same” padding;
2) Activation, which selects an activation function from relu,
tanh, or sigmoid; 3) Pooling, which selects an operation from
identity and pooling layers with different sizes or strides from
2 to 5; 4) Dense, which selects an operation from identity
or dense layers with 32, 64, ..., 512 neurons; 5) Dropout,
which selects an operation from identity, or dropout 2%, 5%,
10%, 20%, 30%, 40%, 50% connections. The variable nodes
are connected following this order: Convolution, Activation,
Pooling, Convolution, Activation, Pooling, Dense, Activation,
Dense, Activation, Dropout.
NT3. NT3 [17] is a benchmark from ECP CANDLE (Cancer
Distributed Learning Environment) [10] that addresses a series
of cancer research problems using large scale deep learning.
NT3 classifies RNA-sequence gene-expression profiles into
normal or tumor tissue categories. We use the same search
space of NT3 defined by prior work [40]. Similar to MNIST,
five categories of variable nodes in NT3 are connected fol-
lowing this order: Convolution, Activation, Pooling, Dense,
Activation, Dropout, Dense, Activation, Dropout. Different
from MNIST, the convolution is 1D for the gene-sequence
data.
Uno. Uno [41], a benchmark that is also part of ECP CAN-
DLE, integrates multiple data sources of cancer drug screening
data from 2.5 million samples across six research centers to
examine study biases and to build a unified drug response
model. It predicts tumor dose-response across multiple data
sources by a DNN for regression. We use the single drug
paclitaxel, a simplified indicator, for this study. We use the
same search space defined by prior work [40]. Three neural
networks are set up in the beginning by stacking three variable
nodes, each of which accepts an input dataset. Then, the
outputs of the beginning three NNs are concatenated with
the fourth input dataset, which serves as the input of the
bottom NN. The bottom NN consists of four variable nodes.
All variable nodes have mixed layer choices: Identity, a dense
layer with 100, 500, or 1,000 neurons, or a dropout layer with
30%, 40%, and 50% dropout connections.



We use the Adam optimizer [42] for all applications. The
learning rate is set to 0.001, β1 = 0.9, β2 = 0.999, and ε =
10−7. The batch size is set to 64 for CIFAR-10 and MNIST,
and set to 32 for NT3 and Uno as prior work [13].

B. Experimental Setup

TABLE II: Hardware Configurations of Our Experiments

HW. Node Type A Node Type B
CPU 4 × AMD EPYC 7742 Intel Xeon CPU E5-2620 v3
RAM 1 TB 384 GB
GPU 8 × NVIDIA Ampere A100 GPU 2 × NVIDIA Tesla K80
GPU Mem. 40 GB HBM2 12 GB GDDR5

We use two types of cluster nodes, referred to as A and B,
which are shown in Table II. The experiments in Section VIII
are performed on up to four type A nodes. The experiments
in Section III, IV-B, and V are performed on type B nodes.

Our software environment is built with Python 3.7, Ten-
sorflow [43] 2.4.1, DeepHyper [13] 0.2.2, Ray [35] 1.2.0 and
Keras [44] 2.4.3.

C. Methodology

Our work proposes two weight transfer techniques and
integrates them into an existing search strategy. To this end, we
compare our approach with a baseline that always trains the
candidates from scratch. Specifically, the baseline is DEEPHY-
PER with the regularized evolution [25] search strategy. The
population size is set to 64 and the sample size is set to 32.

In addition to the baseline, we first modify the search strat-
egy to make use of LP and LCS based weight transfer. Then,
before training the candidate model, the evaluator finishes the
following steps: 1) checks the parent’s architecture sequence,
2) reads the checkpoint of the parent, 3) calculate LP/LCS
between the parent and the current model, and 4) if they have
shareable tensors, initialize the weights of the current model
with the weights of the parent’s model.

VIII. RESULTS

In this section, we discuss the experimental results.

