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CONFORMAL SYMPLECTIC STRUCTURES,
FOLIATIONS AND CONTACT STRUCTURES

MÉLANIE BERTELSON, GAËL MEIGNIEZ

Abstract. This paper presents two existence h-principles, the
first for conformal symplectic structures on closed manifolds, and
the second for leafwise conformal symplectic structures on foliated
manifolds with non empty boundary. The latter h-principle allows
to linearly deform certain codimension-1 foliations to contact struc-
tures. These results are essentially applications of the Borman-
Eliashberg-Murphy h-principle for overtwisted contact structures
and of the Eliashberg-Murphy symplectization of cobordisms, to-
gether with tools pertaining to foliated Morse theory, which are
elaborated here.

1. introduction

In high dimensions, symplectic and contact topology require mod-
ern methods different from those effective in dimension three. In the
present paper, we essentially explore some consequences of the Eliashberg-
Murphy symplectization of cobordisms [EM] together with the Borman-
Eliashberg-Murphy h-principle for overtwisted contact structures [BEM].
Also, one needs some tools falling to the Morse theory of codimension-
one foliations, which we elaborate.

1.1. Existence of conformal symplectic structures. On a mani-
fold M , a conformal symplectic structure is a conformal class of nonde-
generate 2-forms, admitting a local symplectic representant in a neigh-
borhood of every point. This generalization of symplectic geometry is
classical (see for example [V85], [Ba02] and [CM]). To such a structure,
one associates its Lee class: a real cohomology class of degree 1 on M ,
which is the obstruction to finding a global symplectic representant.

Theorem A in Section 3 is an existence h-principle for conformal sym-
plectic structures on closed manifolds whose Lee class is any nonzero
de Rham cohomology class of degree one. The only case excluded is
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the one that would yield a genuine symplectic structure. We thus gen-
eralize a result obtained by Eliashberg-Murphy for Lee classes of rank
one over Z (Theorem 1.8 in [EM]).

1.2. Making foliated cobordisms conformally symplectic. The
data are a cobordism (W,∂−W,∂+W ) endowed with a codimension-1
coorientable taut foliation F , whose leaves all meet both ∂−W and
∂+W transversely, and with a leafwise closed 1-form η. Theorem B in
Section 5 is an existence h-principle for leafwise conformal symplectic
structures whose Lee class in every leaf is the cohomology class of
η; the boundary component ∂−W (respectively ∂+W ) being leafwise
convex (resp. concave) in a certain sense. In particular, the leaves
of F |∂−W (respectively F |∂+W ) are positive (resp. negative) contact
submanifolds of W .

Two tools belonging to the Morse theory of codimension-1 foliations
are essential here. A real function f on W is called leafwise Morse if its
restriction to every leaf of F is a Morse function in the leaf. The tools
in question are the construction of ordered leafwise Morse functions,
and a cancellation method for leafwise local extrema, analogous to the
Cerf cancellation of local extrema in 1-parametric families of functions.
The first tool also reproves the existence of faithful submanifolds in taut
codimension-1 foliations [M16]. Also, these tools show that for any
taut codimension-1 foliation on a compact manifold with boundary, if
all the leaves meet the boundary transversely and non-trivially, then
this foliation is uniformly open in the sense of [Be02]; hence, the h-
principle for open leafwise invariant differential relations is verified for
such foliations.

1.3. Deforming foliations to contact structures. Given a cod-
imension-1 foliation F on a manifold M , defined by a non-vanishing
1-form α, a linear contactizing deformation is a 1-parameter family
αt = α + tλ of 1-forms such that αt is contact for all sufficiently small
positive t. These deformations are completely understood in dimension
3 (see [ET]), but not much is known in higher dimensions.

A linear contactizing deformation is provided by any exact leafwise
conformal symplectic structure whose Lee class is precisely the linear
holonomy of the foliation. Here, “exact” refers to the Lichnerowicz
differential in the leaves. Indeed, the deformation α+ tλ is contact for
all sufficiently small positive t’s if dλ − η ∧ λ is leafwise nondegener-
ate. Moreover, such leafwise conformal structure exist (Theorem C in
Section 6) for a large class of foliations on cobordisms, which we call
holonomous. Although the leafwise convex boundary may be empty,
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the leafwise concave one cannot. Unfortunately, it seems that our con-
struction is not able to produce contactizing deformations on closed
manifolds.
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notation 1.1. One denotes herefater by I the compact interval [0, 1],
by Dd ⊂ Rd the unit compact ball, and by Sd−1 the sphere ∂Dd. Every
foliation F on a manifold M with boundary is assumed to be transverse
to the boundary, inducing therefore a foliation ∂F = F |∂M on ∂M .
The notation OpX(Y ), or Op(Y ) if X is understood, holds for “some
open neighborhood of Y in X”.

2. Elements of conformal symplectic geometry

Let η be a closed 1-form on a manifold M of dimension 2n ≥ 2.
The Lichnerowicz (also known as Novikov) differential with respect to
η, denoted by dη, is the ordinary Cartan differential somehow twisted
by η; precisely, for every differential form θ ∈ Ω∗(M):

dηθ = dθ − η ∧ θ
It is immediately verified that d2

η ≡ 0. The cohomology of the differ-
ential operator dη is called the Novikov cohomology of M with respect
to η and denoted by H∗η (M).

remark 2.1. The Novikov cohomology only depends, up to isomor-
phism, on the de Rham cohomology class of η. Precisely, when η′ −
η = dF for some smooth function F on M , the differential com-
plexes (Ω∗(M), dη′) and (Ω∗(M), dη) are isomorphic through a confor-
mal rescaling of the differential forms :

dη′θ = eFdη(e
−F θ).

(Beware that the resulting isomorphism between H∗η (M) and H∗η′(M)
is not canonical, depending on the choice of F .)

We have not found in the litterature the following generalization,
which we shall need further down, of the Poincaré Lemma.
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lemma 2.2. Let M ′ be a manifold, h : M ′ × I→M be a smooth map.
Define

F : M ′ × I→ R : (x, t) 7→
∫ t

0

η(
∂h

∂t
(x, τ))dτ

H : Ω∗(M)→ Ω∗−1(M ′) : θ 7→
∫ 1

0

e−F ι∂/∂t(h
∗(θ))dt

Consider on M ′ the function F1 : x 7→ F (x, 1), and for every t ∈ I the
map ht : x 7→ h(x, t), and the 1-form η′0 = h∗0(η).

Then:
i) e−F1h∗1(θ)− h∗0(θ) = dη′0H (θ) + H (dηθ);

ii) The morphisms θ 7→ h∗0(θ) and θ 7→ e−F1h∗1(θ) induce the same
morphism in Novikov cohomology

H∗η (M)→ H∗η′0(M
′)

Proof of Lemma 2.2. Let θ ∈ Ω∗(M). On M ′ × I, consider the forms
η′ = h∗(η) and θ′ = e−Fh∗(θ). Writing for short ιt instead of ι∂/∂t,
develope the Cartan formula:

L∂/∂t(θ
′) = dιt(θ

′) + ιt(dθ
′)

= e−F
(
dιt(h

∗θ)− dF ∧ ιt(h∗θ) + ιt(d(h∗θ))− ιt(dF ∧ h∗θ)
)

Since moreover

ιt(dF ) =
∂F

∂t
= η(

∂h

∂t
) = ιt(η

′)

defining H(θ) = e−F ιt(h
∗θ), one gets

L∂/∂t(θ
′) = dη′H(θ) +H(dηθ)

Of course, (i) follows by restriction to the slices M ′×t and integration
with respect to t; then, (ii) follows immediately from (i). �

If M has a boundary, the relative Novikov cohomology H∗η (M,∂M)
with respect to η is defined, as usual, as the cohomology of

Ω∗(M)× Ω∗−1(∂M)

under the differential operator

(1) Dη : (θ, θ′) 7→ (dηθ, θ|∂M − dηθ′)
A number of standard notions in symplectic geometry admit obvious

generalizations to conformal symplectic geometry: one simply replaces
the Cartan operator d by its twisted version dη.

definition 2.3. A 2-form ω on M is η-symplectic if ω is dη-closed and
nondegenerate.
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Every η-symplectic form ω defines a conformal symplectic structure
on M . Indeed, after Remark 2.1, for every open subset U of M on
which η admits a primitive F , the 2-form e−Fω is closed, and hence
genuinely symplectic on U .

Conversely, for every nondegenerate 2-form ω representing a confor-
mal symplectic structure, one has a closed 1-form η on M whose local
primitives F satisfy d(e−Fω) = 0. In other words, ω is dη-closed. If
n ≥ 2, then η is uniquely defined by ω, and called the Lee form of ω.

definition 2.4. A 1-form λ on M is η-Liouville if dηλ is nondegener-
ate. Its η-Liouville vector field, or η-dual, Z = Zλ, is defined by the
relation

λ = ιZ(dηλ).

If moreover M is oriented, λ is of course called positive if the volume
form (dηλ)n defines the given orientation; and negative otherwise.

Notice that, in any open subset of M where η admits a primitive
F , the η-Liouville vector field Z is nothing but the ordinary Liouville
vector field of the ordinary Liouville form e−Fλ. In other words, the
dual Liouville vector field is invariant by conformal equivalence of con-
formally Liouville forms. Besides, after Cartan’s formula :

(2)
LZλ = ιZ(dλ) = ιZ(dηλ+ η ∧ λ) = (1 + η(Z))λ
LZ(dηλ) = dLZλ− (LZη) ∧ λ− η ∧LZλ = (1 + η(Z))dηλ.

Actually, the second equation is equivalent to Z being a η-Liouville
vector field for ω; and the first one too, under the hypothesis λ(Z) = 0.

remark 2.5. After Remark 2.1, the existence of a η-Liouville 1-form
(respectively η-symplectic 2-form) does not depend on the choice of the
form η in its de Rham cohomology class. Precisely, if λ (respectively ω)
is a η-Liouville 1-form (respectively η-symplectic 2-form), then for any
function F on M , the form eFλ (respectively eFω) is (η+dF )-Liouville
(respectively (η + dF )-symplectic).

remark 2.6. One can alternatively interpret a η-symplectic (respec-
tively η-Liouville) form on M as a genuinely symplectic (respectively
Liouville) and equivariant form on the abelian covering of M defined
by η, or on the universal cover. This alternative viewpoint does not
seem to be the most efficient for the present paper.

definition 2.7. Let ω be a η-symplectic form on M and H ⊂M be a
cooriented hypersurface. As usual, one orients H by the volume form
ιX(ωn), where X is transverse to H and positive (with respect to the
coorientation). One calls H of convex (respectively concave) contact
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type with respect to ω if H is transverse to a positive (resp. negative)
η-Liouville vector field Z defined near H.

