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Generalized conditional gradient and learning in potential

mean field games∗

Pierre Lavigne† Laurent Pfeiffer‡
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Abstract

We investigate the resolution of second-order, potential, and monotone mean
field games with the generalized conditional gradient algorithm, an extension
of the Frank-Wolfe algorithm. We show that the method is equivalent to the
fictitious play method. We establish rates of convergence for the optimality
gap, the exploitability, and the distances of the variables to the unique solution
of the mean field game, for various choices of stepsizes. In particular, we show
that linear convergence can be achieved when the stepsizes are computed by
linesearch.

Key-words: mean field games, generalized conditional gradient, fictitious play,
mean field optimal control, learning, exploitability.
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1 Introduction

Framework Mean field games (MFG), introduced by J.-M. Lasry and P.-L. Lions
in [29] and M. Huang, R. Malhamé, and P. Caines in [24], are a class of mathemat-
ical problems which allow to approximate differential games involving a very large
number of agents. The general situation of interest is as follows: each agent aims at
minimizing some cost function, depending on his own decision variables and some
coupling terms, common to all agents. There are two fundamental assumptions in
MFG theory: the coupling terms depend on the distribution of the agents and each
agent has a negligible contribution to the coupling terms. Mean field games can
typically be formulated as a coupled system of two equations, characterizing the
decisions of the agents as functions of the coupling terms and vice versa.
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In this article we consider a mean field game system of the following form

(i)

{
−∂tu−∆u+H[∇u+A?P ] = γ,

u(x, T ) = g(x),

(x, t) ∈ Q,
x ∈ Td,

(ii) v = −Hp[∇u+A?P ], (x, t) ∈ Q,

(iii)

{
∂tm−∆m+∇ · (vm) = 0,

m(0, x) = m0(x),

(x, t) ∈ Q,
x ∈ Td,

(iv) γ(x, t) = f(x, t,m(t)), (x, t) ∈ Q,

(v) P (t) = φ[A[vm]](t), t ∈ [0, T ].

(MFG)

The unknown of the system is (m, v, u, γ, P ), with m : Q→ R, v : Q→ Rd, u : Q→
R, γ : Q → R, and P : [0, T ] → Rk. The data of the system (which will be clearly
defined latter in Section 2) are the initial distribution m0 and the terminal cost g.
The mapping H denotes the Hamiltonian of the system, f and φ are a congestion
cost and a price function.

In this model, the coupling terms are the variables γ and P . Given γ and P ,
the optimal control problem solved by a representative agent is described by (10)
and (11); the optimal feedback v is obtained by computing the corresponding value
function u, solution the Hamilton-Jacobi-Bellman equation (MFG,i) and then v is
obtained with using Equation (MFG,ii). Conversely, the coupling terms γ and P
are deduced from v by computing the distribution m of the agents, solution to
the Fokker-Planck equation (MFG,iii). The first coupling term γ is deduced from m
through (MFG,iv) and the second coupling term P is deduced from m and v through
equation (MFG,v). Interactions through the density of players typically appear in
epidemic or crowd motion models, while interactions through the controls v typically
appear in economics, finance or energy management models.

We assume in this work that the interaction cost and the price function derive
from convex potentials. Our MFG system has then a potential structure, that is, it
can be interpreted as the first-order necessary and sufficient optimality conditions
for a convex mean field control problem,

inf
(m,w)∈R

J (m,w) := J1(m,w) + J2(m,w), (P)

obtained using the classical Benamou-Brenier transformation. Problem (P) is re-
ferred to as the potential problem. Roughly speaking (the precise definition is given
in (8)), the feasible set R is the set of pairs (m,w) satisfying the Fokker-Planck
equation ∂tm−∆m+∇ · w = 0 and m(0) = m0 and

J1(m,w) =

∫
Q
L̃[m,w](x, t) dx dt+

∫
Td
g(x)m(x, T ) dx,

J2(m,w) =

∫ T

0

(
F [m](t) + Φ[Aw](t)

)
dt.

(1)

Potential MFGs have been widely investigated, we refer the reader to [4, 13] for
interactions through the density m and to [5, 20, 21] for price interactions.
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Various methods from convex optimization have been been employed to solve
potential problems, see [1] for a survey. A first approach consists in formulating
the potential problem as a saddle-point problem and to solve it with primal-dual
algorithms, see [6, 9, 10]. Another approach consists in applying the augmented
Lagrangian algorithm to the dual problem of the potential problem, see [2, 4, 6].
Other methods have been investigated such as the Sinkhorn algorithm [3].

Generalized conditional gradient algorithm The aim of the paper is to show
that the potential mean field game system (MFG) can be efficiently solved with
the generalized conditional gradient method (GCG). This method is iterative: at
iterate k, given a candidate (m̄k, w̄k), one first solves the following partially linearized
problem:

inf
(m,w)∈R

J1(m,w) +DJ2[m̄k, w̄k](m,w). (2)

The derivative DJ2[m̄k, w̄k] will be explicitly defined in the analysis. Denoting by
(mk, wk) a solution to this problem, the next iterate is defined as (m̄k+1, w̄k+1) =
(1− δk)(m̄k, w̄k) + δk(mk, wk) for some stepsize δk ∈ [0, 1].

The GCG algorithm, first introduced in [7], is an extension of the conditional
gradient algorithm, also called Frank-Wolfe algorithm. The conditional gradient
method allows to minimize a convex objective function on a convex and compact
set. A classical choice of step size is given by δk = 2/(k + 2) (see [25]) which yields
the convergence of the objective function in O(1/k).

Most of the basic existing convergence results for the conditional gradient remain
true for the GCG method, which also exhibits faster convergence rates in some cases,
typically when the partially linearized cost function enjoys some coercivity property
and when δk is obtained with a linesearch procedure. Improved rates of conver-
gence have been recently obtained in [26], in an infinite-dimensional setting. The
main interest of the generalized conditional gradient compared to the Frank-Wolfe
algorithm is to use the regularity of the cost function to reach higher convergence
rates. This algorithm is thus very suitable for potential mean field games since it is
inherently assumed that the potential coupling terms are differentiable.

Learning in mean field games A fundamental issue in game theory is the for-
mation of an equilibrium. It is often unrealistic to consider that the agents can
perfectly anticipate the behavior of the others, in particular in the sophisticated sit-
uation underlying an MFG model. On contrast, it is more realistic to assume that
the game is repeated many times and that the agents update their decisions accord-
ing to a more or less complex procedure called learning procedure. We consider in
this article the fictitious play, a learning procedure in which the agents play at each
iteration of the game an optimal decision (also called best-responses), corresponding
to a predicted value of the coupling term (also called belief ), which is then updated.
In the context of MFGs, the fictitious play has been investigated in [14, 16, 23, 32].
The convergence results for learning methods can be of various forms. In poten-
tial games, one can study the convergence of the potential cost along a sequence
generated by the fictitious play algorithm. In general, one can consider the ex-
ploitability of the game at each iteration and try to show its convergence to zero.
For a given value of the coupling terms, the exploitability is the highest reduction of
cost that a representative agent can achieve by changing his current decision to the
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best-response, assuming that the coupling terms remain the same. The convergence
of the exploitability has been addressed in [32] in the context of continuous-time
learning and discrete mean field games, and a convergence rate is provided.

A key message of this article is that, in the context of second-order potential mean
field games, the fictitious play method can be interpreted as a GCG algorithm. This
is a consequence of the fact that the partially linearized problem (2) is equivalent
to a standard stochastic optimal control. As will be justified, the unique solution
(mk, wk) to (2) is obtained by first computing the belief (γk, Pk)

γk(x, t) = f(x, t, m̄k(t)), Pk(t) = φ(t, Aw̄k(t)),

next by solving the PDEs{
−∂tuk −∆uk +H[∇uk +A?Pk] = γk, (x, t) ∈ Q,
∂tmk −∆mk +∇ · wk = 0, (x, t) ∈ Q,

using the same boundary conditions as in (MFG), and finally by computing the
best-response wk = −Hp[∇uk + A?Pk]mk. If we further choose δk = 1/(k + 1), we
recover the fictitious play algorithm introduced in [22].

Exploitability and primal-dual gap The connection between the GCG algo-
rithm and the ficitous play allows us to show that the notion of primal-dual gap
primal-dual gap and the notion of exploitability of the game are equivalent. This
interpretation has already been highlighted in a very recent work [18], for a class of
potential mean field games with some discrete structure. The connection between
the Frank-Wolfe algorithm and fictitious play has also been been investigated in [34]
for a general class of potential games.

Contributions The article [14] is the most related to ours. It considers a second-
order potential MFG, similar to our model but without price interaction. It is proved
that any cluster point (there exists at least one) of the sequences of value functions
and probability distributions generated by the fictitious play is a solution to the
MFG. In the case of a convex potential, the entire sequence converge.

The connection between the GCG algorithm and fictitious play, in the context of
second-order MFGs, is the first contribution of our work. As we already mentioned,
this connection was already established in [18], in a different MFG setting. Taking
advantage of this connection, we prove a general convergence result for the optimality
gap (associated with the potential cost), when the stepsizes are predefined. These
results easily lead to convergence rates, in particular, for δk = p/(k + p) (with
p > 0), we prove a convergence rate of order O(k−p). This covers the case of the
fictitious play (with p = 1) and thus improves the convergence result of [14] in the
convex potential case. Our most important contribution is the proof of the linear
convergence of the optimality gap when the stepsizes are determined with classical
linesearch rules, which is of major interest from a numerical perspective. Let us note
that our analysis is restricted to the case of non-degenerate second-order MFGs. At a
technical level, the proof of convergence utilizes in a crucial manner techniques from
[26]. Let us emphasize that for the methods from convex analysis which we have cited
above (Chambolle-Pock, augmented Lagrangian, Sinkhorn), no rate of convergence
has been established. To the best of our knowledge, only two references provide a
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linear rate of converge for MFGs: [35], which is restricted to linear-quadratic MFGs,
and [12], under a restrictive smallness assumption for the coupling function.

Plan of the paper The paper is organized in two main parts. The first part,
consisting of Sections 2 to 4, present the GCG algorithm for MFGs. Section 2 is
dedicated to the notations, the assumptions and the introduction of the main map-
pings used all along the article. We then describe the GCG algorithm in Section 3
and we explain its connection with fictitious play. We also state our main conver-
gence results: Theorems 7 and 8. Section 4 present numerical illustrations of the
convergence results for an academical problem.

The second part, consisting of Section 5, deals with the analysis of the GCG
algorithm. We establish the well-posedness of Algorithm 1 and prove Theorems 7 and
8. Related technical details concerning the Fokker-Planck and the HJB equations
are available in Appendix A.