A. Convergence Speed of Candidate Models

We study the evolution of the estimated objective metrics
(scores) of the candidate models during NAS runtime. The
settings we used are aligned with DEEPHYPER [13], i.e., all
candidate models are trained for an epoch. We repeat the
experiment five times and report the average. Each experiment
evaluates a total of 400 candidate models. Since the evolution
algorithm we use is randomized, we use different random
seeds for the five experiments. The experiments may end at
different times, therefore we focus only on the duration of the
shortest experiment.

We group the time into 50-second slots1 to smooth the fluc-
tuations and emphasize the trends more clearly. Specifically,
after a candidate model is evaluated and returns at time t
with an associated score r, we plot the following point for

1NT3 uses 10-second slots, as its training time is very short.

it: (50 × dt/50e, r). Multiple points can be in the same 50-
second time slots, therefore we depict their mean with a 95%
confidence interval (shown in bands).

Figure 7 shows the mean scores of the discovered models
during NAS runtime. We make the following observations.
1) The curves of LP and LCS are significantly higher than
the baseline in CIFAR-10, NT3, and Uno, after the beginning
stage. As it is very easy to get high accuracy in MNIST, the
scores acquired by LCS or LP are comparable to the baseline
but with fewer fluctuations. 2) The scores from LCS are
slightly higher than the scores from LP in CIFAR-10, and Uno.
As NT3 has many fluctuations in scores, it is not clear whether
LP or LCS works better. The reason for fluctuations in NT3
is that NT3 has very few observations and large dimensions,
which is harder to converge.
Answer to Q1. Since our experiments keep the search strategy
and the search space the same with baseline, the increased
scores of the candidate models indicate that our weight transfer
proposal accelerates their convergence, bringing them closer
to fully-trained models. Ultimately, this accelerates the second
step of NAS, in which the top-K best performers need to be
fully trained.

B. Speedup of Full Model Training

After obtaining the top-K best performers, NAS typically
proceeds with a full training of all K models. This is necessary
for two reasons: (1) the scores are not estimated perfectly,
therefore the top candidate may not be the overall winner after
the full training; (2) the criteria for choosing the best model
may include trade-offs between accuracy and complexity (e.g.
users may want to go for the second-best model if it is
significantly simpler and can infer faster or can be transferred
faster). Therefore, a diverse set of fully trained models with
acceptable objective metrics give the user more choices.

We fully train the top-10 (K=10) models for each of the
five experiments. We apply early stopping, which means if
the objective metrics do not change by more than a given
threshold for a fixed number of epochs (two in our case), the
training stops. Early stopping during the full training implies
the model has converged. We set up the threshold for NT3,
MNIST, CIFAR-10, and Uno to 0.005, 0.001, 0.01, and 0.02,
respectively. We also train the models for 20 epochs without
early stopping to compare whether the results of early stopping
are close to the results of full training.

Figure 8 shows the average number of epochs needed
to fully train the 50 models (10 top-scored models × 5
experiments), and the associated objective metrics obtained
from early stopping and full training. The objective metrics
with early stopping are shown in blue lines, and without early
stopping are shown in orange lines.

We make the following observations. (1) fewer epochs
are needed by the models generated from our approach to
achieve convergence. Since the training time is proportional to
the number of epochs, overall, LCS achieves 1.5× speedup,
and LP achieves 1.4× speedup on geometric mean across
all applications; (2) the achieved final objective metrics are
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Fig. 7: Estimated objective metrics (scores) of the candidate models during NAS runtime. After the beginning phase, with our weight transfer
techniques, the estimated objective metrics increase significantly compared to the baseline.
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Fig. 8: LCS and LP achieve 1.5× and 1.4× speedup vs. training from scratch for full training (using early stopping). LCS and LP also
achieve better or comparable objective metrics. The bars show the average number of epochs before early stopping. The blue lines show the
objective metrics with early stopping. The orange lines show the objective metrics of the fully trained models.

higher in CIFAR-10, NT3, and Uno when applying LCS or LP,
regardless of early stopping or not. For MNIST on the other
hand, the baseline has marginally better accuracy (≈ 0.001);
(3) the objective metrics with early stopping are very close
to fully trained metrics. (4) LCS works better for CIFAR-10
and NT3, while LP generates better models for Uno. We will
further analyze this in Section VIII-C.
Answer to Q2. Thanks to our approach, full training of
the top-K best performers is significantly faster (1.5× and
1.4×). The fully trained models also have better or comparable
objective metrics.