Even contact structures will play a crucial role in our construction.
Recall that they are defined as maximally non-integrable hyperplane
fields on even-dimensional manifolds. We will assume that the ambient
manifold M is 2n-dimensional (n ≥ 1) and oriented, and that the
even contact structure ε is cooriented, so that ε = kerλ for some non-
vanishing 1-form λ defining the coorientation (even contact form). The
maximal non-integrability of ε is equivalent to the non-vanishing of λ∧
dλn−1. The dimension-1-foliation Z spanned by the rank-1 distribution
TZ = ker(dλ|ε) is called the characteristic foliation of ε. The foliation
Z is transversely contact: ε is invariant by any vector field tangential
to Z , and λ ∧ dλn−1 defines a volume form on TM/TZ . We fix an
orientation for Z , namely, a section Z of TZ is positive if Z followed
by a basis of TM/Z which is positive with respect to λ∧dλn−1, makes
a positive basis of M .

Let R be any vector field on M such that λ(R) ≡ 1, let Z be any pos-
itive section of TZ ; choose any 1-form θ on M such that the function
θ(Z) + dλ(Z,R) is positive on M . Equivalently, the 1-form θ − ιR(dλ)
is positive on Z . Then, the 2-form

(3) ωθ = θ ∧ λ+ dλ

is positive nondegenerate. Indeed,

ωnθ = (θ ∧ λ+ dλ)n = nθ ∧ λ ∧ dλn−1 + dλn

is positive, since

ιR(ιZ(ωnθ )) = n(θ(Z) + dλ(Z,R))dλn−1

induces a positive form on ε/TZ , as a consequence of our choice of
orientation for Z . The homotopy class of nondegenerate 2-forms rep-
resented by ωθ depends only on ε and of its coorientation, and not on
the choices of the forms λ nor θ. Call this class the almost symplectic
class associated to ε.

Finally, fix a positively oriented nonsingular section Z of TZ . Since
ε is Z-invariant, for every defining form λ, one has a unique function
χλ on M such that

LZλ = χλλ.

If one likes better,

(4) χλ = dλ(Z,R) = −λ([Z,R])
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where R is any vector field on M such that λ(R) = 1. Clearly, for every
function u on M :

(5) χeuλ = χλ + Z(u).

The method used in the present paper to build an η-Liouville form
consists of two steps, whose details will be given in Lemmas 2.11 and
2.12. We use an auxiliary ambiant codimension-1 foliation F . Essen-
tially, first, the h-principle for overtwisted contact structures yields an
even contact structure ε whose characteristic foliation is transverse to
F . Second, a η-Liouville form is found among the 1-forms representing
ε.

remark 2.8. McDuff’s early h-principle for even contact structures
([McD87], Proposition 7.2) does unfortunately not seem to allow such
control on the characteristic foliation.

definition 2.9. Given a codimension-1 foliation F on a manifold M ,
recall the leafwise (also known as “foliated”, or “tangential”) differen-
tial forms: Ωk(F ) stands for the collection of the smooth sections of
Λk(TF ). For θ ∈ Ω∗(M), one has the restriction θ|F ∈ Ω∗(F ). For
θ ∈ Ω∗(F ), one has the leafwise Cartan differential dFθ ∈ Ω∗+1(F ),
such that dF (θ|F ) = (dθ)|F . The differential operator dF on Ω∗(F )
defines the leafwise (also known as “foliated”) cohomology

H∗(F ) = ker(dF )/Im(dF )

A leafwise 1-form α ∈ Ω1(F ) is contact if the leafwise (2n− 1)-form
α ∧ (dFα)n−1 does not vanish, where dim(M) = 2n.

An almost contact structure on a manifold Σ of dimension 2n− 1 is
a pair (α,$) ∈ Ω1(Σ)× Ω2(Σ) such that α ∧$n−1 does not vanish.

In the same way, a leafwise almost contact structure on F is a pair
(α,$) ∈ Ω1(F )×Ω2(F ) such that the leafwise (2n−1)-form α∧$n−1

does not vanish.

remark 2.10. In a real vector space E of dimension 2n, given a cod-
imension-1 vector subspace Σ ⊂ E and a vector Z ∈ E not in Σ, let θ
be the linear form of kernel Σ such that θ(Z) = 1, and let π : E → Σ
be the linear projection parallel to Z. Then, the linear mappings

Λ2(E)→ Λ1(Σ)× Λ2(Σ) : ω 7→ (ιZ(ω)|Σ, ω|Σ)

Λ1(Σ)× Λ2(Σ)→ Λ2(E) : (α,$) 7→ θ ∧ π∗(α) + π∗($)

are reciprocal isomorphisms. Moreover, ωn 6= 0 if and only if the
corresponding pair (α,$) satisfies α ∧$n−1 6= 0.

Consequently, given a cooriented codimension-1 foliation F on the
(2n)-manifold M , choose a nonvanishing 1-form θ on M defining F and
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a vector field Z such that θ(Z) = 1; and denote by π the projection
TM → TF parallel to Z. Then, the linear mappings

Ω2(M)→ Ω1(F )× Ω2(F ) : ω 7→ (ιZ(ω)|F , ω|F )

Ω1(F )× Ω2(F )→ Ω2(M) : (α,$) 7→ θ ∧ π∗(α) + π∗($)

are reciprocal isomorphisms. Moreover, ω is an almost symplectic
structure on M if and only if the corresponding pair (α,$) is a leafwise
almost contact structure on F .

lemma 2.11. (i) On a manifold M , let ω be a nondegenerate 2-form,
and F be a cooriented codimension-1 foliation.

Then, M admits an even contact structure ε such that

• ω lies in the almost symplectic class associated with ε;
• The characteristic foliation of ε is positively transverse to F ;
• On every leaf L of F , the contact structure ε∩L is overtwisted.

(ii) Moreover, given a closed subset A ⊂ M , assume that an even
contact structure εA is already given on some open neighborhood U of
A, such that

• ω|U lies in the almost symplectic class associated with εA;
• The characteristic foliation of εA is positively transverse to F |U ;
• On every leaf L of F which is entirely contained in U , if any,

the contact structure εA ∩ L is overtwisted.

Then, one can choose ε to coincide with εA on some smaller neigh-
borhood of A.

Note — For the case dim(M) = 2: one agrees that any nonsingular
1-form on a 1-manifold is an overtwisted contact form on this manifold.

Proof of Lemma 2.12. (i) Choose a vector field Z over M , positively
transverse to F . The ambiant nondegenerate 2-form ω induces on F a
leafwise almost contact structure (ιZ(ω)|F , ω|F ) (Remark 2.10). After
the h-principle for overtwisted contact structures on foliations ([BEM],
Theorem 1.5), M carries a leafwise contact structure ξ ⊂ TF (a coori-
ented (2n − 2)-plane field defining on every leaf a contact structure)
which is overtwisted in every leaf, and homotopic to (ιZ(ω)|F , ω|F ) as
a leafwise almost contact structure. Let ε be on M the hyperplane field
spanned by ξ and Z, and λ be a nonvanishing 1-form defining ε and
its coorientation.

We claim that there is a unique vector field X over M , contained in
ξ, and such that the flow (φt) of Z ′ = Z +X preserves ε.

Indeed, this foliated version of the Gray stability theorem can be
proved, like the classical one, by a Moser-type argument:
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The condition (φt)
∗(ε) = ε amounts to ϕ∗tλ = gtλ, for some smooth

family of positive functions (gt). Derivating with respect to t yields :

φ∗t (L Z′λ) = ġtλ,

which implies that

(6) ιZ′(dλ) = Gtλ

where Gt = (ġt/gt) ◦ φ−1
t . Let R be the vector field on M tangential

to F , and which is, in every leaf L of F , the Reeb vector field of the
contact form λ|L. Since Z ′ = Z +X, we can rewrite (6) as a system of
two equations : {

ιX(dλ)|ξ = −ιZ(dλ)|ξ
dλ(Z,R) = G

The first one uniquely determines X since λ is leafwise contact; the
second one determines G. The claim is proved.

Clearly, ε is an even contact structure whose characteristic foliation is
positively spanned by Z ′. The almost symplectic class associated with
ε does coincides with that of ω, thanks to Equation (3) and Remark
2.10.

(ii) The plane field ξA = εA ∩ TF is contact in every leaf of F |U .
After the unicity up to isotopy of overtwisted contact structures on
foliations ([BEM], Theorem 1.6), after pushing ξ by an isotopy of M
tangential to F , we can arrange that ξ = ξA on OpM(A). Then,
choose Z so that it spans positively the characteristic foliation of εA on
OpM(A). Hence, ε = εA on OpM(A). After the local unicity property
of X, one has X = 0 on OpM(A). Hence, Z ′ = Z on OpM(A). �

lemma 2.12. On the even-dimensional oriented manifold M , let η be
a closed 1-form, and let λ be a non-vanishing 1-form.

i) Assume that λ is η-Liouville. Then, λ yields an even contact
structure kerλ, whose characteristic foliation is positively spanned by
the η-Liouville vector field Zλ, and whose associated almost symplectic
class is represented by dηλ.

ii) Conversely, assume that λ defines an even contact structure.
Fix a positive section Z of the characteristic foliation. Then, λ is
η-Liouville positive if and only if χλ > η(Z). Moreover, if so, the
η-Liouville vector field Zλ η-dual to λ coincides with (χλ − η(Z))−1Z.

Proof. Let R be a vector field on M such that λ(R) ≡ 1.
(i) Since λ is η-Liouville, the (2n− 1)-form

nλ ∧ (dλ)n−1 = nλ ∧ (dηλ)n−1 = ιZλ(dηλ)n
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does not vanish, hence kerλ is an even contact structure. Clearly, Zλ
positively spans the characteristic foliation. Put θ = −η. Then,

dηλ(Zλ, R) = ιZλ(dηλ)(R) = λ(R) = 1

(η ∧ λ)(Zλ, R) = η(Zλ)

Hence, θ(Zλ) + dλ(Zλ, R) = 1 is positive; while ωθ = dηλ (recall Equa-
tion (3)).