2 Notations, assumptions and mappings

2.1 Notation

Let T > 0 denote the horizon of the game. We fix d and k in N∗. We denote by Td
the d-dimensional torus and we set Q = Td× [0, T ]. For any subsets O and K of Rd,
we denote C(O;K) the set of continuous mappings on O valued in K. In the article,
when K = R, we simply denote C(O) and we make use of this convention for any
other functional spaces.

Hölder spaces For any α ∈ (0, 1), we denote by Cα(Q) the set of Hölder continu-
ous mappings on Q of exponent α. We denote by Cα,α/2(Q) the set of functions on
Q which are Hölder continuous of exponent α with respect to space and Hölder con-
tinuous of exponent α/2 with respect to time. We denote by C2+α,1+α/2(Q) the set
of functions u ∈ Cα(Q) with partial derivatives ∂tu, ∂xiu, and ∂2

xi,xju in Cα,α/2(Q).

Finally, we denote by C2+α(Td) the set of α-Hölder continuous functions, such that
all partial derivatives up to the order two are α-Hölder continuous.

Sobolev spaces and density space We denote by Wn,q(Td) the Sobolev space
of functions with weak partial derivatives in Lq(Td), up to the order n. We set

W 2,1,q(Q) = W 1,q(Q) ∩ Lq(0, T ;W 2,q(Td))
W 1,0,∞(Q) = L∞(0, T ;W 1,∞(Td)).

From now on, we fix a real number q such that q > d+ 2.

Lemma 1. There exists δ ∈ (0, 1) and C > 0 such that for all u ∈W 2,1,q(Q),

‖u‖Cδ(Q) + ‖∇u‖Cδ(Q;Rd) ≤ C‖u‖W 2,1,q(Q).

Proof. See [28, Lemma II.3.3., page 80 and Corollary, page 342].

We introduce the space Θ, which will be used for the control variable of the
system. It is defined by

Θ =
{
v ∈ C(Q;Rd)

∣∣Dxv ∈ Lq(Q;Rd×d)
}
, (3)
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where Dxv denotes the weak space derivative of v with respect to x. We equip this
space with the norm

‖v‖Θ = ‖v‖L∞(Q;Rd) + ‖Dxv‖Lq(Q;Rd×d).

The coupling terms (γ, P ) of the MFG system of interest will be considered in the
space Ξ, defined by

Ξ =
(
W 1,0,∞(Q) ∩ C(Q)

)
× C(0, T ;Rk). (4)

In words, (γ, P ) lies in Ξ if and only if γ is continuous in both variables, Lipschitz
continuous in x, uniformly in t, and P is continuous. Let R > 0, we define the
following subset of Ξ:

ΞR =
{

(γ, P ) ∈ Ξ
∣∣∣ ‖γ‖W 1,0,∞(Q) + ‖P‖L∞(0,T ;Rk) ≤ R

}
. (5)

We also define

D1(Td) =
{
m ∈ L∞(Td)

∣∣∣m ≥ 0,

∫
Td
m(x) dx = 1

}
.

Nemytskii operators Given two mappings g : X × Y → Z and u : X → Y, we
denote by g[u] : X → Z the mapping defined by

g[u](x) = g(x, u(x)), ∀x ∈ X ,

called Nemytskii operator. This notation will for instance be used for the Hamilto-
nian H: instead of writing H(x, t,∇u(x, t)), we write H[∇u](x, t). Note that Hp

will denote the Nemytskii operator associated with the partial derivative of H with
respect to p (a similar notation will be used for the other partial derivatives).

Generic constants All along the article, we make use of a generic constant C > 0,
depending only on the data of the problem. The value of C may increase from
an inequality to the next one. We will also make use of a generic constant C(R)
depending only on the data of the problem and some positive real number R > 0.

2.2 Assumptions

We define two boundary conditions m0 ∈ D1(Td), g : Td → R, and four maps: a
running cost L, an interaction cost f , a price function φ and an aggregation term a,

L : Q× Rd → R, φ : [0, T ]× Rk → Rd,
f : Q×D1(Td)→ R, a : Q→ Rk×d.

For any (x, t, p) ∈ Q× Rd, we define the Hamiltonian H by

H(x, t, p) = sup
v∈Rd

−〈p, v〉 − L(x, t, v).

We also define the perspective function L̃ : Q× R× Rd → R of L,

L̃(x, t,m,w) =


mL
(
x, t, wm

)
, if m > 0,

0, if m = 0 and w = 0,

+∞, otherwise.
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Note that the function L̃ is convex and lower semi-continuous with respect to (m,w).
Next we define two linear operators A : w ∈ L1(Q;Rd) 7→ A[w] ∈ L1(0, T ;Rk) and
A? : P ∈ L∞(0, T ;Rk) 7→ A∗[P ] ∈ L∞(Q;Rd) as follows:

A[w](t) =

∫
Td
a(x, t)w(x, t)dx, A?[P ](x, t) = a?(x, t)P (t), ∀(x, t) ∈ Q.

Note that the function a will be assumed to be bounded.
We assume that there exist four constants C0 > 0, C1 > 0, C2 > 0, and α0 ∈ (0, 1)

such that the following holds true.

(H1) Convexity of L. For any (x, t) ∈ Q, the function L(x, t, ·) is strongly convex
with modulus 1/C0.

(H2) Lipschitz continuity of L. For any x and y ∈ Td, for any t ∈ [0, T ], and for any
v ∈ Rd, we have: |L(x, t, v)− L(y, t, v)| ≤ C0|x− y|(1 + |v|2).

(H3) Boundedness of L, φ, and f . For any (x, t) ∈ Q, for any v ∈ Rd, and for any
z ∈ Rk,

L(x, t, v) ≤ C0|v|2 + C0, |φ(t, z)| ≤ C0, and |f(x, t,m)| ≤ C0.

(H4) Regularity assumptions. The running cost L is differentiable with respect to
v and DvL is differentiable with respect to x and v. The mapping a is dif-
ferentiable with respect to x. The mapping L, DvL, DvxL, DvvL, φ, a, Dxa
are Hölder-continuous on any bounded set. The mappings m0 and g lie in
C2+α0(Td).

(H5) Regularity of the coupling functions. For all (x1, t1) and (x2, t2) in Q and for
all m1 and m2 in D1(Td),

|f(x2, t2,m2)−f(x1, t1,m1)| ≤ C0

(
|x2−x1|+ |t2− t1|α0

)
+C1‖m2−m1‖L2(Td).

For all t ∈ [0, T ] and for all z1 and z2 in Rk, |φ(t, z2)− φ(t, z1)| ≤ C2|z2 − z1|.

(H6) Potential structure. The map f is monotone with respect to its third variable,
that is to say,∫

Td
(f(x, t,m2)− f(x, t,m1))(m2(x)−m1(x)) dx ≥ 0,

for any m1 and m2 ∈ D1(Td) and t ∈ [0, T ]. We assume that f has a primitive,
that is, we assume the existence of a map F : [0, T ]×D1(Td)→ R such that

F (t,m2)− F (t,m1) =

∫ 1

0

∫
Td
f(x, t, sm2 + (1− s)m1)(m2(x)−m1(x)) dx ds.

(6)
Moreover, φ has a convex potential Φ, that is to say there exists a measurable
mapping Φ : [0, T ] × Rk → R, convex and differentiable with respect to its
second variable and such that φ(t, z) = ∇zΦ(t, z) for any (t, z) ∈ [0, T ]× Rk.

Remark 2. 1. An example of coupling term f satisfying the above assumptions
can be found in [5, page 8].
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2. The monotonicity assumption on f implies that

F (t,m2) ≥ F (t,m1) +

∫
Td
f(x, t,m1)(m2(x)−m1(x)) dx.

Since this inequality holds for any m1 ∈ D1(Td), F is convex with respect to
its second variable as the supremum of affine functions.

3. If the terminal condition g depends on m, the results of the paper are still valid
if g satisfies the same kind of assumptions as f (H3), (H5), and (H6) (bound-
edness, Lipschitz-continuity, monotonicity, existence of a potential function).

4. Our assumptions are stronger than those of [5], since we require the bounded-
ness of φ and the Lipschitz continuity of f w.r.t. m, for the L2(Td)-norm.

Theorem 3. There exists α ∈ (0, 1) such that the system (MFG) has a unique
solution (m̄, v̄, ū, γ̄, P̄ ) in C2+α,1+α/2(Q) × Cα(Q;Rd) × C2+α,1+α/2(Q) × Cα(Q) ×
Cα(0, T ;Rk). Moreover, Dv ∈ Cα(Q;Rd×d).

Proof. Direct application of [5, Theorem 1 and Proposition 2].

Lemma 4. The pair (m̄, w̄) is the unique solution to the potential problem (P).

Proof. Lemma 4 is a direct consequence of Corollary 22, proved in Section 5.2.

For the rest of the article, following Theorem 3, we denote by (m̄, v̄, ū, γ̄, P̄ ) the
unique solution to (MFG) and we set w̄ = m̄v̄.

2.3 Mappings

We introduce in this subsection different mappings, which will allow to express in a
compact fashion the different mutual dependencies of the variables of the mean field
game. The well-posedness of all these mappings will be justified in Appendix A.

Fokker-Planck mapping We first define the mapM : v ∈ Θ 7→M [v] ∈W 2,1,q(Q)
which associates any vector field v to the weak solution to the Fokker-Planck equa-
tion

∂tm−∆m+∇ · (vm) = 0 (x, t) ∈ Q,
m(0, x) = m0(x) x ∈ Td. (7)

Next we consider the set R defined by

R =


(m,w) ∈W 2,1,q(Q)×Θ

∣∣
∂tm−∆m+∇ · w = 0, m(0, ·) = m0

∃v ∈ L∞(Q;Rd), w = mv

 . (8)

Lemma 5. The set R is convex. Moreover, given v ∈ Θ, the pair (m,mv) lies in
R, for m = M [v].

