EADH 2021, the Second International Conference of the European Association for Digital Humanities

LICENCE OLVERTE https://tinyurl.com/TreeOrderEadh2021

Evaluating Hierarchical Clustering Methods for Corpora with Chronological Order

Philippe Gambette, Olga Seminck, Dominique Legallois, Thierry Poibeau

Université Gustave Eiffel

Outline of the talk

- When the result of a clustering displays a chronological signal: some context
- 2 criteria to evaluate the consistency between a tree and a chronological order
- Finding the optimal order for each criterion
- Evaluating the significance of the obtained results
- Perspectives and conclusion

When the result of a clustering displays a chronological signal: some context

Source: Boethius, J.-P. Migne (ed.), *Patrologiae cursus completus. T. 64, Manlii Severini Boetii opera omnia*..., 1847, Staats- und Stadtbibliothek Augsburg, Google Books 9Vpm6G4A8aAC, p. 41.

Studying the evolution of the **idiolect of French XIX**th **century authors** (CIDRE corpus):

- a natural first step: hierarchical clustering
- does the clustering group together novels published in consecutive years?

Novels by Zola classified using motifs (Legallois, Charnois & Larjavaara, 2018) with the R package stylo

Studying the evolution of the idiolect of French XIXth century authors:

- a natural first step: hierarchical clustering
- does the clustering group together novels published in consecutive years?

A question relevant for other studies in digital humanities:

- historical linguistics (evolution of languages)
- political discourse analysis
- literature analysis
- etc.

Figure 15. Hierarchical analysis of M' based on proximity matrix D in Table 6

Old English texts

Source: Hermann Moisl (2020) "How to visualize high-dimensional data: a roadmap". *Journal of Data Mining & Digital Humanities*, Special issue on Visualisations in Historical Linguistics doi.org/10.46298/jdmdh.5594

Figure 1. Classification arborée sur les œuvres d'Hugo

New Year's addresses by French presidents from 1959 to 2001

Source: Jean-Marc Leblanc (2016), Analyses lexicométriques des vœux présidentiels. ISTE editions, p.64

New Year's addresses by French presidents from 1959 to 2001

Source: Jean-Marc Leblanc (2016), Analyses lexicométriques des vœux présidentiels. ISTE editions, p.64

Reordering the (dated) leaves of a tree/dendrogram

in order to

best fit with the chronology

Reordering the (dated) leaves of a tree/dendrogram

in order to

best fit with the chronology

Reordering the (dated) leaves of a tree/dendrogram

in order to

best fit with the chronology

Reordering the (dated) leaves of a tree/dendrogram

in order to

best fit with the chronology

First example:

same tree, but order of the blue and red subtrees reversed

Reordering the (dated) leaves of a tree/dendrogram

in order to

best fit with the chronology

Reordering the (dated) leaves of a tree/dendrogram

in order to

best fit with the chronology

Reordering the (dated) leaves of a tree/dendrogram

in order to

best fit with the chronology

Reordering the (dated) leaves of a tree/dendrogram

in order to

best fit with the chronology

Second example:

Reordering the (dated) leaves of a tree/dendrogram

in order to

best fit with the chronology

Second example:

Reordering the (dated) leaves of a tree/dendrogram

in order to

best fit with the chronology

Second example:

2 criteria to evaluate the consistency betweena tree and achronological order

Source: Arbre généalogique (Tholosae, 1542), Bibliothèque municipale de Toulouse, Gallica btv1b10585389q

Our first criterion

Our first criterion:

Reorder the leaves of the tree so that **the minimum number of leaves needs to be removed** to make the tree consistent with the chronology

Another example:

Another example:

Removing one leaf (2025) makes the tree consistent with the chronology

Another example:

Removing one leaf (2025 or 2019) makes the tree consistent with the chronology

... but the 2025-tree seems "less consistent with the chronology" than the 2019-tree

Another example:

Removing one leaf (2025 or 2019) makes the tree consistent with the chronology

... but the 2025-tree seems "less consistent with the chronology" than the 2019-tree I

Our second criterion

3 conflicts: **2025>2018**, **2025>2020** and **2025>2021**

Example 2:

2025>2020 and 2025>2021

Our second criterion: the number of conflicts

Our second criterion:

Reorder the leaves of the tree so that **the minimum number of conflicts** with the chronological order remain

Example 1:

3 conflicts: **2025>2018**, **2025>2020** and **2025>2021**

Example 2:

5 leaves to delete (optimal)

order 2 of the same tree

6 leaves to delete

Finding the optimal order for each criterion

Source: Arbre généalogique (Tholosae, 1542), Bibliothèque municipale de Toulouse, Gallica btv1b10585385x

Minimizing the number of leaves to delete / conflicts

Two algorithms to find an optimal order:

- 1. minimizing the number of leaves to delete
 - a new dynamic programming algorithm
- 2. minimizing the number of conflicts
 - an algorithm from bioinformatics: Venkatachalam, Apple, St. John & Gusfield, 2010

 \Rightarrow both quick (polynomial time algorithms) if each node of the tree has a small number of children

⇒ both implemented in Python and available at https://github.com/oseminck/tree_order_evaluation

Evaluating the significance of the obtained results

Source: Arbre généalogique (Tholosae, 1542), Bibliothèque municipale de Toulouse, Gallica btv1b10585387t

Is our dendrogram really consistent with the chronology or not?