(ii) The vector field Z spanning positively the characteristic foliation
Z , the 1-form λ is η-Liouville positive if and only if ιR(ιZ((dηλ)n)) in-
duces a positive form on ε/Z . This condition amounts to the positivity
of the function χλ − η(Z), since

ιR(ιZ((dηλ)n)) = ιR(ιZ(dλn−nη∧λ∧dλn−1)) = n (χλ − η(Z))∧dλn−1

and since dλn−1 induces a positive volume form on ε/Z . Finally, the
value of Zλ results from the computation:

ιZ(dηλ) = LZλ− ιZ(η ∧ λ) = (χλ − η(Z))λ.

�

As a first application of Lemma 2.12 (ii), one has for conformal sym-
plectic structures an obvious cut-and-paste method along hypersurfaces
of contact type (Definition 2.7), generalizing the classical method for
genuine symplectic structures. The following lemma gives some preci-
sions about these hypersurfaces.

lemma 2.13. Let ω be a η-symplectic form on M , and H ⊂ M be a
cooriented hypersurface.

i) If H is transverse to a η-Liouville vector field Z for ω, then λ =
ιZ(ω) is a (dη)-primitive of ω near H, and α = λ|H is a contact form
on H.

ii) Conversely, if ω admits in restriction to H a (dη)-primitive α
which is contact, then α extends to a (dη)-primitive λ of ω on OpM(H)
whose η-dual vector field Z is transverse to H.

iii) Moreover, in (i) and (ii), Z is positively (resp. negatively) trans-
verse to H iff α is positive (resp. negative) as a contact form on H.

We call H of overtwisted contact type if moreover kerα is overtwisted
on each connected component of H.

Proof. (i): after Lemma 2.12 (i).
(ii): To get the extension λ, consider a tubular neighborhood T of

H in M and a deformation retraction h = (ht) : T × I → T such
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that h0 = idT and h1(T ) = H and ht|H = idH . After the generalized
Poincaré lemma 2.2 applied to ω,

e−F1h∗1(ω)− ω = dηH (ω)

On the other hand, after the ordinary Poincaré lemma applied to η,

h∗1(η)− η = dF1

so, using Remark 2.1:

e−F1h∗1(ω) = e−F1h∗1(dα− η ∧ α) = e−F1(dh∗1(α)− h∗1(η) ∧ h∗1(α))

= e−F1dh∗1(η)h
∗
1(α) = dη(e

−F1h∗1(α))

Hence,

λ = e−F1h∗1(α)−H (ω)

is a (dη)-primitive of ω on T ; and coincides with α in restriction to H,
since F1 and H (ω) vanish identically on H.

Finally, λ|H = α being positive (resp. negative) contact, after
Lemma 2.12 (i), Z is transverse to H.

(iii) Obvious from Lemma 2.12 (i). �

3. Existence of conformal symplectic structures

theorem A. On a closed connected manifold M of dimension 2n ≥ 2,
let η be a closed, non-exact 1-form; and let ω be a nondegenerate 2-
form.

Then, ω is homotopic to a η-symplectic form, whose Novikov coho-
mology class in H2

η (M) may be prescribed.

When moreover the cohomology class of η is integral: [η] ∈ H1(M ;Z),
Eliashberg-Murphy have already obtained [EM] that, for some constant
c 6= 0, the manifold M admits a (cη)-symplectic form homotopic to ω
as a nondegenerate 2-form.

We choose to prove Theorem A with by means of an auxiliary Morse
function. One could, alternatively, use a handle decomposition; but
the Morse function method adapts painlessly to the foliated framework
(see Section 5).

One begins by endowing the compact solid torus

T 2n = S1 ×D2n−1

with a conformal symplectic structure inducing an overtwisted contact
structure on its boundary, either concave or convex. These conformal
symplectic tori will further down somehow play the role of “symplectic
cap” and “symplectic cup” in the proof of Theorem A.
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Denote by θ the pullback to T 2n of the volume form on S1 with total
volume one, and endow T 2n with an arbitrary orientation.

lemma 3.1. For every integer n ≥ 1, there exist a real constant cn,
and on T 2n a 1-form λ and a vector field Z such that

(1) θ(Z) = 1, and Z exits or enters (at choice) T 2n transversely
through ∂T 2n;

(2) λ is, for every real c > cn, a positive (−cθ)-Liouville form,
whose (−cθ)-dual vector field is positively colinear to Z;

(3) λ restricts on ∂T 2n to an overtwisted contact form.

Proof. Fix a compact collar neighborhood A of the boundary ∂T 2n in
T 2n; and a vector field Z on A such that θ(Z) = 1, and which exits
or enters T 2n transversely through ∂T 2n, at choice. The parallelizable
solid torus T 2n bears a positive nondegenerate 2-form ω. Consider on
∂T 2n the induced almost contact structure (ιZ(ω)|∂T 2n , ω|∂T 2n) (Remark
2.10). After the h-principle for overtwisted contact structures [BEM],
∂T 2n admits an overtwisted contact structure ξ in the same formal
homotopy class as (ιZ(ω)|∂T 2n , ω|∂T 2n).

Shrinking A if necessary, let ε be the even contact structure on A
pullback of ξ under the projection A→ ∂T 2n along the flow lines of Z.
Applying Lemma 2.11 to the slice foliation of T 2n by the disks t×D2n−1

(t ∈ S1), to A, and to ω, extend ε to a global even contact structure
on T 2n, still called ε, whose characteristic foliation Z is transverse to
the disks, and spanned by Z on A. Extend Z to a global vector field
on T 2n, still called Z, spanning Z , and such that θ(Z) = 1.

Choose any 1-form λ on T 2n representing ε. Let cn be the maximum
of the function −χλ on T 2n. For c > cn, one has (−cθ)Z < χλ. After
Lemma 2.12 (ii), the 1-form λ is (−cθ)-Liouville positive on T 2n, and
its (−cθ)-dual vector field is positively colinear to Z. �

remark 3.2. For n > 1, the constant cn given by Lemma 3.1 is nec-
essarily non-negative. Indeed, assume by contradiction that cn < 0.
Fix a negative c > cn. Then, after properties (1) and (2) and after the
proof of Lemma 2.12, (i), the function

dλ(Zλ, R) = 1− cθ(Zλ)
is > 1 on T 2n. After Equation (4), the function χλ is positive on T 2n.
So, λ is a positive genuinely Liouville form on T 2n, whose corresponding
Liouville vector field is positively colinear to Z. In particular, Z has
to exit the solid torus; and the genuinely symplectic form dλ fills the
overtwisted contact structure ξ: a contradiction.

Consequently, Lemma 3.1 lacks some symmetry: it would not hold
if one changed −cθ to cθ in property (2). Equivalently, one cannot
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change θ(Z) = 1 to θ(Z) = −1 in property (1). This lack of symmetry
is linked to the unability of our method to deform foliations to contact
structures on closed manifolds, see Remark 6.5.

remark 3.3. In Lemma 3.1, there is no need to explicitly prescribe
the homotopy class of dηλ among the positive nondegenerate 2-forms
on T 2n; indeed, there is only one such class, SO(2n)/U(n) being simply
connected.

Proof of Theorem A. The closed 1-form η being not exact, M contains
two disjoint, embedded circles on which the integral of η is less than
minus the constant cn of Lemma 3.1. Thicken them into two disjoint
(2n)-dimensional compact solid tori T−, T+ ⊂ M . After Remark 2.1,
without loss of generality, we can change η on M to any cohomologous
closed 1-form; in particular, we can arrange that on T± ∼= S1 ×D2n−1,
the form η is proportional to θ.

One endows M with the orientation defined by ωn. The lemma 3.1
provides, on T− (resp. T+), a positive η-Liouville form λ− (resp. λ+)
whose η-dual vector field Z− (resp. Z+) enters (resp. exits) the torus
transversely through its boundary, on which the contact form λ−|∂T−
(resp. λ+|∂T+) is overtwisted.

We extend λ− and Z− (resp. λ+ and Z+) to a small open neighbor-
hood of T− (resp. T+) in W .

After Remark 3.3, dηλ− (resp. dηλ+) is homotopic to ω over T−
(resp. T+) as a nondegenerate 2-form. After a homotopy of ω, we
arrange without loss of generality that ω = dηλ− (resp. dηλ+) over
some neighborhood of T− (resp. T+).

On the complement W = M \ Int(T− ∪ T+), fix a Morse function f
such that f−1(0) = ∂T− and f−1(1) = ∂T+, and without local extrema
in the interior of W . Choose a descending pseudo-gradient Z for f on
W , coinciding with Z− (resp. Z+) close to ∂T− (resp. ∂T+).

Every critical point c of f of index 1 ≤ i ≤ 2n − 1 admits in W a
small compact neighborhood Hc with (convex) cornered boundary, as
follows. Hc is diffeomorphic to Di×D2n−i minus a small open tubular
neighborhood of the corner Si−1 × S2n−i−1; and the boundary splits as

∂Hc = ∂+Hc ∪ ∂0Hc ∪ ∂−Hc

where

• f is constant on ∂+Hc and on ∂−Hc;
• Z enters (resp. exits) Ha transversely through ∂+Hc (resp.
∂−Hc);
• Z is tangential to the I factor on ∂0Hc

∼= Si−1 × S2n−i−1 × I.



14 MÉLANIE BERTELSON, GAËL MEIGNIEZ

Since Hc is simply connected, we can without loss of generality ar-
range that η = 0 on OpW (Hc) (Remark 2.1). Hence, in Hc, we actually
look for a genuine Liouville form. After the symplectization of cobor-
disms [EM], there is a positive Liouville form λc on OpW (Hc) whose
dual Liouville vector field is positively colinear to Z on OpW (∂Hc);
and such that λc restricts to an overtwisted contact structure on every
connected component of ∂±Hc.

Put for short H = ∪cHc, where c runs over the critical points of f .
After Lemma 2.11 (ii) applied in W ′ = W \Int(H) foliated by the level
hypersurfaces of f , and A = ∂W ′, there is an even contact structure ε
on W ′ such that

• The almost symplectic class associated with ε contains ω;
• The characteristic foliation Z of ε is transversal to the level

hypersurfaces of f ;
• ε coincides respectively with the kernels of λ−, λ+ and λc on

neighborhoods of ∂T−, ∂T+ and ∂Hc, for every critical point c.

Changing the pseudo-gradient Z in Int(W ′), one moreover arranges
that Z spans Z positively on W ′.