Proof. Let (mi, wi) ∈ R, for i = 1, 2. Let vi ∈ L∞(Q;Rd) be such that wi = mivi.
Let θ ∈ (0, 1) and let (mθ, wθ) = (1−θ)(m1, w1)+θ(m2, w2). Clearly ∂tmθ−∆mθ +
∇ · wθ = 0 and mθ(0, ·) = m0. Let C = maxi=1,2{‖vi‖L∞(Q;Rd)}. We define

ϕ : (m,w) ∈W 2,1,q(Q)×Θ 7→ max
(x,t)∈Q

‖w(x, t)‖ − Cm(x, t) ∈ R.
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We have mθ ≥ 0. Define next vθ as vθ = wθ/mθ on {mθ > 0}, vθ = 0 on {mθ = 0}.
We have ϕ(mi, wi) ≤ 0. By convexity of ϕ we have ϕ(mθ, wθ) ≤ 0, which implies
that ‖vθ‖L∞(Q;Rd) ≤ C and that for all (x, t) ∈ Q, if mθ(x, t) = 0 then wθ(x, t) = 0.
Thus wθ = mθvθ. The convexity of R follows. The second part of the lemma is a
consequence of Lemma 1 and Lemma 13.

HJB mapping Given (γ, P ) ∈ Ξ, we define u[γ, P ] as the viscosity solution to
the following HJB equation:

−∂tu−∆u+H[∇u+A?P ] = γ (x, t) ∈ Q,
u(x, T ) = g(x) x ∈ Td. (9)

Let us given an interpretation of u as the value function of an optimal control
problem. Let (Bs)s∈[0,T ] denote a d-dimensional Brownian motion. Let F denote the
filtration generated by the Brownian motion (Bs)s∈[0,T ]. We denote by L2

F(t, T ) the
set of progressively measurable stochastic processes ν defined on [t, T ] and valued

in Rd such that E
[ ∫ T

t |νs|
2ds
]
< +∞. Given (γ, P ) ∈ Ξ, we consider the mapping

J [γ, P ] : Q× L2
F(0, T )→ R, defined by

J [γ, P ](x, t, ν) = E
[ ∫ T

t

(
L(Xs, νs)+〈A?[P ](Xs, s), νs〉+γ(Xs, s)

)
ds+g(XT )

]
, (10)

where (Xs)s∈[t,T ] is the solution to dXs = νs ds+
√

2 dBs, Xt = x. Then, u[γ, P ] is
the value function of the optimal control problem associated with J [γ, P ], that is to
say, for any (x, t) ∈ Q,

u[γ, P ](x, t) = inf
ν∈L2

F(0,T )
J [γ, P ](x, t, ν). (11)

This is a classical result from dynamic programming theory, see [17].

The other mappings Next we introduce three mappings, v, m, and w, defined
on Ξ, and such that

m[γ, P ] ∈W 2,1,q(Q), v[γ, P ] ∈ Θ, and w[γ, P ] ∈ Θ.

For any pair (γ, P ) ∈ Ξ, they are given by

v[γ, P ] = −Hp[∇u[γ, P ] +A?P ],

m[γ, P ] = M
[
v[γ, P ]

]
,

w[γ, P ] = m[γ, P ]v[γ, P ].

Finally, using Nemytskii operators, we define

γ : W 2,1,q(Q)→W 1,0,∞(Q) ∩ C(Q),
m 7→ f [m],

P : Θ→ C(0, T ;Rk)
w 7→ φ

[
A[w]

]
.

In summary, the mappings u, v, m, and w, derived from the equations (MFG,i-iii),
allow to express the behavior of the agents in function of the coupling terms γ and P .
Conversely, the mappings γ and P , derived from the equations (MFG,iv-v), allow
to express the coupling terms as a function of the behavior of the agents, described
by the variables m and w.

9



3 Generalized conditional gradient and fictitious play

In this section we present the GCG method, provide an interpretation as a learning
method, and state our main results.

3.1 Individual criterion and best reply

We introduce now the PDE formulation of the stochastic optimal control problem
solved by the representative agent. Given a pair (γ, P ) ∈ Ξ, we consider the criterion

Z[γ, P ](m,w) = J1(m,w) +
(∫

Q
γ(x, t)m(x, t) dx dt+

∫ T

0
〈A[w](t), P (t)〉 dt

)
,

and the associated optimal control problem

inf
(m,w)∈R

Z[γ, P ](m,w). (P[γ, P ])

Provided that it exists, any minimizer of the above problem can be interpreted as a
best reply of the individual player, given the coupling term (γ, P ). A key observation
is that (P[γ, P ]) can be seen as a partial linearization of (P).

Lemma 6. For any (γ, P ) ∈ Ξ, (m[γ, P ],w[γ, P ]) is the unique solution to (P[γ, P ]).

Proof. This is a direct consequence of Proposition 21, proved at page 20.

Take a pair (m̂, ŵ) ∈ R and set γ̂ = γ[m̂] and P̂ = P [ŵ]. The criterion Z[γ̂, P̂ ](·)
can be seen as a partial linearization of J : while the term J1(m,w) is the same

in both cost functions,
∫
Q γ̂mdx dt is a linearization of

∫ T
0 F [m] dt around m̂ and∫ T

0 〈A[w], P̂ 〉dt is a linearization of
∫ T

0 Φ[Aw] dt around ŵ.

3.2 GCG algorithm and interpretation as a learning method

Using the partial linearization of J introduced in the previous subsection, the GCG
algorithm yields Algorithm 1.

Algorithm 1 Generalized conditional gradient

Choose (m̄0, w̄0) ∈ R
for 0 ≤ k < N do

1. Set γk = γ[m̄k] and Pk = P [w̄k].
2. Find the solution to P[γk, Pk], that is, define successively:

uk = u[γk, Pk], vk = v[γk, Pk], mk = m[γk, Pk], wk = w[γk, Pk].

3. Choose δk ∈ [0, 1].
4. Update (m̄k+1, w̄k+1) = (m̄δk

k , w̄
δk
k ), where

(m̄δ
k, w̄

δ
k) = (1− δ)(m̄k, w̄k) + δ(mk, wk), ∀δ ∈ [0, 1]. (12)

end for
return (m̄N , w̄N ).

10



We can give an interpretation of Algorithm 1 as a learning method. At Step
1, m̄k and w̄k are can be seen as predictions of the equilibrium values m̄ and w̄.
The agents use them to make a prediction of the coupling terms, γk and Pk. In the
second step, they find the corresponding best-response, by solving the HJB equation
associated with their optimal control problem. Finally, in Steps 3 and 4, they update
their prediction of m and w. In particular, when δk = 1/(k + 1), for any k ∈ N,
we are in the setting of the fictitious play, as investigated in [14] (without price
interaction).

We denote by εk the optimality gap at iterate k, defined by

εk = J (m̄k, w̄k)− inf
R
J = J (m̄k, w̄k)− J (m̄, w̄).

We define the exploitability as follows

σ(m,w) = Z[γ, P ](m,w)−
(

inf
(m′,w′)∈R

Z[γ, P ](m′, w′)
)

= Z[γ, P ](m,w)−Z[γ, P ](m[γ, P ],w[γ, P ]) ≥ 0,

where γ = γ[m] and P = P [w]. The exploitability is the largest decrease in cost
that a representative agent can reach by playing its best response, assuming that all
other agents play (m,w). At equilibrium, since there is no profitable deviation, the
exploitability is null. We denote by σk the exploitability at iterate k, given by

σk = Z[γk, Pk](m̄k, w̄k)−Z[γk, Pk](mk, wk). (13)

The convergence analysis will concern two kinds of stepsizes: predefined stepsizes,
whose value only depends on k, and adaptive stepsize, whose value depend on the
two pairs (m̄k, w̄k) and (mk, wk). Following [26], we will investigate three different
rules for the determination of adaptive stepsizes.

• Optimal stepsizes: Find δk such that

δk ∈ arg min
δ∈[0,1]

J (m̄δ
k, w̄

δ
k), (14)

where (m̄δ
k, w̄

δ
k) is defined as in (12).

• Quasi-Armijo-Goldstein condition: fix two parameters c ∈ (0, 1) and τ ∈
(0, 1). At iterate k, we say that δ ∈ [0, 1] satisfies the Quasi-Armijo-Goldstein
(QAG) condition if

J (m̄δ
k, w̄

δ
k) ≤ J (m̄, w̄)− cδσk.

Then δk is defined by

δk = τ ik , ik = argmin
{
j ∈ N

∣∣ τ j satisfies the QAG condition
}
. (15)

• Exploitability-based stepsizes: we take

δk = min

{
1,

σk

2
(
C1D

(1)
k + C2D

(2)
k

)}, (16)

where C1 and C2 are the constants of Assumption (H5) and where

D
(1)
k =

∫ T

0
‖mk(t, ·)− m̄k(t, ·)‖L2(Td)‖mk(t, ·)− m̄k(t, ·))‖L1(Td) dt

D
(2)
k =

∫ T

0

∣∣∣ ∫Td a(x, t)(w2(x, t)− w1(x, t)) dx
∣∣∣2 dt

(17)

11



3.3 Main convergence results and discussion

Our first result concerns the convergence of the variables of the algorithm. Our
second result provides several rates of convergence for the optimality gap, depending
on the choice of the learning sequence (δk)k∈N. The two theorems are proved in
Subsections 5.3 and 5.4.

Theorem 7. There exists C > 0 such that for all k ∈ N,

‖m̄k − m̄‖L∞(0,T ;L2(Td)) + ‖w̄k − w̄‖L2(Q;Rd) ≤ C
√
εk,

‖γk − γ̄‖L∞(Q) + ‖Pk − P̄‖L∞(0,T ;Rk) ≤ C
√
εk,

‖uk − ū‖L∞(Q) ≤ C
√
εk,

‖mk − m̄k‖L∞(0,T ;L2(Td)) + ‖wk − w̄k‖L2(Q;Rd) ≤ C
√
σk.

Theorem 8. 1. At each iteration, assume that (δk)k∈N satisfy one the three adap-
tive rules described above: either (14), (15) (for values of τ and c independent
of k), or (16). Then, there exist two constants C > 0 and λ > 0 such that

εk ≤ Cλk, ∀k ∈ N.

Moreover, the number ik of iterations for the QAG condition is bounded by
some constant independent of k.

2. There exists a constant C > 0 such that whatever the choice of stepsizes δk ∈
[0, 1], it holds that

εk+1 ≤
ε0 exp

(
C
∑k

j=0 δ
2
j

)
exp

(∑k
j=0 δj

) , ∀k ∈ N. (18)

Let us first discuss some aspects related to adaptive stepsizes. While the method
for computing δk in the case of the QAG condition or the exploitability-based formula
is explicit, it is impossible to find δk that exactly satisfies (14). We suggest to
compute an approximation of the optimal stepsize with the golden-section method,
which we briefly describe. Denote by ϕ := (

√
5+1)/2 the golden number and choose

a tolerance κ ∈ (0, 1). At each step k ∈ {0, . . . , N}, the learning rate δk is computed
as follows: Set (a, d) = (0, 1) and (b, c) = (d − (d − a)/ϕ, a + (d − a)/ϕ). While
a− d > κ, find

δ̄ ∈ arg min
δ∈{a,b,c,d}

J (m̄δ
k, w̄

δ
k). (19)

Then set d = b (resp. d = c, a = b or a = c) if δ̄ = a (resp. δ̄ = b, δ̄ = c or δ̄ = d).
When a−d ≤ κ, stop and set δGS

k = δ̄. Finally, denote δQAG
k the stepsize determined

by (15). As a substitute for (14), one can choose δk ∈ arg min
δ∈{δGS

k ,δQAG
k } J (m̄δ

k, w̄
δ
k).