Is our dendrogram really **consistent** with the chronology or not?

⇒ could **the same values** be obtained **by chance**, without chronological signal?

Is our dendrogram really **consistent** with the chronology or not?

⇒ could **the same values** be obtained **by chance**, without chronological signal?

Method to estimate some "p-value" of the result:

- 1. Generate 10 000 random orders of the leaves
- 2. Compute the smallest number of leaves to delete / conflicts for each order
- 3. Count how many random orders get a result as low as the chronological order

Is our dendrogram really **consistent** with the chronology or not?

⇒ could **the same values** be obtained **by chance**, without chronological signal?

Method to estimate some "p-value" of the result:

- 1. Generate 10 000 random orders of the leaves
- 2. Compute the smallest number of leaves to delete / conflicts for each order
- 3. Count how many random orders get a result as low as the chronological order

Example: For 0.2% of the random orders, the number of leaves to delete is as low as for the chronological order \Rightarrow probably not obtained by chance \Rightarrow significantly consistent with the chronology

In practice

Provide the tree in the Newick parenthesis format, with leaves labeled according to the order:

(((((1874a_Nouveaux_contes_a_Ninon,1864_Contes_a_Ninon),1865_La_c onfession_de_Claude),((1867_Les_mysteres_de_Marseille,1866_Le_voeu_ d_une_morte),(1868_Madeleine_Ferat,1867_Therese_Raquin))),(((((1876_ 6_Son_Excellence_Eugene_Rougon,1875_5_La_faute_de_I_abbe_Mouret) ,1874b_4_La_conquete_de_Plassans),((1885a_L_inondation_et_autres_no uvelles,1884a_Nais_Micoulin_et_autres_nouvelles),1878_8_Une_page_d_ amour)),((1882_10_Pot-bouille,1880_9_Nana),1877_7_L_assommoir)),((18 71_2_La_curee,1871_1_La_fortune_des_Rougon),1873_3_Le_ventre_de_ Paris))),(((((1893_20_Le_docteur_Pascal,1890_17_La_bete_humaine),188 4b_12_La_joie_de_vivre),1888_16_Le_reve),(((1886_14_L_oeuvre,1883_1 1_Au_Bonheur_des_dames),(1887_15_La_terre,1885b_13_Germinal)),189 2_19_La_debacle)),((((1899_1_Fecondite,1898_3_Paris),1891_18_L_argen t),(1903_3_Verite,1901_2_Travail)),(1896_2_Rome,1894_1_Lourdes))));

In practice

Provide the tree in the Newick parenthesis format, with leaves labeled according to the order:

((((1874a Nouveaux contes a Ninon,1864 Contes a Ninon),1865 La c onfession de Claude),((1867 Les mysteres de Marseille,1866 Le voeu d une morte),(1868 Madeleine Ferat, 1867 Therese Raquin))),(((((1876 6 Son Excellence Eugene Rougon, 1875 5 La faute de l abbe Mouret) ,1874b 4 La conquete de Plassans),((1885a L inondation et autres no uvelles,1884a Nais Micoulin et autres nouvelles),1878 8 Une page d amour)),((1882 10 Pot-bouille,1880 9 Nana),1877 7 L assommoir)),((18 71 2 La curee,1871 1 La fortune des Rougon),1873 3 Le ventre de Paris))),(((((1893 20 Le docteur Pascal, 1890 17 La bete humaine), 188 4b 12 La joie de vivre),1888 16 Le reve),(((1886 14 L oeuvre,1883 1 1 Au Bonheur des dames),(1887 15 La terre,1885b 13 Germinal)),189 2 19 La debacle),((((1899 1 Fecondite, 1898 3 Paris), 1891 18 L argen t),(1903 3 Verite,1901 2 Travail)),(1896 2 Rome,1894 1 Lourdes))));

Get the criteria, the optimal leaf order for each and the results of the random order simulation:

Conclusion and perspectives

Source: Arbre généalogique (Tholosae, 1542), Bibliothèque municipale de Toulouse, Gallica btv1b10585386c

Conclusion & perspectives

What we provide:

- **two criteria** to evaluate whether **a tree is consistent with an order** on the leaves, and whether it could be caused by chance;
- a **practical tool** in Python to find an **optimal order on the leaves of a tree** to best reflect some given order on the leaves.
- \Rightarrow a new tool and method for textual data analysis?

Conclusion & perspectives

What we provide:

- **two criteria** to evaluate whether **a tree is consistent with an order** on the leaves, and whether it could be caused by chance;
- a **practical tool** in Python to find an **optimal order on the leaves of a tree** to best reflect some given order on the leaves.
- \Rightarrow a new tool and method for textual data analysis?

What we are still investigating:

- a more direct way to **measure the "chronological signal"** in textual data
- algorithmics aspects of the problem: NP-hardness, practical algorithms...
- a **mathematical formula** to evaluate whether the number of leaves to delete or number of conflicts is significantly low or not

Thank you for your attention!

https://github.com/oseminck/tree_order_evaluation

Work supported by the French government under the management of the Agence Nationale de la Recherche as part of the "Investissements d'avenir" program, references ANR-19-P3IA-0001 (PRAIRIE 3IA Institute) and ANR-16-IDEX-0003 (I-Site Future, programme "Cité des dames, créatrices dans la cité").