By means of a partition of the unity, make a 1-form λ on M repre-
senting ε on W ′, matching λ+ on OpW (T+), matching λ− on OpW (T−);
and, for each critical point c, matching λc on OpW (Hc).

In particular, λ is η-Liouville on some small open neighborhood V
of T− ∪ T+ ∪H in M .

Claim 1: there is a smooth real function g on M , locally constant on
T−, T+ and H, such that Z · g < 0 on Int(W ′).

Indeed, such a function g will be obtained from f by a modification in
arbitrarily small neighborhoods of T−, T+ and H. The modification is
obvious close to T− and T+. Now, consider a critical point c. Write t− =
f(∂−Hc) and t+ = f(∂+Hc). On a small enough open neighborhood Ω
of Hc in W , one easily builds a smooth plateau function φ : Ω→ [0, 1]
such that

• φ is compactly supported in Ω, while φ−1(1) = Hc;
• Z · φ(x) ≥ 0 (resp. = 0) (resp. ≤ 0) at every point x of Ω such

that f(x) ≥ t+ (resp. t− ≤ f(x) ≤ t+) (resp. f(x) ≤ t−).

Then, g = (1− φ)f + φf(c) works on Ω. The claim 1 is proved.

After multiplying g by a large enough positive constant, one arranges
moreover that Z · g is less than χλ − ηZ on M \ V .

Claim 2: the 1-form µ = e−gλ is η-Liouville on M .
This holds of course on T−, on T+ and on each Hc, since on these

domains, µ is a constant multiple of λ−, λ+ and λc, respectively. On
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W ′, in view of Lemma 2.12, there remains to verify that χµ = χλ−Z ·g
is more than ηZ. But this inequality does hold on M \ V by choice of
g; while on W ′ ∩ V , the function χλ − Z · g is not less that χλ, which
is more than ηZ by Lemma 2.12. The claim 2 is proved.

By construction, dηµ lies over W ′ in the almost symplectic class
associated with ε. Globally, dηµ is homotopic to ω among the nonde-
generate 2-forms on M .

Finally, in order to obtain a η-symplectic form ω′ in any prescribed
cohomology class a ∈ H2

η (M): first, fix an arbitrary (dη)-closed 2-form
$ on M representing a. Second, define

ω′ = $ +Kdηµ

for some large positive real constant K. Provided that K is large
enough, ω′ is nondegenerate; and homotopic to dηµ, among the non-
degenerate 2-forms, through the homotopy (1 − t)$ + Kdηµ (t ∈ I)
followed by the homotopy ((1− t)K + t)dηµ (t ∈ I).

�

Theorem A admits the following (easy) generalization, allowing a
smooth boundary for the ambient manifold, and prescribing a natural
boundary condition. Let M be an oriented compact (2n)-manifold
whose nonempty smooth boundary is splitted into two disjoint compact
subsets ∂±M , each of which may be empty.

theorem 3.4. Assume that one is given on M

• A nonexact closed 1-form η;
• A relative Novikov cohomology class a ∈ H2

η (M,∂M);
• A positive nondegenerate 2-form ω.

Then, there exist $ ∈ Ω2(M) and α ∈ Ω1(∂M) such that

• The pair ($,α) is Dη-closed and represents the cohomology
class a (recall Equation 1);
• $ is nondegenerate, and homotopic to ω among the nondegen-

erate 2-forms on M ;
• α is an overtwisted contact form on every connected component

of ∂M , positive on ∂−M and negative on ∂+M .

In particular, $ is η-symplectic, and ∂+M (resp. ∂−M) is of concave
(resp. convex) overtwisted contact type (Definition 2.7 and Lemma
2.13) with respect to $. (Our choice of signs, seemingly unnatural, is
coherent with the pseudogradients being descendant in section 4).

Proof of Theorem 3.4. As in the proof of Theorem A, one chooses two
disjoint solid tori T± embedded in the interior of M , on the cores of
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which the integral of η is less than minus the constant cn of Lemma
3.1. Then, T− (resp. T+) bears a positive η-Liouville form λ− (resp.
λ+) whose η-dual vector field enters (resp. exits) the torus transversely
through its boundary, on which the contact form λ−|∂T− (resp. λ+|∂T+)
is overtwisted.

Fix on Op(∂M) a vector field Z transverse to ∂M , entering (resp.
exiting) M through ∂+M (resp. ∂−M). The h-principle for overtwisted
contact structures [BEM] provides on ∂M an overtwisted contact form
β in the same almost contact class as (ιZ(ω)|∂M , ω|∂M) (Definition 2.9
and Remark 2.10). By means of Lemma 2.12, extend β over Op(∂M)
to a η-Liouville form λ, η-dual to Z.

On the complement W = M \ Int(T− ∪ T+), fix a Morse function
f : W → [0, 1] such that

f−1(0) = ∂T− ∪ ∂−M

f−1(1) = ∂T+ ∪ ∂+M

and without local extrema in the interior of W . The same construction
as in the proof of Theorem A yields on M a η-Liouville form µ which
is on Op(∂M) a positive locally constant multiple of λ; and dηµ is
homotopic to ω as a nondegenerate 2-form on M .

The relative Novikov cohomology class a is represented by a pair
(ω′, 0) ∈ Ω2(M) × Ω1(∂M) such that dηω

′ = 0. For a large enough
positive real K, the pair ($,α) obviously works, where

$ = ω′ +Kdηµ

α = Kµ|∂M
�

4. Morse theory for codimension-1 taut foliations

See e.g. [CC1] for the elements on foliations. Given a taut codimension-
1 foliation, the existence of functions which are Morse in restriction to
every leaf is classical [FW]. The leafwise pseudo-gradients and their
dynamics appeared in [Be02], for foliations of arbitrary codimensions,
in order to construct some leafwise geometric structures; and in [GL],
in order to study the contact forms carried by open book decomposi-
tions on 3-manifolds. Apart from these works, the “Morse theory of
foliations” seems not to have met the attention that it deserves.

In the present section, we elaborate the tools that we need for Sec-
tion 5: essentially, the construction of ordered leafwise Morse functions
(Definition 4.4 below), and the cancellation of leafwise local extrema.
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In this section, we consider a compact manifold M of dimension
m ≥ 2, maybe with a smooth boundary ∂M , endowed with a codim-
ension-1 foliation F , coorientable to fix ideas, and transverse to ∂M .

For a smooth real function f on M , a point c ∈M is leafwise critical
if the differential of f vanishes on the leaf Lc of F through c. The
critical locus Crit(f,F ) ⊂M is the set of the leafwise critical points.

definition 4.1. We call f leafwise Morse if f restricts to a Morse
function on every leaf of F , and if f is locally constant on ∂M . In
particular, the critical locus is interior to M ; while ∂M splits as the
disjoint union of local minima ∂−(M, f) and of local maxima ∂+(M, f).

Informally, a leafwise Morse function locally amounts to a 1-parameter
family of Morse functions in dimension m− 1.

At every c ∈ Crit(f,F ), the Morse index indc(f,F ) of f |Lc lies
between 0 and m− 1. Clearly, Crit(f,F ) is a disjoint union of circles
transverse to F , and the index is constant on each circle. One denotes
by Criti(f,F ) the set of the index-i leafwise critical points. Of course,
in general f is not locally constant on Crit(f,F ). Recall that

definition 4.2. F is called taut if every leaf meets a transverse loop.

If F admits a leafwise Morse function, then F must be taut, since
every minimal set has to meet the index-0 critical locus and the index-
(m− 1) critical locus. Conversely:

proposition 4.3 (Ferry-Wasserman [FW]). Let M be a compact mani-
fold with smooth boundary, splitted into two compact subsets ∂±M (one
of which may be empty, or both). Let F be on M a coorientable, taut
codimension-1 foliation, transverse to ∂M .

Then, F admits a leafwise Morse function f such that ∂−(M, f) =
∂−M and ∂+(M, f) = ∂+M .

4.1. Ordering a leafwise Morse function. Let M be as before a
compact manifold of dimension m ≥ 2 with smooth boundary (maybe
empty), endowed with a coorientable codimension-1, taut foliation F
transverse to ∂M . Let f be a leafwise Morse function on M .

definition 4.4. The leafwise Morse function f is ordered if for every
two leafwise critical points c, c′, the inequality

indc(f,F ) < indc′(f,F )

implies f(c) < f(c′).

proposition 4.5. The foliation F admits an ordered leafwise Morse
function which has the same critical locus as f , with the same indices,
and the same splitting of ∂M into local minima and local maxima.
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This will result from the generic dynamical properties of the leafwise
pseudo-gradients. As is usual in Morse theory, one considers descending
pseudo-gradients.

definition 4.6. A vector field ∇ on M , tangential to F , is a leaf-
wise pseudo-gradient for f if, in every leaf L, the restriction ∇|L is a
descending pseudo-gradient for the Morse function f |F . In other words:

• The function ∇·f is negative but at the leafwise critical points;
• The Hessian of ∇·f at every leafwise critical point c is negative

definite in TcLc.

The construction of such a vector field is straightforward by means
of a partition of the unity. Clearly, ∇ enters M through ∂+(M, f) and
exits M through ∂−(M, f). Write ∇t(x) for the image of x ∈M under
the flow of ∇ at the time t ∈ R, whenever defined.

lemma 4.7. (i) For every x ∈M , the orbit ∇t(x) descends from a point
α(x) ∈ Crit(f,F )∪∂+(M, f) to a point ω(x) ∈ Crit(f,F )∪∂−(M, f).

(ii) Moreover, the lengths of the orbits have an upper bound not de-
pending on x.

Proof. If not, some orbit would have infinite length; hence f would not
be bounded on M , a contradiction. �

definition 4.8. For every subsetX ⊂ ∂−(M, f)∪∂+(M, f)∪Crit(f,F ),
define the stable and the unstable manifold of X with respect to ∇ as

W s(∇, X) = ω−1(X)

W u(∇, X) = α−1(X)

In particular, for each connected component C of the index-i critical
locus Criti(f,F ) (0 ≤ i ≤ m−1), the stable (resp. unstable) manifold
W s(∇, C) (resp. W u(∇, C)) is a submanifold of M transverse to F
and to ∂M ; and its interior is a bundle of fibre Rm−1−i (resp. Ri) over
the circle C.

definition 4.9. We say that a leafwise pseudogradient is globally
Kupka-Smale if, for every two connected components C, C ′ of Crit(f,F ),
the manifolds W s(∇, C) and W u(∇, C ′) are transverse in M .