In view of the proof of Theorem 8, it is clear that linear convergence is also achieved
for this choice of stepsize.

Remark 9. The practical computation of δk requires a bounded number (with re-
spect to k) of evaluations of the cost functional J in each of the three considered
cases, (15) (since ik is bounded), (16) (the formula is explicit), (19) (the number
of evaluations can be bounded by some constant depending on κ and ϕ). Therefore
linear convergence is not only achieved with respect to k but also with respect to the
number of evaluations of J .
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We discuss now the convergence of (εk)k∈N for predefined stepsizes. The following
lemma covers the case of the fictitious play learning rate (δk = 1

k+1) and the Frank-

Wolfe stepsize (δk = 2
k+2).

Lemma 10. Let p > 0. Assume that δk = p
k+p , for any k ∈ N. Then, for all k ∈ N,

εk ≤
ε0 p

p exp(2Cp)

(k + p+ 1)p
.

Proof. We have the following inequalities:

k∑
j=0

p

j + p
≥
∫ k+1

0

p

s+ p
ds = p ln

(k + p+ 1

p

)
k∑
j=0

(
p

j + p

)2

≤ p2
(1

p
+

∫ ∞
0

1

(s+ p)2
ds
)

= 2p.

Using inequality (18), we deduce that εk ≤ ε0 exp
(
2Cp− p ln(k+ p) + p ln(p)

)
, from

which the announced result follows.

Remark 11. Lemma 10 shows that rates of convergence of order O(k−p) can be
achieved. Yet the constant behind the asymptotic rate of convergence, of order
pp exp(2Cp), increases quickly with p, which mitigates the interest of taking a too
large value of p in practice. This is confirmed in the numerical tests of Section 4.

Lemma 12. Let the sequence of stepsizes (δk)k∈N converge to zero. Then, for any
r ∈ (0, 1), there exist two constants C > 0 and k0 ∈ N, both depending on the
sequence of stepsizes and r, such that

εk+1 ≤
Cε0

exp
[
(1− r)

(∑k
j=0 δj

)] , ∀k ≥ k0.

In particular, if
∑∞

k=0 δk =∞, then εk −→
k→∞

0.

Proof. Let r ∈ (0, 1). Let k0 ∈ N be such that δk ≤ r
C , for any k ≥ k0 (and where C

is as in (18) holds true). Then for any k ≥ k0, we have

C

k∑
j=0

δ2
j ≤ C

k0−1∑
j=0

δ2
j + Cδk0︸︷︷︸

≤r

k∑
j=k0

δj .

It follows that C
∑k

j=0 δ
2
j −
∑k

j=0 δj ≤
(
C
∑k0−1

j=0 δ2
j + r

∑k0−1
j=0 δj

)
− (1− r)

∑k
j=0 δj .

Plugging this inequality into (18), we obtain the announced result.

Lemma 12 shows that high convergence rates can be achieved if the sequence
(δk)k∈N decreases slowly, as we already noticed in Lemma 10. However, if the con-
vergence to 0 is slow, the values of k0 and C may be very large, as was revealed in
the proof. This fact is verified for the sequence δk = (1 + k)−α.
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4 Numerical illustration

As a numerical illustration, we solve the mean field game system (MFG) with f = 0.
In this situation, the agents only interacts through the law of their controls. The
associated potential problem has the following form

inf
(m,w)∈R

∫
Q
L̃[m,w] dx dt+

∫ T

0
Φ[Aw] dt+

∫
Td
gm(T ) dx.

Data and numerical scheme We take d = 2, k = 2 and T = 1 so that Q =
T2 × [0, 1]. The initial measure m0 is normally distributed on the torus (it is the
product of two independent von Mises distributions centered at 1/4 and is shown in
Figure 1a). The terminal condition g(x) =

∑2
i=1 cos(2πxi) for any x = (x1, x2) ∈ T2

is shown in Figure 1b.

(a) Initial measure m0. (b) Terminal condition g.

We define L(x, t, v) = 1
2 |v|

2, a(x, t) = Id and φ(t, z) = 10z. Obviously φ
derives from the potential Φ(t, z) = 5(z2

1 + z2
2). In other words, we have a two-

dimensional price variable, and the two price relations write, for i = 1, 2 as follows:
Pi = 10

∫
Td vi(x, t)mi(x, t) dx dt. For any control νt ∈ L2

F(0, 1), the cost function of
a representative agent writes:

E
[ ∫ T

0

1

2
|νt|2 + 10 〈P (t), νt〉dt+ g(Xν

T )
]
.

In this numerical experiment we consider a volatility equal to 0.1 for the con-
trolled stochastic state equation satisfied by Xν . Algorithm 1 requires to compute
the mappings u (i.e. a solution to the Hamilton-Jacobi-Bellman equation) and M
(i.e. a solution to the Fokker-Planck equation) at each step. The resolution is done
via an explicit finite difference scheme. In the following, we discretize Q with a
uniform grid containing 102 points in space and 42 points in time.

Interpretation and numerical solution When P = 0, the optimal trajectories
of the agents look like slightly perturbed straight lines (with constant speed), ending
in a close neighborhood of the point (0.5, 0.5) (it would be a straight line in the
deterministic case without diffusion coefficient). In view of the initial condition,
located in the “bottom right corner” of the square [0, 1]2, the agents use in this case
positive controls v1 and v2. However, when P1 is positive, some agents may try

14



(a) Density of players m̄ evaluated at several time steps.

(b) Vector field v̄ evaluated at several time steps.

Figure 2: Density and velocity vector field evaluated at several points in time.
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to reach the point (0.5, 0.5) using control with a first coordinate that is negative.
Graphically speaking, these agent would cross the left vertical axis (x1 = 0) and
“jump” to the right vertical axis (x1 = 1). This strategy is particularly interesting
for agents an initial condition x such that x1 is positive and close to zero. Of course
the same reasoning is valid for P2 positive: some agents would cross the horizontal
axis.

The two equilibrium prices are positive, leading to four different kinds of optimal
trajectories: those which do not cross any axis, those crossing only the vertical axis,
those crossing only the horizontal axis, and those crossing both axes, as can be seen
from the graphs of the equilibrium vector field v̄ on Figure 2b. Thus the initial
distribution is split into four groups as shown by Figure 2a. The group of agents
crossing both axes is actually of very small mass, thus not visible on the graph.

Convergence and execution time The convergence results are reported on Fig-
ure 3, for a maximal number N = 250 of iterations. We use the exploitability as an
indicator of convergence, since it can be evaluated explicitely at each iteration. We
recall that εk ≤ σk ≤ Cεk.

• Prescribed stepsizes, with δk = p/(k + p) and p ∈ {1, 2, 5, 10}. Figures 3a and
3b show that the convergence of the exploitability with an empirical rate of
convergence of order k−p, in accordance with Lemma 10. The value of p which
yields the best convergence, for a fixed number of iterations k, increases slowly
with respect to k, in accordance with Remark 11.

• Prescribed stepsizes, with δk = (k + 1)−α, with α ∈ {0.6, 0.7, 0.8, 0.9}. See
Figure 3c. Similar comments can be done: a better asymptotic rate of con-
vergence is observed for smaller values of α; the value of α which yields the
best convergence for a fixed number of iterations k, decreases with respect to
k. We have done some tests with smaller values of α, which are not shown on
the figure. For N = 250 iterations, the performance is severely degraded for
such values of α and convergence cannot be observed in a reasonable number
of iterations.

• Adaptive stepsizes. See Figure 3d. Optimal stepsizes are approximated with
golden section search (see page 12) with tolerances κ = 10−3 and κ = 10−10.
The QAG condition is implemented with c = 1/4 and τ = 0.9. The choice
of c and τ is here arbitrary since there is no general rule for the choice of
these parameters (see [31, Chapter 3] for further discussions on the topic).
The three methods all yield a linear convergence; the golden section and the
exploitability-based methods are particularly fast. Note that in the case of
optimal stepsizes, a very precise resolution of problem (14) with tolerance
10−10 does not improve the convergence of the method, in comparison with
the tolerance 10−3.

Finally we compare the time required for the GCG algorithm to satisfy a precision
criterion (σk ≤ 10−3 and σk ≤ 10−4) for different stepsizes. For the considered
example, the time needed to compute the adaptive stepsizes is not significantly
longer than the time needed for the resolution of the HJB and the Fokker-Planck
equation. Unsurprisingly, the adaptive stepsizes are more efficient than the tested
prescribed stepsizes, for the two stopping criteria.
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(a) Logarithm of the exploitability for
δk = p/(k + p).

(b) Log-log scale of the exploitablity
for δk = p/(k + p).

(c) Logarithm of the exploitability for
the prescribed stepsizes δk = (k +
1)−α.

(d) Logarithm of the exploitability for
the adaptative stepsizes.

(e) Golden section search, QAG and
exploitability-based stepsizes.

Figure 3: Convergence results for prescribed and adaptative stepsizes.
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Learning method σk ≤ 10−3 σk ≤ 10−4

Prescribed

δk = p
k+p

p = 1 345.82 3379.41
p = 2 27.39 85.27
p = 5 11.14 17.0
p = 10 13.93 15.61

δk = (k + 1)−α
α = 0.9 42.46 132.37
α = 0.8 15.62 32.3
α = 0.7 9.46 14.95
α = 0.6 10.3 12.4

Adaptative

Quasi-Armijo-Goldstein 9.1 13.11

Golden-section κ = 10−3 2.0 2.2

Golden-section κ = 10−10 2.54 2.68

Exploitability-based 3.26 3.91

Figure 4: Execution time in seconds of the generalized conditional gradient

5 Stability and convergence results

This section is dedicated to the analysis of Algorithm 1 and is organized in four
subsections. We state in Subsection 5.1 some technical results concerning the well-
posedness of the auxiliary mappings introduced in Subsection 2.3. Subsection 5.2
establishes a stability result (Proposition 21), necessary to prove the linear speed
of convergence. Subsection 5.3 adresses the well-posedness of Algorithm 1 and the
proof of Theorem 7. Subsection 5.4 is dedicated to the proof of Theorem 8.