C. Quality of the Discovered Models

TABLE III: Top scored models after full training. Our approach
provides a significantly better or comparable set of fully-trained
models.

Obj. Metrics (Accuracy or R2)
Application Scheme Fully Trained Early Stopped
CIFAR-10 Baseline 0.799 ± 0.025 0.786 ± 0.028

LCS 0.823 ± 0.016 0.810 ± 0.017
LP 0.823 ± 0.026 0.808 ± 0.027

MNIST Baseline 0.993 ± 0.001 0.992 ± 0.001
LCS 0.993 ± 0.001 0.992 ± 0.001
LP 0.993 ± 0.001 0.992 ± 0.001

NT3 Baseline 0.976 ± 0.067 0.974 ± 0.066
LCS 0.988 ± 0.003 0.985 ± 0.004
LP 0.987 ± 0.003 0.985 ± 0.004

Uno Baseline 0.582 ± 0.038 0.540 ± 0.047
LCS 0.594 ± 0.024 0.567 ± 0.030
LP 0.609 ± 0.041 0.573 ± 0.028

We study whether the top-K best models discovered by our
approach are statistically better than those discovered by the
baseline. To this end, we fully train the top-10 models for each
of the five experiments, so each scheme has 50 models. To
enable a fair comparison with the baseline, we only select the

TABLE IV: Model Complexity of the Top-Scored Models

Number of Parameters (/106)
Application Scheme Mean Max Min
CIFAR-10 Baseline 12.389 ± 10.974 34.179 1.158

LCS 9.555 ± 10.970 35.675 0.871
LP 8.739 ± 11.651 34.519 0.505

MNIST Baseline 2.807 ± 1.196 4.102 0.756
LCS 2.043 ± 1.412 4.235 0.458
LP 1.782 ± 0.784 3.346 0.63

NT3 Baseline 11.603 ± 8.914 38.711 1.291
LCS 6.918 ± 5.060 15.485 1.291
LP 14.034 ± 9.646 46.456 1.293

Uno Baseline 6.191 ± 3.126 11.906 1.832
LCS 6.062 ± 2.593 12.372 1.709
LP 5.059 ± 2.265 8.453 1.587

top-10 models from all models discovered before the duration
of the shortest experiment. In other words, all the approaches
have the same time budget for the candidate estimation phase.

Table III shows the results. We observe that (1) LCS and
LP achieve better objective metrics than the baseline in both
full training and early stopping cases. (2) LCS performs the
best for CIFAR-10 and NT3. LP performs slightly better than
LCS for Uno. The reason is that the variable nodes of CIFAR-
10 and NT3 choose a different set of operations, while the
variable nodes of Uno choose the same set of operations. A
conservative approach that transfers the beginning layers only
may be more beneficial for Uno. (3) All schemes achieve
similar results for MNIST, which shows that our scheme does
not bring negative effects even if the application is simple and
the baseline performs well.

Model Complexity. As we discussed in Section VIII-B, the
user may also prefer simpler models with acceptable objective
metrics. Therefore, we study whether our weight transfer
techniques have an impact on the diversity of the top-scored
models, especially the model complexity. Table IV considers
the number of parameters as a proxy for model complexity. We



observe that for most cases, our schemes have a similar range
of parameters as the baseline does. NT3 with LCS and Uno
with LP, however, have a fewer number of parameters than
the baseline. Therefore, we conclude that our approach has the
potential to reduce the model complexity without sacrificing
the objective metrics.
Answer to Q3. Our approaches lead to statistically better
models than the baseline without a negative impact on the
model complexity characteristics.

D. Discussion: Why Weight Transfer Mechanisms Discovered
Better Models?
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Fig. 9: Kendall’s Tau between the estimated scores and the ground
truth objective metrics. Applying weight transfer mechanisms im-
prove the quality of candidate estimation significantly.