The global Kupka-Smale property is generic among the leafwise pseud-
o-gradients for f . Indeed, this genericity is well-known in the frame-
work of 1-parameter families of functions; a similar argument holds
for leafwise Morse functions. From now on in this subsection 4.1, we
assume that ∇ is a globally Kupka-Smale leafwise pseudo-gradient.

It is convenient to extend the index function by defining indx(f,F ) =
−∞ for x ∈ ∂−(M, f) and indx(f,F ) = +∞ for x ∈ ∂+(M, f).
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lemma 4.10. For every x ∈M , one has indω(x)(f,F ) ≤ indα(x)(f,F ).

Proof. The only case to consider is when x is not leafwise critical, but
c = ω(x) and c′ = α(x) are leafwise critical. Let i (resp. i′) be the
index of c (resp. c′). Since W s(∇, c) and W u(∇, c′) are transverse in
M , and of respective dimensions m−i and i′+1, the dimension of their
intersection is i− i′+1. On the other hand, the intersection containing
the orbit through x, its dimension is at least 1. �

remark 4.11. At this point, the Morse theory of foliations shows its
limitations, which are well-known in the frame of the 1-parametric fam-
ilies of Morse functions. Call an orbit exceptional if its extremities are
two leafwise critical points of the same index. Such an orbit corre-
sponds to a handle sliding, in Smale’s sense, in a 1-parametric family
of Morse functions. After the global Kupka-Smale property, ∇ admits
at most a finite number of exceptional orbits.

The classical Kupka-Smale property does not in general hold in re-
striction to the leaves. In every leaf L, for every pair of critical points
in L but maybe a finite number, their stable and unstable manifolds for
the pseudo-gradient ∇|L are transverse in L.

In general, no choice of the pseudo-gradient can avoid the existence of
exceptional orbits. The extremities of an exceptional orbit can belong
to the same connected component of the critical locus. Also, given two
components C, C ′ of the critical locus of the same index, there may
exist two exceptional orbits, the one from C to C ′ and the other from C ′

to C. Then, C and C ′ cannot be separated in M by any hypersurface
transverse to ∇.

However, if C and C ′ have distinct indices, such a separating hyper-
surface does exists.

lemma 4.12. For each 1 ≤ i ≤ m − 1, there is a closed hypersurface
H in M , transverse to ∇ and splitting M into two domains M−, M+,
such that

• ∂−(M, f) and the leafwise critical points of indices at most i−1
lie in M−;
• ∂+(M, f) and the leafwise critical points of indices at least i lie

in M+.

Proof. The proof belongs to elementary general topology. For short,
put

M ′ = M \ Crit(f,F )

Consider the space O of the orbits of ∇ which are regular (in other
words, not reduced to a single leafwise critical point), endowed with
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the quotient topology; and the projection π : M ′ → O. For short,
write ind(x) instead of indx(f,F ).

Claim 0 — The map

M → {0, 1, . . . ,m− 1,+∞} : x 7→ ind(α(x))

is lower semicontinuous on M . The map

M → {−∞, 0, 1, . . . ,m− 1} : x 7→ ind(ω(x))

is upper semicontinuous on M .
This follows at once from Lemma 4.10.

Claim 1 — O is a smooth (m−1)-manifold in general not Hausdorff,
compact (in the sense that O has the usual open cover property) and
without boundary.

Indeed, for every t ∈ R and every embedding φ of the open (m− 1)-
diskDm−1 into the level setM ′∩f−1(t), the image φ(Dm−1) meets every
orbit at most once (since ∇ · f ≤ 0); hence π ◦ φ is a local coordinate
chart for X. One thus gets an atlas whose changes of coordinates
are obviously smooth. Clearly, there is a small open neighborhood of
Crit(f,F ) in M whose complement meets every regular orbit; hence
O is compact. The claim 1 is proved.

Let us understand the lack of Hausdorff separation in O. By an
orbit chain, we mean a finite sequence of regular orbits π(x1), . . . ,
π(x`) (` ≥ 1) such that ω(xj−1) = α(xj) for each 2 ≤ j ≤ `. The
endpoints of the chain are the pair (α(x1), ω(x`)). After Lemma 4.10,
the indices of the critical points of the chain form a nonincreasing
sequence (monotony property).

Claim 2 — From any sequence of regular orbits, one can extract a
subsequence Hausdorff-converging towards an orbit chain.

This follows easily from Lemma 4.7 (ii).

Claim 3 — If two distinct regular orbits π(x), π(y) are note separated
in O, then they belong to a same orbit chain.

This follows at once from Claim 2 applied to a sequence of regular
orbits π(xk) which converges both to π(x) and to π(y) in O.

Consider the subset U ⊂M ′ of the noncritical points x such that

(7) ind(α(x)) ≥ i and ind(ω(x)) ≤ i− 1

Since U is open in M ′ (Claim 0), π(U) is open in O. By Claim 3 and
the monotony property, π(U) is Hausdorff.
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Claim 4 — π(U) is compact.
Indeed, let (uk) be a sequence in U . Following Claim 2, after passing

to a subsequence, the orbits through uk Hausdorff-converge in M to
an orbit chain. The index function being locally constant on ∂M ∪
Crit(f,F ), the endpoints (c, c′) of this chain satisfy ind(c) ≥ i and
ind(c′) ≤ i − 1. By the monotony property, one of the orbits π(x)
composing the chain satisfies the inequalities (7). We have thus found
an accumulation point π(x) in π(U) for the sequence π(uk): the claim
4 is proved.

To sum up, π(U) is a Hausdorff closed (m − 1)-manifold. The re-
stricted projection π|U is a submersion of U onto π(U) whose fibres
are all diffeomorphic to R. Such a projection necessarily admits a sec-
tion s: one can solve this elementary exercise, or alternatively apply
a more general lemma due to Haefliger, see e.g. [M02]. The image
H = s(π(U)) ⊂ U is a closed hypersurface transverse to ∇, and sepa-
rating U into two domains U−, U+ such that ∇ enters U− and exits U+

along H. Let M− (resp. M+) be the topological closure of U− (resp.
U+) in W .

Claim 5 — For every x ∈M \ U , one has

• x ∈M− iff ind(α(x)) ≤ i− 1;
• x ∈M+ iff ind(ω(x)) ≥ i.

Indeed, the points y ∈M such that

ind(α(y)) ≥ m− 1 and ind(ω(y)) ≤ 0

form an open (after Claim 0) and dense subset in M . Hence, x is
the limit of a sequence (yp) of such points. For p large enough, yp ∈
U , hence its orbit π(yp) intersects transversely H in a unique point
hp = s(π(yp)). The point hp splits the orbit π(yp) into two subintervals
π(yp)∩U− and π(yp)∩U+. By Claim 2, after passing to a subsequence,
the orbits π(yp) Hausdorff-converge in M to an orbit chain π(x1), . . . ,
π(x`), such that x = xj for some 1 ≤ j ≤ `. The index function being
locally constant on ∂M ∪Crit(f,F ), the endpoints of the chain satisfy

ind(α(x1)) ≥ m− 1 and ind(ω(x`)) ≤ 0

By the monotony property, one and only one of the orbits π(xk) in the
chain lies in U . We can choose xk ∈ H. The point xk splits the orbit
chain into two subintervals which are the Hausdorff limits of π(yp)∩U−
and π(yp) ∩ U+; the first is thus contained in M−, the second in M+.
Since x /∈ U , one has j 6= k. If j < k, then ind(ω(x)) ≥ i (monotony
property) and x ∈ M+. If j > k, then ind(α(x)) ≤ i − 1 (monotony
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property) and x ∈M−. The proofs of Claim 5 and of Lemma 4.12 are
complete. �

Proof of Proposition 4.5. For each 1 ≤ i ≤ m − 1, after Lemma 4.12,
there is a smooth plateau function φi on M such that

• ∇ · φi ≤ 0;
• φi = 0 on a neighborhood of ∂−(M, f) and of Crit≤i−1(f,F );
• φi = 1 on a neighborhood of ∂+(M, f) and of Crit≥i(f,F ).

For every ε > 0, consider on M the function

gε = φ1 + · · ·+ φm−1 + εf

Obviously, every point of ∂M is a local extremum for gε; one has
∂±(M, gε) = ∂±(M, f); and gε coincides, for each i, with i+ εf on some
neighborhood of Criti(f,F ). Moreover, ∇ · gε < 0 on M \ Crit(f,F ).
Hence, gε is leafwise Morse with the same critical locus and the same
indices as f . Clearly, gε is ordered provided that ε|f | < 1/2 on M . �

We end this subsection with a corollary of Proposition 4.5. Let f be
an ordered leafwise Morse function on M .

definition 4.13. We call f nearly self-indexing if

• |f(c)− ind(c)| < 1/2 at every leafwise critical point c;
• f−1(−1/2) = ∂−(M, f) and f−1(m− 1/2) = ∂+(M, f).

Recall that ∂−(M, f) and/or ∂+(M, f) can be empty. It is conve-
nient, after reparametrizing the values of f , to arrange that f is nearly
self-indexing. We have thus decomposed M into m compact domains

Mi = f−1[i− 1/2, i+ 1/2]

(0 ≤ i ≤ m − 1) with boundaries transverse to F . Write M≤i for
f−1([−1/2, i+ 1/2]) and M≥i for f−1([i− 1/2,m− 1/2]).

remark 4.14. This is not quite a handle decomposition. In every leaf
L, and for each i, the generally noncompact manifold L ∩Mi decom-
poses into a countable, locally finite family of index-i compact handles.
When one moves continuously from one leaf to another, at each excep-
tional orbit, one of these handles slides on another.

definition 4.15. A closed submanifold S ⊂ M is said to be faithful
to F if S is transverse to F , meets every leaf L of F , and if the
intersection L ∩ S is connected (hence a single leaf of F |S).

In other words, the embedding S ⊂ M induces a Haefliger equiva-
lence between the holonomy pseudogroups of the foliations F |S and F .
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corollary 4.16. Let f be a nearly self-indexing leafwise Morse func-
tion on the m-dimensional foliated manifold (M,F ). If m ≥ 4, then
for each 1 ≤ i ≤ m− 3, the level set f−1(i+ 1

2
) is faithful to F .