5.1 Well-posedness of the auxiliary mappings

We provide here technical results, whose proofs can be found in the Appendix. We
recall that the sets Θ, Ξ, and ΞR have been introduced in (3), (4), and (5).

Lemma 13. Let R > 0. Let v ∈ Θ be such that ‖v‖Θ ≤ R Then M [v] is uniquely
defined and lies in W 2,1,q(Q). Moreover, there exists a constant C(R) > 0, inde-
pendent of v, such that ‖M [v]‖W 2,1,q(Q) ≤ C(R). Finally, M [v](x, t) ≥ 0, for all
(x, t) ∈ Q.

Lemma 14. Let R > 0. Let v1 and v2 ∈ Θ. Let mi = M [vi] ∈ W 2,1,q(Q) for
i ∈ {1, 2}. Assume that ‖v1‖Θ ≤ R and ‖m2‖L∞(Q) ≤ R. Then, there exists a
constant C(R), independent of v1 and v2, such that

‖m2 −m1‖L∞(0,T ;L2(Td)) ≤ C(R)
(∫

Q
|v2 − v1|2m2 dx dt

)1/2
.

Lemma 15. Let R > 0. There exists a constant C(R) such that for all (γ1, P1) and
(γ2, P2) in ΞR, the following holds:

‖u[γ2, P2]− u[γ1, P1]‖L∞(Q) ≤ C(R)
(
‖P2 − P1‖L2(0,T ;Rk) + ‖γ2 − γ1‖L∞(Q)

)
.
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Proposition 16. The map u is well-defined from Ξ to W 2,1,q(Q). Moreover, for
any R > 0, there exists a constant C(R) > 0 such that for any (γ, P ) ∈ ΞR,
‖u[γ, P ]‖W 2,1,q(Q) ≤ C(R).

Lemma 17. The maps v, m, and w are well-defined from Ξ to Θ, W 2,1,q(Q), and
Θ, respectively. Moreover, for any R > 0, there exists C(R) > 0 such that for any
(γ, P ) ∈ ΞR, it holds:

‖v[γ, P ]‖Θ + ‖m[γ, P ]‖W 2,1,q(Q) + ‖w[γ, P ]‖Θ ≤ C(R).

Lemma 18. The mappings γ and P are well-defined. There exists a constant C > 0
such that for all m ∈W 2,1,q(Q) and for all w ∈ Θ,

‖γ‖W 1,0,∞(Q) + ‖P‖L∞(0,T ;Rk) ≤ C,

where γ = γ[m] and P = P [w]. There exists a constant C > 0 such that for all m1

and m2 in W 2,1,q(Q) and for all w1 and w2 in Θ,

‖γ[m2]− γ[m1]‖L∞(Q) ≤ C‖m2 −m1‖L∞(0,T ;L2(Td)),

‖P [w2]− P [w1]‖L2(0,T ;Rk) ≤ C‖w2 − w1‖L2(Q;Rd).

5.2 Stability results for stochastic optimal control problems

The main result of this section, Proposition 21 and its Corollary 22, shows that any
approximate solution to Problem (P[γ, P ]) is close to its solution, for suitable norms.
This is a key result for achieving linear convergence in the GCG method.

Lemma 19. Let (γ̂, P̂ ) ∈ Ξ. Let m̂ = m[γ̂, P̂ ], v̂ = v[γ̂, P̂ ] and let ŵ = w[γ̂, P̂ ].
There exists a constant C > 0 such that for any (m,w) ∈ R, the following holds:

Z[γ̂, P̂ ](m,w)−Z[γ̂, P̂ ](m̂, ŵ) ≥ 1

C

∫
Q
|v(x, t)− v̂(x, t)|2m(x, t) dx dt,

where v ∈ L∞(Q;Rd) is such that w = mv.

The proof of Lemma 19 relies on the following inequality.

Lemma 20. Let (x, t) ∈ Q. Let v ∈ Rd, p̂ ∈ Rd, m ≥ 0, and m̂ ≥ 0. Let
v̂ = −Hp(x, t, p̂). Let C > 0 be such that L(x, t, ·) is strongly convex with modulus
1/C. Then,

L(x, t, v)m− L(x, t, v̂)m̂ ≥ −H(x, t, p)(m− m̂)− 〈p̂, w − ŵ〉+
1

C
|v − v̂|2m.

Proof. See [5, Proof of Proposition 2].

Proof of Lemma 19. Using the definition of Z[γ̂, P̂ ], we have

Z[γ̂, P̂ ](m,w)−Z[γ̂, P̂ ](m̂, ŵ) =

∫
Q

(
L[v]m− L[v̂]m̂

)
dx dt

+

∫
Q
γ̂(m− m̂) dx dt+

∫
Q
〈A∗P,w − ŵ〉 dx dt+

∫
Td
g(m(T )− m̂(T )) dx. (20)
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We set û = u[γ̂, P̂ ]. By definition of v̂, we have v̂ = −Hp[∇û + A?P̂ ]. Applying
Lemma 20 with p̂ = ∇û+A∗P̂ , we obtain∫

Q

(
L[v]m− L[v̂]m̂

)
dx dt ≥ −

∫
Q
H[∇û+A∗P̂ ](m− m̄) dx dt

−
∫
Q
〈∇û+A∗P̂ , w − w̄〉dx dt+

1

C

∫
Q
|v − v̂|2mdx dt.

We inject the obtained inequality into (20) and we useH[∇û+A∗P̂ ]+γ̂ = −∂tû−∆û.
This yields

Z[γ̂, P̂ ](m,w)−Z[γ̂, P̂ ](m̂, ŵ) ≥
∫
Q

(
− ∂tû−∆û

)(
m− m̂

)
dx dt

+

∫
Q
〈−∇û, w − ŵ〉dx dt+

∫
Td
g(m(T )− m̂(T )) dx+

1

C

∫
Q
|v − v̂|2m dx dt.

The first three integrals in the right-hand side cancel out: this can be shown by
doing an integration by parts and by using the Fokker-Planck equation satisfied by
m and m̂. This concludes the proof.

Proposition 21. Let R > 0 and let (γ̂, P̂ ) ∈ ΞR. Let m̂ = m[γ̂, P̂ ] and let ŵ =
w[γ̂, P̂ ]. Let (m,w) ∈ R be such that ‖m‖L∞(Q) ≤ R. There exists a constant C(R)
such that for any (m,w) ∈ R,

‖m− m̂‖L∞(0,T ;L2(Td)) ≤ C(R)
√
σ,

‖w − ŵ‖L2(Q;Rd) ≤ C(R)(
√
σ + σ),

where σ = Z[γ̂, P̂ ](m,w)−Z[γ̂, P̂ ](m̂, ŵ).

As a consequence of Proposition 21, (m[γ̂, P̂ ],w[γ̂, P̂ ]) is the unique solution to
Problem (P[γ, P ]), with (γ, P ) = (γ̂, P̂ ).

Proof of Proposition 21. Lemma 20 yields
∫
Q |v − v̂|

2mdx dt ≤ Cσ. By Lemma 17,

we know that ‖v̂‖W 1,0,∞(Q;Rd) ≤ C, for some constant depending on R. Applying
next Lemma 14, we obtain the estimate of ‖m − m̂‖L∞(0,T ;L2(Td)). The estimate of
‖w− ŵ‖L2(Q;Rd) follows directly from w− ŵ = m(v− v̂)+(m−m̂)v̂. The proposition
is proved.

Corollary 22. Let R > 0. Let (m,w) ∈ R be such that ‖m‖L∞(Q) ≤ R. There
exists a constant C(R) such that

‖m− m̄‖L∞(0,T ;L2(Td)) ≤ C(R)
√
ε

‖w − w̄‖L2(Q;Rd) ≤ C(R)(
√
ε+ ε),

where ε = J (m,w)− J (m̄, w̄).

Proof. By definition, m̄ = m[γ̄, P̄ ] and w̄ = w[γ̄, P̄ ]. We obtain the announced
estimates by combining Corollary 25 and Proposition 21.
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5.3 Well-posedness of Algorithm 1 and proof of Theorem 7.

In this subsection the well-posedness of Algorithm 1 is established. The proof of
Theorem 7 is a direct consequence of the well-posedness and the stability results
established in the previous subsection.

Proposition 23. Algorithm 1 generates sequences in the following sets: (m̄k, w̄k) ∈
R, (γk, Pk) ∈ Ξ, (uk, vk) ∈ W 2,1,q(Q) × Θ, (mk, wk) ∈ R, for all k ∈ N. Moreover,
there exists a constant C > 0 such that (γk, Pk) ∈ ΞC and such that

‖uk‖W 2,1,q(Q) + ‖vk‖Θ ≤ C,
‖mk‖W 2,1,q(Q) + ‖wk‖Θ ≤ C,
‖m̄k‖W 2,1,q(Q) + ‖w̄k‖Θ ≤ C,

for all k ∈ N. Finally, there exists a constant C > 0 such that εk ≤ C, for all k ∈ N.

Proof. The well-posedness of the algorithm m̄k, w̄k, γk, Pk, uk, vk, mk, and wk can
easily be established by induction. Lemma 18 shows the existence of a constant
C0, independent of k such that (γk, Pk) ∈ ΞC0 , for any k ∈ N. Applying next
Proposition 16 and Lemma 17 with R = C0, we deduce that ‖uk‖W 2,1,q(Q) +‖vk‖Θ ≤
C and ‖mk‖W 2,1,q(Q) + ‖wk‖Θ ≤ C, for some constant C independent of k. The
inequality ‖m̄k‖W 2,1,q(Q) + ‖w̄k‖Θ ≤ C follows then immediately from the triangle
inequality. Using the convexity of R given in Lemma 5, we deduce by induction that
(m̄k, w̄k) ∈ R, for all k ∈ N. The bounds on mk and vk imply the existence of a
constant C such J (mk, wk) ≤ C, since

J (mk, wk) =

∫
Q
L[vk]mk dx dt+

∫ T

0

(
F [mk] + Φ[A(mkvk)]

)
dt+

∫
Td
gmk(T ) dx.

The boundedness of J (m̄k, w̄k) follows then by induction, since J is convex and
thus

J (m̄k+1, w̄k+1) ≤ (1− δk)J (m̄k, w̄k) + δkJ (mk, wk).

The proposition is proved.