Next, we study why our approach discovered better models.
Since our schemes do not change the search space and search
strategy, we evaluate whether our schemes affect the candidate
estimation.

We sample 100 models out of 400 models in the candidate
estimation phase of each experiment and then fully train
the sampled 100 models. Therefore, we have a vector esti-
mated scores x0, x1, x2, ..., xn and a vector objective metrics
y0, y1, y2, ..., yn of the same models, where n = 100.

We use Kendall’s τ to measure how accurate the esti-
mated scores are. Kendall’s τ correlation coefficient (τ ) [45]
measures the correlation between two rankings. Specifically,
τ = 2(Nc−Nd)

n(n−1) , where (x1, y1), (x2, y2), ...(xn, yn) are pairs
of an estimated score and a fully trained objective metrics.
For a pair of observations (xi, yi) and (xj , yj) and i < j,
if xi < xj ∧ yi < yj , or xi > xj ∧ yi > yj , this pair
is concordant. Otherwise, this pair is discordant. Nc is the
number of concordant pairs. Nd is the number of discordant
pairs. The range of Kendall’s τ falls in [−1, 1]. Larger τ
indicates the rank of estimated scores is closer to the rank
of fully-trained objective metrics.

Figure 9 illustrates that τ is significantly improved for
both LCS and LP for CIFAR-10, NT3, and Uno. LCS also
works better than LP for the three applications, as it has more
scope to transfer weights (refer to Figure 4), which makes the
convergence faster. On the other hand, for MNIST, LP and
LCS have a similar τ as the baseline, which explains why the
discovered models are comparable with the baseline.
Explanation of Q3’s Answer. Our approach discovers better
models because the weight transfer significantly improves the
candidate estimation.

E. Overhead and Scalability Analysis
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Fig. 10: Scalability for 8, 16, and 32 NVIDIA A100 GPUs. Our
approach scales perfectly for CIFAR-10, MNIST, and Uno, showing
a constant time overhead. For NT3, our approach has comparable
scalability but incur notable checkpointing overhead compared with
NT3’s short training time (∼6 seconds).

We study whether our approaches affect the scalability
of NAS. Since our weight transfer techniques only impact
the candidate estimation due to checkpointing overheads, we
perform the candidate estimation for 400 models on different
numbers of GPUs (8, 16, and 32) for each application.
Each training task runs on one GPU independently. Other
configurations are the same as in Section VIII-A.

Figure 10 shows the execution time of the candidate es-
timation for an increasing number of GPUs. We make the
following observations: (1) Our schemes have linear scalability
for CIFAR-10, MNIST, and Uno. For these applications, the
overhead of our schemes is very small. In addition, the
percentage of overhead does not change as the number of
GPUs increases, indicating NAS remains scalable. LCS often
uses slightly more time than LP, because they have different
time complexity and also have different memory footprints.
(2) NT3, on the other hand, is not perfectly scalable. From 16
GPUs to 32 GPUs, the reduction of time is not linear. This
happens in both baseline and our approaches. Our approaches
increase the time of NT3 a lot because training NT3 is very fast
as it has a tiny dataset (i.e., only has 1,120 observations). Also,
we noticed that the time of NT3 fluctuates a lot because the
randomness of the candidate estimation affects NT3 the most
(i.e., even if we fix the random seed, due to the randomness
of GPU training [46], [47], the search goes to diverged
directions).
Sources of Overhead. Weight transfer mechanisms at most
take 150 ms in the training process across all applications,
which is negligible to the training model. However, loading
checkpoints can take on average 4 seconds in NT3. We observe
that this effect is related to the training time and the model
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Fig. 11: Average Checkpoint Sizes of Evaluated Applications

size. Figure 11 shows the average checkpoint sizes for each
application. We observe that NT3 has a large checkpoint
(∼40MB) compared to its training time (∼6 seconds on aver-
age). When the checkpoint is loaded, the model is recovered
in the memory. Since NT3 takes short time to train, the Ray
evaluator frequently changes the objects in its local store,
leading to worse performance.