Proof. Consider a leaf L of F and, on this connected (m−1)-manifold
maybe with boundary, the genuinely Morse function g = f |L. In R,
the value i + 1

2
does not lie in the closure of g(∂L), and separates the

critical values of g of indices 0 and 1 from the critical values of g of
indices m− 2 and m− 1. Hence, g−1(i+ 1

2
) is connected. �

By induction on m, there also exists a closed 3-dimensional submani-
fold of M faithful to F . The existence of faithful hypersurfaces in every
taut codimension-1 foliated manifold of dimension at least 4 is already
known [M16], but we feel that the present construction, by means of
the Morse theory of foliations, is more natural and clearer. See also
[MT14] for some particular cases of faithful submanifolds, obtained by
different means.

4.2. Cancelling leafwise local extrema. Let, as before, M be a
compactm-dimensional manifold with smooth boundary, endowed with
a codimension-1 coorientable taut foliation F , transverse to ∂M . Let
∂−M , ∂+M be a partition of ∂M into two open subsets (perhaps
empty).

proposition 4.17. Assume that m ≥ 5 and that every leaf of F meets
∂−M (respectively both ∂−M and ∂+M).

Then, M admits a nearly self-indexing leafwise Morse function f
without leafwise local minima (respectively extrema) in the interior of
M and such that ∂±(M, f) = ∂±M .

remark 4.18. Conversely, the existence of a function f such that
∂±(M, f) = ∂±M and without leafwise local minima (resp. extrema)
in the interior implies that every leaf L meets ∂−M (resp. both ∂−M
and ∂+M), since the topological closure L̄ of L in M being compact
and saturated, the restricted function f |L̄ must reach a minimum and
a maximum.

remark 4.19. We do not know if Proposition 4.17 holds as well for
m = 3 nor 4.

remark 4.20. When ∂−M = ∅, the conclusion of Proposition 4.17
amounts to say that F is, in the interior of M , “uniformly open” in the
sense of [Be02]. Hence, any leafwise open invariant differential relation
abides the h-principle. In particular, the parametric h-principle holds
for leafwise symplectic structures on such manifolds. Unfortunately,
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that h-principle does not allow any control over the structure at the
boundary of M , unlike Theorem C.

In order to prove Proposition 4.17, we start with a nearly self-
indexing leafwise Morse function f on M such that ∂±(M, f) = ∂±M
(Propositions 4.3 and 4.5). We assume that every leaf meets ∂−M , and
we shall cancel the interior leafwise local minima of f . Of course, if
moreover every leaf meets also ∂+M , a symmetric method also cancels
the interior leafwise local maxima.

The cancellation method is inspired by Laudenbach’s reproof [L14] of
the classical Cerf cancellation lemma for local extrema in 1-parameter
families of functions. We refer to Laudenbach for some details. How-
ever, our foliated framework also calls for some specific arguments.

We shall see how to cancel one connected component C of theindex-0
critical locus. Repeating this argument removes all the components.
After each step, f is not ordered any more, but we apply Proposition
4.5 and reorder f . The steps of the cancellation of C are represented
on the (somehow round) Cerf diagrams of Figure 2.

Fix for f a leafwise descending pseudo-gradient ∇ which is globally
Kupka-Smale. Recall the notations ω(x), W s(∇, X) from the above
Lemma 4.7 and Definition 4.8.

The level set S = f−1(3/2) is important in the proof. This compact
hypersurface of M is transverse to F and to ∇, and separates the leaf-
wise critical points of f of index 0 and 1 from the leafwise critical points
of indices ≥ 2. For every connected component C ′ of Crit1(f,F ), the
intersection S∩W s(C ′) is in S a hypersurface (in fact a bundle of fibre
Sm−3 over the circle) transverse to the foliation F |S. The intersections
of S with the stable manifolds of ∂−M and of Crit0(f,F ) are, in S,
finitely many open domains separated by these hypersurfaces.

lemma 4.21. The endpoint map ω restricted to S admits over the circle
C a smooth section σ : C → S.

Proof. The bundle map ω : W s(∇, C) → C has fibre Rm−1. Since
m ≥ 4, a generic section s of this bundle is disjoint from C and from
the 2-dimensional unstable manifolds of the index-1 critical locus. For
every c ∈ C, the orbit of ∇ through s(c) enters {f ≤ 3/2} at a unique
point σ(c) ∈ S. �

Note that σ is transverse in S to the foliation F |S.

lemma 4.22. Every leaf of F |S meets the stable manifold W s(∇, ∂−M).

Proof. Fix a point x ∈ S; let Lx be the leaf of F through x in M . On
the one hand, ∇ exits M through ∂−M which meets Lx by hypothe-
sis. On the other hand, in Lx which is of dimension ≥ 2, the unstable
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manifolds of the index-1 critical points of f |Lx form only a denumer-
able (and even locally finite) family of 1-dimensional orbits. Hence,
W s(∇, ∂−M) ∩ Lx intersects S in a point y. Finally, x and y both lie
on Lx ∩ S, which is a single leaf of F |S since the level set S is faithful
(Corollary 4.16). �

Proof of Proposition 4.17. For every c ∈ C and v ∈ R, by a bridge arc
for c at level v, we mean an embedding a of the interval I = [0, 1]
into f−1(v), tangential to F , such that ω(a(0)) = c and ω(a(1)) ∈
∂−M . We say that the bridge arc a is pointed if moreover v = 3/2 and
a(1/2) = σ(c).

We are first interested in the level v = 3/2. For every c ∈ C, a
pointed bridge arc for c exists by Lemma 4.22. Then, pushing this arc
into the neighborhing leaves of F |S, one obtains, over some small open
neighborhood Vc of c in C, a choice of a pointed bridge arc for every
c′ ∈ Vc, depending smoothly on c′. Identifying C with R/Z, let δ > 0
be a Lebesgue number for the open cover (Vc). Choose a subdivision
of the circle C into ` intervals [ci−1, ci] (1 ≤ i ≤ `, c0 = c`) of length
less than δ. Then, fix ε > 0 so small that for each i:

2ε < |ci − ci−1| < δ − 2ε

Put Ii = [ci−1− ε, ci + ε] ⊂ C. Choose for every c ∈ Ii a pointed bridge
arc t 7→ ai(c, t), the map ai being a smooth embedding Ii × I ↪→ S.

For every subset X ⊂ M , let ∇+(X) denote the set of the points
∇t(x) for x ∈ X and t ≥ 0 (wherever defined). The cancellation
method will modify f and ∇, in M , close to the squares ai(Ii× I) and
∇+(ai(Ii × 0)) and ∇+(ai(Ii × 1)) (1 ≤ i ≤ `). Since these squares
can intersect each other for different values of i, we take some previous
cautions so that the modifications don’t interfer with each other. Fix a
small compact interval J ⊂ R centered at 3/2, so small that J contains
no leafwise critical value of f ; fix ` values vi ∈ J (1 ≤ i ≤ `), two
by two distinct; let πi : f−1(J) → f−1(vi) be the projection along the
flowlines of ∇; let ãi = πi ◦ ai. Thus, for each i:

• For every c ∈ Ii, the arc t 7→ ãi(c, t) is a bridge arc for c at level
vi;
• The arc Ii → f−1(vi) : c 7→ ãi(c, 1/2) extends to a global section
σi : C → f−1(vi) of ω over C.

(Namely, σi = πi ◦ σ). These two properties are stable by any small
enough isotopy of the embedding ãi in f−1(vi) tangentially to F |f−1(vi).
Since m ≥ 5, after a generic such perturbation for each i, we can
arrange that for every 1 ≤ i < j ≤ ` and c ∈ Ii ∩ Ij, the two flow lines
∇+(ãj(c× ∂I)) are disjoint from the arc ãi(c× I).
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§trN

\
+

§ù

t§

c-,

--.\
1o - 

- 
l-'

§")
+§

ü-}

I

^

>
tI

/

\Yw
\

+
.

§i
s§

§§

.g-g
St1§

,§^[.lot

§r
èu" -....go

\
\\\

\"trl-
o.\

§/
è§

h)J.,
(,

§\r

$-
t'ù-

6tâ^
-t

§i,
c§

§§\2
Figure 1. Creation of two circles of leafwise critical
points of respective indices 1, 2. Beware that the am-
biant dimension m = 3, which this figure evokes, is ex-
cluded in the text. Of course, for m ≥ 4, the point si2(c)
is not a local extremum in the leaf Lc.

Next, for each 1 ≤ i ≤ `, modify f in a small neighborhood of σi(C)
in M by introducing, for every c ∈ C, in the function f |Lc , close to
σi(c) in the leaf Lc, and slightly above the level vi, a pair of critical
points s1

i (c), s
i
2(c) of respective indices 1, 2, in cancellation position.

(Figures 1 and 2 (a))
For a suitable new leafwise pseudo-gradient (still denoted by ∇), for

every c ∈ Ii one has (Figure 1)

W u(∇, si1(c)) ∩ f−1(vi) = ãi(c× ∂I)
W u(∇, si2(c)) ∩ f−1(vi) = ãi(c× Int(I))

In particular, one of the two branches of the unstable manifold of si1(c)
descends to c, and the other descends to ∂−M .

Since moreover the values of f on ∂−M are less than the values of f
on C, the parametric Morse cancellation lemma applies to the pairs of
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Figure 2. A somehow round Cerf diagram for the can-
cellation of leafwise local extrema.

critical points (c, si1(c)) for c ∈ [ci−1 +ε, ci−ε]. As a result, the function
f is modified in a small neighborhood of the square

W u(∇, si1([ci−1 + ε, ci − ε])) ∪ [ci−1 + ε, ci − ε]
so that the pairs (c, si1(c)) are cancelled; but we may arrange that f
remains unchanged close to ∂−M .

Once these cancellations have been performed for every 1 ≤ i ≤ `,
the resulting function is of course not leafwise Morse any longer. On
the way, at the point ci − ε (resp. ci−1 + ε), a birth (resp. death)
critical point has been created in its leaf; so that, instead of the original
index-0 leafwise critical circle C, one now has (see Figure 2 b) for each
i = 1, . . . , ` :

• An open arc (ci − ε, ci + ε) of index-0 leafwise critical points;
• An open arc of leafwise index-1 critical points s̃i1(c) ∈ Lc (c ∈

(ci − ε, ci−1 + ε)), such that s̃i1(c) = si1(c) on a neighborhood of
[ci + ε, ci−1 − ε];
• An index-2 leafwise critical circle si2(C).