Proof of Theorem 7 The first estimate concerning ‖m̄k − m̄‖L∞(0,T ;L2(Td)) and
‖w̄k − w̄‖L2(Q;Rd) is obtained by combining Corollary 22, the boundedness of εk,
and the boundedness of ‖mk‖L∞(Q). The second estimate on ‖γk − γ̄‖L∞(Q) and
‖Pk − P̄‖L∞(0,T ;Rk) is obtained by combining the first estimate and Lemma 18. The
third estimate on ‖uk − ū‖L∞(Q) follows from the second one and from Lemma 15.
Using Proposition 23 and Lemma 1, there exists C > 0 such that (γk, Pk) ∈ ΞC and
‖m̄k‖L∞(Q) ≤ C, for all k ∈ N. Moreover, by construction, mk = m[γk, Pk] and
wk = w[γk, Pk] and the pair (m̄k, w̄k) is σk-optimal for the minimization problem of
Z[γk, Pk](·). Therefore, Proposition 21 applies and yields the last estimate that was
to be proved.

5.4 Proof of Theorem 8

In this subsection we prove Theorem 8, leveraging techniques from [26].
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Lemma 24. Let (m1, w1) and (m2, w2) be in R. Let γ1 = γ[m1] and let P1 = P [w1].
Then, there exists a constant C > 0, independent of (m1, w1) and (m2, w2) such that

∫
Q
γ1(m2 −m1) dx dt+

∫ T

0
〈A[w2 − w1], P1〉 dt ≤ J2(m2, w2)− J2(m1, w1) (21)

and

J2(m2, w2)− J2(m1, w1) ≤
∫
Q
γ1(m2 −m1) dx dt+

∫ T

0
〈A[w2 − w1], P1〉dt

+ C1

∫ T

0
‖m2(t, ·)−m1(t, ·)‖L2(Td)‖m2(t, ·)−m1(t, ·)‖L1(Td) dt

+ C2

∫ T

0

∣∣∣ ∫
Td
a(x, t)(w2(x, t)− w1(x, t)) dx

∣∣∣2 dt. (22)

Proof. Using the definitions of γ1 and P1, we obtain

(
J2(m2, w2)− J2(m1, w1)

)
−
(∫

Q
γ1(m2 −m1) dx dt+

∫ T

0
〈A[w2 − w1], P1〉dt

)
= (a) + (b),

where

(a) =

∫ T

0

(
F [m2](t)− F [m1](t)−

∫
Td
f [m1](x, t)

(
m2(x, t)−m1(x, t)

)
dx
)

dt,

(b) =

∫ T

0

(
Φ[Aw2]−Φ[Aw1]− 〈φ[Aw1](t), Aw2(t)−Aw1(t)〉

)
dt.

Using Assumption (H6), we obtain that

(a) =

∫ T

0

∫ 1

0

∫
Td

(
f [m1 + s(m2 −m1)]− f [m1]

)
(m2 −m1) dx dsdt.

Then Assumptions (H5) and (H6) imply that

0 ≤ (a) ≤ C1

∫ T

0
‖m2(t, ·)−m1(t, ·)‖L2(Td)‖m2(t, ·)−m1(t, ·)‖L1(Td) dt.

We estimate (b) in a similar way and obtain inequalities (21) and (22) easily.

Corollary 25. Let (m1, w1) and (m2, w2) be in R. Let γ1 = γ[m1] and let P1 =
P [w1]. Then,

Z[γ1, P1](m2, w2)−Z[γ1, P1](m1, w1) ≤ J (m2, w2)− J (m1, w1).

Proof. This is an immediate consequence of inequality (21) from Lemma 24 and the
definitions of J and Z.

Lemma 26. For all k ∈ N, it holds that εk ≤ σk.
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Proof. By Corollary 25, we have for all (m,w) ∈ R

Z[γk, Pk](m̄k, w̄k)−Z[γk, Pk](m,w) ≤ J (m̄k, w̄k)− J (m,w) ≤ εk.

By definition, σk is the supremum of the left-hand side with respect to (m,w). The
conclusion follows immediately.

Lemma 27. Let C1 > 0 and C2 > 0 denote the Lipschitz constants of f and φ (see
Assumption (H5)). Then for any δ ∈ [0, 1], it holds that

J (m̄δ
k, w̄

δ
k) ≤ J (m̄k, w̄k)− δσk +

(
C1D

(1)
k + C2D

(2)
k

)
δ2, (23)

where (m̄δ
k, w̄

δ
k) is defined by (12) and where D

(1)
k and D

(2)
k are defined by (17).

Moreover, there exists a constant C > 0 such that

J (m̄δ
k, w̄

δ
k) ≤ J (m̄k, w̄k)− δσk + Cσkδ

2
k. (24)

Recall that the terms D
(1)
k and D

(2)
k represent the distance of the current approx-

imate solution to the solution of the (partially) linearized problem. In the classical
proof of convergence of the Frank-Wolfe algorithm, one writes a similar estimate

to (23), where D
(1)
k and D

(2)
k are simply bounded by some constant. In order to

achieve linear convergence (instead of the classical sublinear rate of convergence), it
is crucial to keep these terms and to estimate them with the exploitability σk, as
will become clear in the next section. This proof technique is largely inspired by [26,
Section 4.3].

Proof of Lemma 27. The proof relies on the decomposition J = J1 +J2 introduced
in (1). First, by convexity of L̃, we have

J1(m̄δ
k, w̄

δ
k)− J1(m̄k, w̄k) ≤ δ

(
J1(mk, wk)− J1(m̄k, w̄k)

)
. (25)

Next, using inequality (22) of Lemma 24, we obtain that

J2(m̄δ
k, w̄

δ
k)− J2(m̄k, w̄k) ≤ δ

∫
Q
γk(mk − m̄k) dx dt

+ δ

∫ T

0
〈A[wk − w̄k], Pk〉 dt+ Cδ2

(
‖mk − m̄k‖2L2(Q) + ‖wk − w̄k‖2L2(Q;Rd)

)
. (26)

By definition of Z[γk, Pk], we have

σk = Z[γk, Pk](m̄k, w̄k)−Z[γk, Pk](mk, wk)

= J1(mk, wk)− J1(m̄k, w̄k)

+

∫
Q
γk(mk − m̄k) dx dt+

∫ T

0
〈A[wk − w̄k], Pk〉 dt. (27)

Finally, by Theorem 7 we have

‖mk − m̄k‖2L∞(0,T ;L2(Td)) + ‖wk − w̄k‖2L2(Q;Rd) ≤ Cσk. (28)

Summing up (25) and (26) and combining the result with (27) and (28), we obtain
the announced result.
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Lemma 28. There exists C > 0 such that σk ≤ Cεk, for all k ∈ N.

Proof. For any δ ∈ [0, 1], Lemma 27 yields J (m̄, w̄) ≤ J (m̄k, w̄k)− δσk +Cδ2σk. It
follows that

0 ≤ εk − (1− Cδ)δσk. (29)

Increasing if necessary the value of C, we can assume that C ≥ 1/2. Taking δ =
1/(2C), we conclude that 0 ≤ ε− 1/(4C)σk, as was to be proved.

Proof of Theorem 8 We start with the proof of the second part of the theorem,
which is almost direct. Combining the upper bound of the cost function proved
in Lemma 27 (inequality (24)) with the inequality εk ≤ σk and the bound on the
exploitability obtained in Lemma 28, we obtain the following inequality:

εj+1 ≤
(
1− δj + Cδ2

j

)
εj , ∀j ∈ N.

Here the constant C is independent of the choice of stepsize. Multiplying the ob-
tained inequalities for j = 0, . . . , k, we obtain

εj+1 ≤ ε0 exp
( k∑
j=0

ln
(
1− δj + Cδ2

j

) )
.

Using next the inequality ln(x) ≤ x−1, satisfied for any x > 0, we obtain the desired
result, inequality (18).

Let us consider the case of adaptive stepsizes. Let us fix the iteration number
k. It suffices to show that for δk satisfying either (14), (15), or (16), there exists a
constant β ∈ (0, 1), independent of k, such that εk+1 ≤ βεk.

Case of the QAG condition. The main idea is to show that the QAG condition
is satisfied when δ is smaller than a certain threshold, which is independent of k.
Let δ > 0 be such that the condition is not satisfied. Then, using Lemma 27,

J (m̄, w̄)− cδσk < J (m̄δ
k, w̄

δ
k) ≤ J (m̄, w̄)− δσk + Cδ2σk.

Re-arranging, we deduce that δ > δ̄ := (1−c)
C > 0. By contraposition, the QAG

condition holds true for any δ such that δ ≤ δ̄.
We can now prove that ik is finite and uniformly bounded. Two cases can be

considered. If δ̄ ≥ 1, then ik = 0 and δk = 1. Otherwise, for any j ∈ N, we have

τ j ≤ δ̄ ⇐⇒ j ≥ ln(δ̄)/ln(τ).

Therefore, ik ≤ dln(δ̄)/ln(τ)e. If ik = 0, then δk = 1. Otherwise, if ik > 0, then τ ik−1

does not satisfy the QAG condition and therefore, τ ik−i ≥ δ̄ and thus δk = τ ik ≥ τ δ̄.
So, in all cases, we have δk ≥ δmin := min(1, τ δ̄). It follows that

εk+1 = J (m̄k+1, w̄k+1)− J (m̄, w̄)

≤
(
J (m̄k, w̄k)− J (m̄, w̄)

)
− cσkδk

≤ εk − cδminσk ≤ (1− cδmin)εk. (30)

The last inequality was obtained with Lemma 26.
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Case of exploitability-based stepsizes. Let us set ak =
(
C1D

(1)
k + C2D

(2)
k

)
. By

definition, δk = min
(
1, σk2ak

)
. Assume that σk ≥ 2ak, i.e. ak ≤ σk/2. Then δk = 1.

Inequality (23) in Lemma 27 and Lemma 26 yield

εk+1 ≤ εk −
σk
2
≤ 1

2
εk.

Now assume that σk < 2ak. Then δk = σk
2ak

. By (23), εk+1 ≤ εk −
σ2
k

4ak
. It follows

from the last estimate of Theorem 7 that ak ≤ Cσk. Therefore, by Lemma 26,

εk+1 ≤ εk −
σk
4C
≤
(

1− 1

4C

)
εk,

as was to be proved.
Case of an optimal stepsize. If δk minimizes J (m̄δ

k, w̄
δ
k), then (30) is necessarily

satisfied. This concludes the proof of the theorem.

6 Conclusion

The connection between the GCG method and fictitious play investigated in this
article is not specific to second-order MFGs and could be established in different
settings. Before discussing some possible extensions of our work, let us make some
general comments.