We highlight that all of our earlier evaluations use the same
time budget for the candidate estimation. Therefore, even if
our approach has additional overheads and manages to explore
fewer candidates, it ultimately assembles a better top-K set of
models (Section VIII-C) and reduces the number of epochs
needed for full training using early stopping (Section VIII-B).
Answer to Q4. Our approach is scalable and incurs a low
overhead for a majority of the evaluated applications.

IX. RELATED WORK

Neural Architecture Search (NAS). NAS is a technique that
finds suitable neural network architectures automatically. The
proposed research of NAS follows three aspects, 1) search
space, 2) candidate estimation and 3) search strategy. Several
survey papers [11], [48] focus on these issues. In the image
classification domain, there are a few well-known proposed
search spaces [15], [16], [49]. However, in other domains
such as cancer research, or prediction tasks for tabular data,
the domain experts need to design their search spaces manu-
ally [13], [12]. Regarding the estimation of candidate models,
previous methods [26], [14], [13], [15], [16] train many models
independently from scratch. Such methods are prohibitively
expensive because the candidate models converge slowly. To
reduce the execution time, one-shot NAS [49], [50] proposes
to train a supernet that contains all possible architectures in the
search space. The weights of a model in the search space could
be inherited from the supernet. However, one-shot NAS suffers
from degraded performance [12], [51]. The reason is that the
estimated objective metrics is poorly correlated (in Kendall’s τ
rank coefficient) with the fully trained models [52], [53], [54].
Our work falls into the candidate estimation aspect. Compared
to the existing works, our weight transfer proposal focuses on
the normal NAS. Our approach accelerates the convergence of
the models, and also significantly improves Kendall’s τ of the
candidate estimation.

Several prior works focus on designing new search strategies
to navigate the search space. These works include random
search [55], Bayesian optimization [18], [19], evolutionary
methods [20], [21], [22], [23], [24], [25], and reinforcement
learning [13], [26]. Currently, however, no clear winner outper-
forms all the other approaches in all settings [25]. While the

proposed weight transfer mechanisms are implemented with
an evolutionary search strategy [25], our approaches are not
limited to it if we can select the provider model fast. Our
implementation is also extensible to support different provider
model selectors.
Efficient checkpointing for DNNs. Weight transfer is based
on checkpointing previously trained candidate models, which
becomes an important source of overhead. To reduce this
overhead, DNN checkpointing techniques have been exten-
sively explored before. Here, we summarize two categories of
related work. First, in most large scale HPC infrastrucutures,
I/O bandwidth a scarce resource. To this end, multi-level
checkpointing can be used to leverage I/O strategies adapted
for hybrid storage hierarchies. VELOC [56], [57] takes this
approach further by introducing asynchronous I/O strategies.
Specifically for DNNs, approaches such as DeepFreeze [58]
exploit the fine-grain parallelism of the backward pass in order
to augment the execution graph with additional operations that
capture individual tensors asynchronously. Other approaches
such as CheckFreq [59] focus on determining the optimal
checkpointing frequency through systematic online profiling
of the overhead. The second category explores compression of
checkpoints to save unnecessary I/O bandwidth. In this regard,
DeepSZ [60] leverages bounded lossy compression for DNNs.
Check-N-Run [61] coordinates incremental and quantization
compression that achieved negligible overhead compared to
the training. We envision our proposal to be complemented
by such approaches.

X. CONCLUSIONS

NAS is an important step of deep learning workflows that
involves two stages: (1) candidate exploration to obtain top-K
best models; (2) full training of the top-K models to select
a winner based on various trade-offs. Unlike state-of-the-art
approaches that evaluate new candidates by training them
from scratch, we propose the idea of training new candi-
dates by performing weight transfer from previous candidates
with similar structures using two techniques: LP and LCS.
We demonstrated the effectiveness of weight transfer for an
evolutionary search strategy, which produced better top-K
models that are 1.4∼1.5× faster to train fully in the second
stage. Furthermore, despite involving additional checkpointing
overheads, weight transfer remains scalable in the first stage.
Encouraged by these results, in future work, we plan to extend
our approach by complementing it with efficient DNN check-
pointing techniques, which we expect to further emphasize the
benefits of our proposal.
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