The resulting Cerf diagram looks like Figure 2 (b), with ` swallow-
tails.
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Once the leafwise pseudogradient has been modified accordingly, one
of the two branches of the unstable manifold of s̃i1(c) descends to c, for
every 1 ≤ i ≤ ` and c ∈ (ci− ε, ci−1 + ε). Hence, for each 1 ≤ i ≤ `, and
for c ∈ [ci − ε, ci + ε], the family of triples of leafwise critical points c,
s̃i1(c), s̃i+1

1 (c) of respective indices 0, 1, 1 matches the hypotheses of the
elementary swallowtail lemma (Lemma 3.5 of [L14]). We modify the
function according to this lemma: the index-0 leafwise critical points
vanish. (Figure 2, (c)).

Once the ` swallowtails have been so cancelled, the resulting function
is leafwise Morse again, and has got, instead of the original circle C of
index-0 leafwise critical points, ` more circles of index-2 leafwise critical
points, and one more circle (covering ` times the circle C) of index-1
leafwise critical points. The proof of Proposition 4.17 is complete. �

4.3. Orienting the stable and unstable manifolds. We shall need
in Section 5 yet another normalization lemma falling to the Morse the-
ory of foliations. Consider, on an orientable manifold M of dimension
m ≥ 3, a coorientable codimension-1 foliation F , a leafwise Morse
function f , and a connected component C of the critical locus of f , of
some nonextremal index 1 ≤ i ≤ m− 2.

There are of course, up to isomorphism, exactly two dimension-i
real vector bundles over the circle : the trivial one and the nonori-
entable one. The unstable manifold W u(C) with respect to any leaf-
wise pseudo-gradient ∇ is isomorphic to one of them, not depending
on the choice of ∇. Since F is tangentially orientable, the orientability
of W u(C) is equivalent to that of W s(C).

proposition 4.23. Assume that the stable and unstable manifolds of
C are not orientable.

Then, there exists a leafwise Morse function g on M , coinciding
with f outside some arbitrarily small neighborhood T of C, and whose
leafwise critical locus in T consists of two critical circles, one of index
i and one of index i + 1 (or i − 1 if one prefers); both of which have
orientable stable and unstable manifolds.

Proof. We prove the i + 1 case. Replacing f by −f implies the i − 1
case.

Let x, y, z1, . . . , zm−3 denote the standard coordinates on Rm−1.
Consider the quadratic form q(x, y) = (−x2 + y2)/2 on R2, and on
Rm−3 a nondegenerate quadratic form Q of index i− 1. Let Rθ denote
the rotation of angle θ in the (x, y)-plane.

Since M is orientable but the stable and unstable manifolds of C are
not, the parametric Morse lemma implies that C admits a compact
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tubular neighborhood T ∼= (R/Z)×D2 ×Dm−3 in M on which f has
the form :

f(t, x, y, z) = f(t, 0, 0, 0) + q(Rtπ(x, y)) +Q(z).

Let b : R→ [0, 1] be a smooth even function with support [−1, 1] such
that b(y) = 1−y2/2 near y = 0 and the derivative b′ is negative on (0, 1)
and has a unique critical point there, where it reaches its minimum.
Hence, for 0 < ε < 1, the function

y 7→ y2/2 + εb(y/ε)

is Morse on R with three critical points −cε < 0 < cε of respective
indices 0, 1, 0. Let ρ : R+ → [0, 1] be a smooth function with support
in [0, 1) such that ρ = 1 near 0. Define φε : D2 ×Dm−3 → R by

φε(x, y, z) = q(x, y) + ερ(x2 + y2 + |z|2) b(y/ε) +Q(z).

It enjoys the following properties :

• φε(−x,−y, z) = φε(x, y, z).
• For ε > 0 sufficiently small, the function φε has exactly three

critical points : 0 of index i+1, and (0,±cε, 0, . . . , 0) of index i.
• φε(x, y, z) = q(x, y)+Q(z) on a neighborhood of ∂(D2×Dm−3).

Fix such an ε > 0 and set

g(t, x, y, z) = f(t, 0, 0, 0) + φε(R
tπ(x, y), z).

The function g is leafwise Morse on T and coincides with f near ∂T .
It has two leafwise critical circles in T of respective indices i (covering
twice the original C) and i + 1, whose stable and unstable manifolds
are orientable. �

5. Making foliated cobordisms conformally symplectic

Here, we deduce from the tools developed in the previous section
and from the symplectization theorem for cobordisms ([EM]), a foliated
version of the latter.

Let W be a compact manifold of dimension 2n + 1 ≥ 5, whose
smooth boundary ∂W is splitted into two disjoint nonempty compact
subsets ∂±W . Let F be on W a cooriented codimension-1 foliation,
transverse to ∂W . One has the induced foliations ∂F = F |∂W and
∂±F = F |∂±W . For every leaf L of F , put ∂±L = L ∩ ∂±W .

Recall Definition 2.9. A leafwise 2-form ω ∈ Ω2(F ) is of course
nondegenerate if ωn does not vanish. Such a form defines a leafwise
orientation on F , hence also on W and on ∂W .
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Let η be a leafwise 1-form on F which is closed (dFη = 0). Then,
every θ ∈ Ω∗(F ) has a leafwise Lichnerowicz differential with respect
to η

dηθ = dFθ − η ∧ θ
Just as in the nonfoliated case, d2

η = 0, hence the differential operator
dη on Ω∗(F ) defines some Novikov leafwise cohomology groups. We are
interested in the relative ones: precisely, H∗η (F , ∂F ) is the cohomology

of Ω∗(F )× Ω∗−1(∂F ) under the differential operator

(θ, θ′) 7→ (dηθ, θ|∂F − dηθ′)

theorem B. Let W , ∂±W , F , ω, η be as above. Let a ∈ H2
η (F , ∂F ).

Assume that F is taut (Definition 4.2) and that every leaf of F meets
both ∂+W and ∂−W .

Then, there exist $ ∈ Ω2(F ) and α ∈ Ω1(∂F ) such that

• dη$ = 0, and $|∂F = dηα;
• ($,α) lies in the relative Novikov leafwise cohomology class a;
• $ is nondegenerate and homotopic to ω among the nondegen-

erate 2-forms on F ;
• α is a negative (resp. positive) overtwisted contact form on

every leaf of ∂+F (resp. ∂−F ).

In particular, on every leaf L of F , the 2-form $|L is η-symplectic;
and ∂+L (resp. ∂−L) is of concave (resp. convex) overtwisted contact
type (Definition 2.7 and Lemma 2.13) with respect to $|L.

remark 5.1. Here, η may be dF -exact, or even vanish identically.

Proof of Theorem B. The proof is essentially a “foliated” version of
parts of the above proof of Theorem A, using the tools elaborated in
Section 4. We begin with the case a = 0. So, we are actually looking for
a leafwise η-Liouville form on F : a λ ∈ Ω1(F ) such that dηλ ∈ Ω2(F )
is nondegenerate.

Applying Propositions 4.17, 4.23 and 4.5, one makes on W a leafwise
Morse function f (Definition 4.1) such that

• ∂−(W, f) = ∂−W and ∂+(W, f) = ∂+W ;
• f has no leafwise local extrema in Int(W );
• The stable and unstable manifolds of Crit(f,F ) are orientable.

Choose a leafwise pseudo-gradient Z for f on W (Definition 4.6).

Leafwise symplectization close to the critical locus — Thanks to the
orientability of the (un)stable manifolds, every connected component
C of the critical locus of index 1 ≤ i ≤ 2n − 1 admits in W a small
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compact neighborhood HC which is a topological solid torus with (con-
vex) cornered boundary, as follows. HC is diffeomorphic with S1 ×Hi

where Hi is Di ×D2n−i minus a small open tubular neighborhood of
the corner Si−1 × S2n−i−1; and the boundary splits as

∂Hi = ∂+Hi ∪ ∂0Hi ∪ ∂−Hi

where (writing ∂+HC for S1×∂+Hi and ∂0HC for S1×∂0Hi and ∂−HC

for S1 × ∂−Hi):

• F |HC is the slice foliation parallel to the factor Hi;
• f is leafwise constant on ∂+HC and on ∂−HC ;
• Z enters (resp. exits) HC transversely through ∂+HC (resp.
∂−HC);
• Z is tangential to the I factor on

∂0HC
∼= S1 × Si−1 × S2n−i−1 × I

Since the leaves of F |HC are topological disks, η admits a dF -
primitive u on HC . Extending u to a smooth function over W , and
changing η to η − dFu on W , we can without loss of generality ar-
range that η = 0 on OpW (HC) (here we use an obvious foliated version
of Remark 2.1). Also, U(n)/SO(2n) being simply connected, after a
homotopy of ω, we can arrange that ω|(s × Hi) does not depend on
s ∈ S1. Hence, in HC , we actually look for a genuine Liouville form
on a single slice Hi. Such a form is given by the symplectization of
cobordisms [EM]. One gets a leafwise Liouville form λC on OpW (HC),
positive with respect to the orientation of the leaves by ωn; and whose
dual Liouville vector field is positively colinear to Z on OpW (∂HC);
moreover, λC induces an overtwisted contact structure on every leaf of
F |∂±HC .

Construction of a leafwise even contact structure away from the crit-
ical locus — For short, put H = ∪CHC and write λH for the leafwise
1-form equal to λC on each HC .

Consider the codimension-2 foliation L of W ′ = W \ Int(H) by the
level hypersurfaces of f in the leaves of F , cooriented by df . Rescale
Z such that Z · f = −1 on W ′.

The pair (ιZω, ω) restricts, on L , to a leafwise almost contact struc-
ture (Definition 2.9). The h-principle for overtwisted contact structures
on foliations ([BEM], Theorem 1.5) provides for the foliation L a leaf-
wise contact, cooriented (2n− 2)-plane field ξ ⊂ TL such that

• ξ lies in the leafwise almost contact class of ((ιZω)|L , ω|L );
• ξ is an overtwisted contact structure in every leaf of L ;
• ξ coincides with ker(λH) ∩ TL near H.
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Just like in the proof of Lemma 2.11, after the Gray stability theo-
rem, there is a unique vector field X on W ′, tangential to ξ, such that
Z ′ = Z + X preserves ξ. In particular, X vanishes on some neighbor-
hood of ∂H. Change Z to Z ′ on W ′ and put ε = RZ + ξ. So, in every
leaf F of F |W ′ , the hyperplane field ε is an even contact structure (Sec-
tion 2), represented by λH |F close to ∂H ∩F , and whose characteristic
foliation is positively spanned by Z.