• While we have focused here on a class of MFGs with a convex potential formu-
lation, the case of nonconvex potential MFGs is also of interest. An example
of interactions with a nonconvex variational structure, arising from a consen-
sus model, is given in [33]. In this situation the GCG algorithm might not
converge. In [22], the authors only show that any convergent sub-sequence
generated by the fictitious play converges to an equilibrium. This problem can
be tackled, assuming that solutions are stable [8]. Also very few results are
available concerning the conditional gradient in the nonconvex setting. The
article [27] shows that in the case of nonconvex optimization problems, the
Frank-Wolfe algorithm converges to stationary points, when suitable stepsizes
are utilized. The notion of stationarity involved in [27] should lead to the MFG
system associated with the nonconvex potential formulation.

• The very first assumption to be satisfied in the analysis of the Frank-Wolfe
algorithm is the Lipschitz continuity of the gradient of the cost function. In
the case of MFGs, this means that the coupling functions should Lipschitz-
continuous in suitable functional spaces. As a consequence, the analysis of
the GCG method for potential MFGs with nonsmooth coupling functions (for
example, MFGs with a local congestion term) may be particularly difficult.

• In general, the GCG method only has a sublinear rate of convergence. The
linear rate of convergence obtained in this article heavily relies on the specific
stability analysis which was done in Section 5.2 for optimal control problems.

A first natural extension of our work concerns the case of an unbounded domain. We
expect that the linear convergence can be achieved. At a technical level, one difficulty
concerns the boundedness of the distribution mk. While we have established it
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with the help of parabolic estimates, we could follow the methodology of [15] to
address this more general case. We also think that linear convergence of the GCG
method can be established for fully discrete MFGs, as formulated in [6], taking
Lipschitz-continuous coupling functions and a strongly convex running cost. Finally,
we mention the case of first-order MFGs, in a Lagrangian formulation (as formulated
in [14], for example): for this case, we only expect a sublinear rate of convergence
for the GCG method.

Finally, let us mention that the fictitious play algorithm is quite similar to the
policy iteration method proposed and analyzed in [11] and [12] for MFGs, since
this method also relies on iterative resolutions of the HJB and the Fokker-Planck
equation. The analysis techniques of our article may bring new insights to the policy
iteration method.
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A Appendix: Regularity of the auxiliary mappings

This appendix contains the proofs of the technical lemmas of Subsection 5.1.

A.1 Parabolic estimates

In this section we provide estimates for the following parabolic equation:

∂tu− σ∆u+ 〈b,∇u〉+ cu = h, (x, t) ∈ Q,
u(x, 0) = u0(x), x ∈ Td, (31)

for different assumptions on b : Q→ Rd, c : Q→ R, h : → R, and u0 : Td → R. The
proofs of the following results can be found in the Appendix of [5]; they largely rely
on [28]. We recall that q is a fixed parameter and q > d+ 2.
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In the next theorem, we consider the Sobolev space W 2−2/p,p(Td) with a frac-
tional order of derivation, see [28, section II.2] for a definition.

Theorem 29. For all R > 0, there exists C > 0 such that for all u0 ∈W 2−2/q,q(Td),
for all b ∈ Lq(Q;Rd), for all c ∈ Lq(Q), and for all h ∈ Lq(Q) satisfying

‖u0‖W 2−2/q,q(Td) + ‖b‖Lq(Q;Rd) + ‖c‖Lq(Q) + ‖h‖Lq(Q) ≤ R,

equation (31) has a unique solution u in W 2,1,q(Q). Moreover, ‖u‖W 2,1,q(Q) ≤ C.

Theorem 30. There exists C > 0 such that for all u0 ∈ W 2−2/q,q(Td) and for
all h ∈ Lq(Q), the unique solution u to (31) (with b = 0 and c = 0) satisfies the
following estimate:

‖u‖W 2,1,q(Q) ≤ C
(
‖u0‖W 2−2/q,q(Td) + ‖h‖Lq(Q)

)
.

Theorem 31. For all β ∈ (0, 1), for all R > 0, there exist α ∈ (0, 1) and C > 0
such that for all u0 ∈ C2+β(Td), b ∈ Cβ,β/2(Q;Rd), c ∈ Cβ,β/2(Q) and h ∈ Cβ,β/2(Q)
satisfying ‖u0‖C2+β(Td) +‖b‖Cβ,β/2(Q;Rd) +‖c‖Cβ,β/2(Q) +‖h‖Cβ,β/2(Q) ≤ R, the solution

to (31) lies in C2+α,1+α/2(Q) and satisfies ‖u‖C2+α,1+α/2(Q) ≤ C.

A.2 Fokker-Planck equation

Proof of Lemma 13. Let us write the Fokker-Planck equation in the form of equation
(31): ∂tm − ∆m + (∇ · v)m + 〈v,∇m〉 = 0. The first part of lemma follows from
Theorem 29. The nonnegativity of M [v] is proved in [5, Lemma 3].

Proof of Lemma 14. Set w = v2 − v1 and µ = m2 −m1. Then µ is the solution to

∂tµ−∆µ+∇ · (v1µ) = −∇ · (wm2), (x, t) ∈ Q,
µ(x, 0) = 0, x ∈ Td.

Set V = W 1,2(Td) and consider the Gelfand triple (V,L2(Td), V ∗), where V ∗ denotes
the dual of V . Then µ is solution of a parabolic equation of the form

∂tm(t) +B(t)m(t) = f(t), (x, t) ∈ Q,
m(x, 0) = 0, x ∈ Td,

where B(t) ∈ L(V, V ∗) and f(t) ∈ V ∗. For any m ∈ V , we have

〈B(t)m,m〉V =

∫
Td

(
−∆m+∇ · v1(t)m+ 〈v1(t),∇m〉

)
mdx

=

∫
Td

(
|∇m|2 − 〈v1(t),∇m〉m

)
dx,

where the second equality is obtained by integration by parts. Using Cauchy-Schwarz
inequality and ‖v1‖L∞(Q;Rd) ≤ R, we obtain the following inequality:

〈B(t)m,m〉V ≥ ‖∇m‖2L2(Td;Rd) − C‖∇m‖L2(Td;Rd)‖m‖L2(Td)

where the constant C is independent of t (but depends on R). A direct application
of Young’s inequality yields the existence of C (depending on R) such that

〈B(t)m,m〉V ≥
1

2
‖m‖2V − C‖m‖2L2(Td).
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Thus B(t) is semi-coercive, uniformly in time. With similar techniques, one can
show that 〈B(t)m,m′〉V ≤ C‖m‖V ‖m′‖V , for a.e. t ∈ (0, T ) and for all m and m′ in
V . We can apply [30, Chapter 3, Theorems 1.1 and 1.2], from which we derive

‖µ‖L∞(0,T ;L2(Td)) ≤ C
(
‖µ‖L2(0,T ;V ) + ‖∂tµ‖L2(0,T ;V ∗)

)
≤ C‖f‖L2(0,T ;V ∗) ≤ C‖∇ · (wm2)‖L2(0,T ;V ∗)

≤ C‖wm2‖L2(Q;Rd).

Finally, since ‖m2‖L∞(Q) ≤ R, we have ‖wm2‖2L2(Q;Rd)
≤ C

∫
Q |w|

2m2 dx dt. Com-

bining the two last obtained inequalities, we obtain the announced result.

A.3 HJB equation

Lemma 32. The Hamiltonian H is differentiable with respect to p and Hp is dif-
ferentiable with respect to x and p. Moreover, H, Hp, Hpx, and Hpp are locally
Hölder-continuous.

Proof. See [5, Lemma 1].

The analysis of the HJB equation relies on its connection with the value function
of an optimal control problem, that was introduced in (11). This connection allows
first to show a uniform bound for u[γ, P ].

Lemma 33. Let R > 0 and let (γ, P ) ∈ ΞR. There exists a constant C(R) > 0
such that ‖u[γ, P ]‖L∞(Q) ≤ C(R) and such that u is C(R)-Lipschitz continuous with
respect to x. Moreover, for any (x, t) ∈ Q,

u[γ, P ](x, t) = inf
ν∈L2,C(R)

F (t,T )

J [γ, P ](x, t, ν). (32)

In the above relation, L2,C(R)
F (t, T ) denotes the set of stochastic processes ν ∈ L2

F(t, T )

such that E
[ ∫ T

t |νs|
2ds
]
≤ C(R).

Proof. We first derive a lower bound of L. By assumption (H4), L(x, t, 0) and
Lv(x, t, 0) are bounded. It follows then from the strong convexity assumption (As-
sumption (H1)) that there exists a constant C > 0 such that

1

C
|ν|2 − C ≤ L(x, t, ν), for all (x, t, ν) ∈ Q× Rd. (33)

Then, for any (x, s) ∈ Q and for any ν ∈ Rd, we have the following estimates:

L(x, s, ν) + 〈A?[P ](x, s), ν〉 ≥ 1

C
|ν|2 − ‖a‖L∞(Q;Rk×d)|P (s)||ν| − C

≥ 1

C
(|ν|2 − |P (s)|2 − 1) ≥ 1

C
(|ν|2 − 1).

Now we show that u[γ, P ] is bounded in L∞(Q). For any (x, t) ∈ Q, using the above
bound for the running cost L, the bound ‖γ‖L∞(Q) ≤ R, together with Assumption
(H4) on the terminal cost g, we obtain that u[γ, P ](x, t) ≥ −C(R). In addition,
using Assumption (H3) and the fact that that ‖γ‖L∞(Q) ≤ R, we deduce that

u[γ, P ](x, t) ≤ J [γ, P ](x, t, 0) ≤ C(R),
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from which we conclude that ‖u[γ, P ]‖L∞(Q) ≤ C(R).
Finally we show equation (32). Let t ∈ [0, T ], let ε ∈ (0, 1) and let ν̃ ∈ L2

F(t, T ) be
an ε-optimal process. Since g is bounded (Assumption (H4)) and since (γ, P ) ∈ ΞR,
we deduce from the above inequality that

E
[ ∫ T

t
|ν̃s|2ds

]
≤ C

(
inf

ν∈L2
F(t,T )

J [γ, P ](x, t, ν) + ε+ 1
)

≤ C
(
u[γ, P ](x, t) + 2

)
≤ C,

where the constant C does not depend on t and ε. Thus any ε-optimal process lies
in L2,C

F (t, T ), which concludes the proof.

Proof of Lemma 15. Let (γ1, P1) and (γ2, P2) be in ΞR. Let u1 = u[γ1, P1] and
u2 = u[γ2, P2]. By Lemma 33, there exists C > 0 such that

u2(x, t)− u1(x, t) = inf
ν∈L2,C

F (t,T )
J [γ2, P2](x, t, ν)− inf

ν′∈L2,C
F (t,T )

J [γ1, P1](x, t, ν ′),

for any (x, t) ∈ Q. We denote (Xν
s )s∈[t,T ] the solution to the stochastic differential

equation dXs = νsds+
√

2dBs with Xν
t = x, for any ν ∈ L2

F(t, T ). Then

|u2(x, t)− u1(x, t)| ≤ sup
ν∈L2,C

F (t,T )

∣∣J [γ2, P2](x, t, ν)− J [γ1, P1](x, t, ν)
∣∣

≤ sup
ν∈L2,C

F (t,T )

E
[ ∫ T

t
|〈A?[P2 − P1](Xν

s , s), νs〉|+ |(γ2 − γ1)(Xν
s , s)|ds

]
.

For any (x, s) ∈ Q and ν ∈ Rd, the Cauchy-Schwarz inequality yields

|〈A?[P2 − P1](x, s), ν〉| ≤ |〈a(x, s)P2(s)− P1(s)||ν|
≤ ‖a‖L∞(Q;Rk×d)|P2(s)− P1(s)| |ν|.

Using again Cauchy-Schwarz inequality and ‖a‖L∞(Q;Rk×d) ≤ C, we conclude that

|u2(x, t)− u1(x, t)| ≤ C
(
‖P2 − P1‖L2(0,T ;Rk) + ‖γ2 − γ1‖L∞(Q)

)
,

as was to be proved.

We prove Proposition 16 with a density argument. In a nutshell: we prove in
Proposition 34 below that the result of Proposition 16 holds true when γ and P are
Hölder continuous. Then we pass to the limit, using Lemma 15.

Proposition 34. Let R > 0 and let β ∈ (0, 1). For any (γ, P ) ∈ ΞR ∩ Cβ(Q) ×
Cβ(0, T ;Rk), the viscosity solution to the Hamilton-Jacobi-Bellman equation (9) is
a classical solution. Moreover, there exists α ∈ (0, 1) such that u[γ, P ] lies in
C2+α,1+α/2(Q) and there exists a constant C(R), depending only on R, such that
‖u[γ, P ]‖W 2,1,q(Q) ≤ C.

The proof of Proposition 34 is given at page 32 and relies on a fixed point ap-
proach which requires some preparatory work. We introduce the map T : W 2,1,q(Q)×
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[0, 1]→W 2,1,q(Q) which associates to any u ∈W 2,1,q(Q) and τ ∈ [0, 1] the classical
solution ũ = T [u, τ ] to the linear parabolic equation

−∂tũ−∆ũ+ τH[∇u+A?P ] = τγ (x, t) ∈ Q,
ũ(x, T ) = τg(x) x ∈ Td.

For any (u, τ) ∈W 2,1,q(Q)×[0, 1], we have τ(γ−H[∇u+A?P ]) ∈ L∞(Q), by Lemma
32 and Lemma 1. It follows then from Theorem 29 that T [u, τ ] lies in W 2,1,q(Q),
proving that T is well-defined.

Lemma 35. The mapping T is continuous and compact. In addition, for all K > 0,
there exists α ∈ (0, 1) and C > 0 depending on K, γ, and P such that ‖u‖W 2,1,q(Q) ≤
K implies ‖T [u, τ ]‖C2+α,1+α/2(Q) ≤ C.

Proof. Step 1: Continuity of T . Let (uk, τk) ∈ W 2,1,q(Q) × [0, 1] be a sequence
converging to (u, τ) ∈W 2,1,q(Q)× [0, 1]. Then ∇uk → ∇u in L∞(Q;Rd) by Lemma
1. Then τk(γ−H[∇uk +A?P ])→ τ(γ−H[∇u+A?P ]) in L∞(Q;Rd) by continuity
of the Hamiltonian (see Lemma 32). Finally T is continuous, by Theorem 30.
Step 2: Compactness of T . Let K > 0 and let (u, τ) ∈ W 2,1,q(Q) × [0, 1] be such
that ‖u‖W 2,1,q(Q) ≤ K. Combining Lemma 1 and Lemma 32 there exist α ∈ (0, 1)
and C > 0 such that ‖γ −H[∇u + A?P ]‖Cα(Q) ≤ C. Then applying Theorem 31,
there exist α ∈ (0, 1) and C > 0 such that ‖T [u, τ ]‖C2+α,1+α/2(Q) ≤ C. By the Arzela-

Ascoli Theorem the centered ball of C2+α,1+α/2(Q) of radius C > 0 is a relatively
compact subset of W 2,1,q(Q). As a consequence T [u, τ ] is a compact mapping and
the conclusion follows.

Theorem 36. (Leray-Schauder) Let X be a Banach space and let T : X×[0, 1]→ X
be a continuous and compact mapping. Assume that T (x, 0) = 0 for all x ∈ X and
assume there exists C > 0 such that ‖x‖X < C for all (x, τ) ∈ X × [0, 1] such that
T (x, τ) = x. Then, there exists x ∈ X such that T (x, 1) = x.

Proof. See [19, Theorem 11.6].

Proof of Proposition 34. We prove that under the assumptions of the proposition,
the HJB equation has a classical solution in C2+α,1+α/2(Q) (for some α ∈ (0, 1)),
which is then necessarily the unique viscosity solution u[γ, P ]. To this purpose,
we prove the existence of a solution to the fixed point equation u = T [u, 1]. We
have T [u, 0] = 0 for all u ∈ W 2,1,q(Q). Now let (u, τ) ∈ W 2,1,q(Q) × [0, 1] be such
that T [u, τ ] = u. From Lemma 35, the mapping T is continuous and compact, in
addition u is a classical solution and thus the viscosity solution to the Hamilton-
Jacobi-Bellman equation

−∂tu−∆u+ τH[∇u+A?P ] = τγ (x, t) ∈ Q,
u(x, T ) = τg(x) x ∈ Td,

and can be interpreted as the value function associated to the following stochastic
control problem

inf
ν∈L2

F(0,T )
τE
[ ∫ T

0
L(Xτ

s , s, νs) + 〈A?[P ](Xτ
s , s), νs〉+ γ(Xτ

s , s)ds+ g(Xτ
T )
]
,
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where (Xτ
s )s∈[t,T ] is the solution to dXs = τνsds +

√
2dBs, X0 = Y . Following

[5, Proposition 1, Step 2], there exists a constant C > 0, depending only on R,
such that ‖u‖L∞(Q) + ‖∇u‖L∞(Q;Rd) ≤ C. Then using Lemma 32 and recalling that
(γ, P ) ∈ ΞR, we deduce that ‖H[∇u+A?P ]− γ‖L∞(Q) ≤ C. It follows that u is the
solution to a parabolic PDE with bounded coefficients and thus ‖u‖W 2,1,q(Q) ≤ C, by
Theorem 29. Again, C only depends on R. Finally, by the Leray-Schauder theorem
(Theorem 36), there exists a solution to u = T [u, 1], which is necessarily u[γ, P ].

Proof of Proposition 16. Take (γ, P ) ∈ ΞR and fix β ∈ (0, 1). Let (γn, Pn) be a
sequence in ΞR+1 ∩ Cβ(Q) × Cβ(0, T ;Rk) such that ‖γn − γ‖L∞(Q) −→ 0 and such
that ‖Pn−P‖L2(0,T ;Rk) −→ 0. We do not detail the construction of such a sequence,
this can be done by convolution. Define un = u[γn, Pn] and u = u[γ, P ]. By Lemma
15, un → u for the L∞-norm. Moreover, by Proposition 34,

‖un‖W 2,1,q(Q) ≤ C(R), ∀n ∈ N. (34)

Thus, the three sequences (∂tu
n)n∈N, (∆un)n∈N, and (∇un)n∈N are bounded in

Lq(Q). By the Banach-Alaoglu theorem, the three sequences have at least one ac-
cumulation point for the weak topology of Lq(Q). These three accumulation points
are necessarily (by definition of weak derivatives) equal to ∂tu, ∆u, and ∇u, re-
spectively. Since the Lq-norm is weakly lower semi-continuous, we deduce that
‖u‖W 2,1,q(Q) ≤ C(R), where C(R) is as in (34). This concludes the proof.

A.4 The other mappings

Proof of Lemma 17. Let (γ, P ) ∈ ΞR. Let u = u[γ, P ]. We already know from
Proposition 16 that ‖u‖W 2,1,q(Q) ≤ C(R). Then Lemma 1 implies that u and ∇u
are continuous and that ‖u‖L∞(Q) ≤ C(R) and ‖∇u‖L∞(Q;Rd) ≤ C(R). Let v =
v[γ, P ] = −Hp[∇u+A?P ]. We have

Dxv = −Hpx[∇u+A?P ]−Hpp[∇u+A?P ](D2
xxu+DxA

?P ).

Using the regularity of u, the regularity properties of the Hamiltonian given in
Lemma 20, and the regularity assumptions on a (Assumption (H4)), we deduce that
‖v‖L∞(Q;Rd) ≤ C(R) and that ‖Dxv‖Lq(Q;Rd×d) ≤ C(R). Moreover, v is continuous.

Next, let m = m[γ, P ] = M [v]. A direct application of Lemma 13 yields that
‖m‖W 2,1,q(Q) ≤ C. Finally, let w = w[γ, P ] = mv. Using again Lemma 1, we obtain
that m is continuous and that ‖m‖L∞(Q) ≤ C(R) and ‖∇m‖L∞(Q;Rd) ≤ C(R). Then
w ∈ Θ, with a norm bounded by some constant C(R). The lemma is proved.

Proof of Lemma 18. The two statements concerning γ are directly deduced from
Assumptions (H3) and (H5). Let w ∈ Θ. Recalling the definition of the operator A
(page 7), it is easy to see with Assumption (H4) that Aw ∈ C(0, T ;Rd). Assump-
tions (H3) and (H5) ensure then that P [w] = φ

[
A[w]

]
lies in C(0, T ;Rk) and that

‖P [w]‖L∞(0,T ;Rk) ≤ C. Let us next consider w1 and w2 in Θ. We have

‖Aw2 −Aw1‖L∞(0,T ;Rk) ≤ ‖a‖L∞(Q;Rk×d)‖w2 − w1‖L∞(0,T ;L1(Td;Rd))

≤ C‖w2 − w1‖L2(Q;Rd),

by Assumption (H4). Using next the Lipschitz-continuity of φ (Assumption (H5)),
we obtain that ‖φ[Aw2] − φ[Aw1]‖L2(0,T ;Rk) ≤ C‖w2 − w1‖L2(Q;Rd), as was to be
proved.
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