Construction of a leafwise η-Liouville form — By means of a par-
tition of the unity, make over W a leafwise 1-form λ ∈ Ω1(F ) such
that

• λ represents ε in each leaf of F |W ′ ;
• λ coincides with λH on some open neighborhood V of H in W .

By an easy modification of f in a small neighborhood of H, one gets
a smooth real function g on W , constant on every leaf of F |H, and
such that Z · g < 0 on W \H. After multiplying g by a large enough
positive constant, one arranges moreover that on W \ V :

(8) Z · g < χλ − η(Z)

After Lemma 2.12, χ(λ) > η(Z) on V \H. After Equation (5) and
Inequation (8), changing λ to e−gλ, one can moreover arrange that
χ(λ) > η(Z) on the all of W \ H. Hence, λ is leafwise η-Liouville on
W \H; and also on H, being there a leafwise locally constant multiple
of λH . By construction, $ = dηλ satisfies all the properties of Theorem
B in the exact case a = 0.

General case — In order to obtain a leafwise η-symplectic form in
a given relative cohomology class a, we proceed as in the non-foliated
case: a is represented by a pair (ω′, 0) such that ω′ ∈ Ω2(F ) is dη-
closed. For a large enough positive real constant K, the leafwise forms

$ = ω′ +Kdηλ

α = Kλ|∂F

satisfy the required properties. �

6. Deforming foliations into contact structures

Consider the problem of approximating a foliation by contact struc-
tures, which was solved in the 3-dimensional case by Eliashberg and
Thurston in their seminal monography [ET].

On a compact oriented manifold M of dimension 2n+ 1 ≥ 5, let F
be a cooriented codimension-1 foliation transverse to the boundary.
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The simplest way to such an approximation is a so-called linear de-
formation: that is, the foliation F , being cooriented, is defined by a
global non-vanishing 1-form α ∈ Ω1(M); and one looks for a 1-form
λ ∈ Ω1(M) such that αt = α + tλ is contact for every small enough
positive t.

The actual geometric nature of the problem will appear through an
elementary computation.

Recall [CC1] that the integrability of α amounts to the existence of a
1-form η on M such that dα = η∧α; that η is then leafwise closed; the
integral of η on every tangential loop being the logarithm of the linear
holonomy of the loop. The restriction η|F is uniquely determined by
α. One may call η a holonomy form associated to α. Then, for any
smooth function F on M , η + dF is a holonomy form associated with
eFα. The cohomology class of η|F in H1(F ) (recall Definition 2.9)
thus depends only on the foliation F , not on the choice of α.

lemma 6.1. Let F , α, η be as above. If λ ∈ Ω1(M) and if λ|F is leaf-
wise η-Liouville, then α+ tλ is contact for every small enough positive
t.

Proof of Lemma 6.1. For θ ∈ Ω∗(M), we use the notation dηθ for dθ−
η∧θ, although η being in general not globally closed on M , the operator
d2
η is not in general a differential operator on Ω∗(M): its square vanishes

in restriction to F . One gets straightforwardly

(dηλ)n = (dλ)n − nη ∧ λ ∧ (dλ)n−1

(9) αt ∧ (dαt)
n = tnα ∧ (dηλ)n + tn+1λ ∧ (dλ)n

Hence, a sufficient condition for αt to be contact for every small enough
positive t is that α ∧ (dηλ)n be a volume form on M . �

remark 6.2. The existence of such a form λ, and the leafwise con-
formal class of dηλ|F , depend only on the cooriented foliation F , not
on the choice of α. Indeed, let λ be leafwise η-Liouville. Change α to
eFα for some smooth function F on M ; then, eFλ is leafwise (η+ dF )-
Liouville (Remark 2.1).

definition 6.3. We call F holonomous if every minimal set contains
a tangential loop whose linear holonomy is nontrivial.

In dimension 3, Eliashberg and Thurston proved that the condition of
being holonomy-rich is necessary and sufficient for a cooriented foliation
to admit a linear deformation ([ET], Theorem 2.1.2.). In the higher
dimensions, being holonomy-rich remains necessary for the existence
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of a leafwise holonomy-Liouville form: indeed, in this direction, the
arguments of [ET] hold as well in all dimensions (recently, Lauran
Toussaint has given an alternative proof [T20]).

theorem C. On a compact manifold M of dimension 2n + 1 ≥ 5
with smooth boundary, let F be a cooriented codimension-one foliation
which is transverse to ∂M , taut (Definition 4.2), holonomous, and such
that every leaf meets ∂M . Assume that F admits a nondegenerate
leafwise 2-form ω. Choose on M a nonsingular 1-form α defining F ,
and a 1-form η such that dα = η ∧ α.

Then, F admits a leafwise 1-form λ ∈ Ω1(F ) such that

(1) dηλ is nondegenerate, and homotopic to ω as a nondegenerate
leafwise 2-form;

(2) λ restricts to a negative overtwisted contact form on every leaf
of ∂F = F |∂M .

In consequence (Lemma 6.1), F admits a linear deformation into a
contact structure for which the leaves of ∂F (cooriented by a vector
tangential to F and pointing outward M followed by a vector tan-
gential to ∂M and positively transverse to F ) are negative contact
submanifolds.

remark 6.4. The tautness hypothesis in Theorem C can certainly be
weakened, and maybe suppressed. This hypothesis would be a serious
restriction in dimension 3, since after the classical Novikov theorem,
many 3-manifolds do not admit any taut foliation. But it is known that
the case is different on a manifold M of higher dimension: every coori-
ented hyperplane field on M is homotopic to a smooth foliation, with
nontrivial linear holonomy, and whose leaves are dense in M [M17].
(One may even prescribe F |∂M .) Such a foliation is in particular taut
and holonomous. Since, moreover, both properties of holonomousness
and tautness are clearly open in the space of codimension-one foliations
on M , we conclude that for every homotopy class of almost symplec-
tic cooriented hyperplane fields on M , our Theorem C applies to a
nonempty open subset of the space of foliations lying in this class.

Proof of Theorem C. The foliation being holonomous means that M
contains in its interior a finite disjoint union Γ of embedded oriented
circles (one in each minimal set) such that

• Each component γ of Γ is tangential to F , and hγ =
∫
γ
η 6= 0;

• The closure of every leaf of F contains at least one component
of Γ.

After changing each loop γ to a nearby small perturbation, in the
same leaf, of a positive or negative multiple of γ, one can moreover
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arrange that hγ < −cn (the constant of Lemma 3.1). In particular,
hγ < 0 (Remark 3.2).

We now define λ close to γ.
The linear holonomy being nontrivial, γ admits a small compact

tubular neighborhood Tγ ∼= S1 × D2n in which F coincides with a
standard, somehow linear model: namely, F is defined in this solid
torus by the nonvanishing 1-form

(10) α = dx2n − hx2nθ

where h = hγ, where θ denotes the positive unit volume form on S1,
and where x1, . . . , x2n are the standard coordinates on the compact
unit ball D2n ⊂ R2n. Note that

• η = hθ is a holonomy form associated with α in Tγ;
• F |Tγ has a unique compact leaf Lγ ∼= S1 ×D2n−1, defined by
x2n = 0;
• F is transverse to ∂Tγ ∼= S1 × S2n−1;
• The induced foliation F |∂Tγ consists of two (2n)-dimensional

Reeb components with common boundary ∂Lγ, the one on
x2n ≥ 0, the other on x2n ≤ 0.

Consider in Tγ the projection π : Tγ → Lγ parallelly to the x2n-axis,
and the 1-form

ρ = (1− x2
1 − · · · − x2

2n−1)η + x1dx1 + · · ·+ x2n−1dx2n−1

The restriction ρ|Lγ draws on Lγ a (2n)-dimensional Reeb compo-
nent; while in restriction to ∂Tγ one has

ρ = π∗(ρ|Lγ) = −x2nα

Endow the solid torus Lγ ∼= S1 × D2n−1, oriented by ω, with the
1-form λ and with the vector field Z given by Lemma 3.1 which enters
Lγ transversely through ∂Lγ. Since θ(Z) = 1, after pushing λ and Z
by a self-diffeomorphism of S1×D2n−1 preserving the projection to S1,
we can arrange that moreover, ρ(Z) < 0 on Lγ. Exdent λ over Tγ as
the leafwise 1-form π∗(λ)|F (also denoted by λ); extend Z over Tγ as
the vector field that lifts Z through π tangentially to F (also denoted
by Z). After Lemma 3.1, λ is leafwise η-Liouville in Tγ, and its η-dual
vector field is positively colinear to Z. The space U(n)/SO(2n) being
simply connected, dηλ is homotopic to ω|Tγ as a nondegenerate leafwise
2-form on F |Tγ .

The function ρ(Z) being negative on Lγ, the vector field Z enters
transversely Tγ through ∂Tγ. After Lemma 3.1, the contact form λ|∂Lγ
is overtwisted. For every leaf L of F |Tγ , since ∂L accumulates on ∂Lγ
in ∂Tγ, it follows that λ|∂L is overtwisted as well (any overtwisted ball
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in ∂Lγ can be pushed into ∂L by an isocontact embedding close to
the identity, after Gray’s stability theorem). In other words, ∂L is of
overtwisted contact type and concave with respect to dηλ|L (Definition
2.7, Lemma 2.13).

After λ has thus been constructed over the union T of the Tγ’s,
Theorem B then allows one to complete the construction over M . Here
are some precisions.

In the cobordism W = M \ Int(T ) between ∂−W = ∂T and ∂+W =
∂M , the foliation F |W is transverse to ∂W , taut, and every leaf meets
∂−W and ∂+W . Extend α and η from T to M , such that α defines F
over M , and that η is a holonomy form associated to α over M .

After TheoremB, there is a η-Liouville leafwise 1-form λ′ ∈ Ω1(F |W )
restricting, on every leaf ` of ∂+F = F |∂M (resp. ∂−F = F |∂T ), to
an overtwisted contact form which is negative (resp. positive) — here,
` is cooriented as a component of the boundary of a leaf of F |W — and
such that moreover, dηλ

′ is homotopic to ω as a nondegenerate leafwise
2-form on F |W .

There remains to paste the two pieces. After the h-principle for
overtwisted leafwise contact structures on foliations [BEM], there is an
isotopy φ of ∂T tangential to F |∂T and such that λ and φ∗(λ′) define
the same leafwise contact structure on F |∂T .

On OpT (∂T ) (resp. OpW (∂T )), the leafwise 1-form λ (resp. λ′)
defines for F a leafwise even contact structure ε (resp. ε′) whose char-
acteristic foliation Z (resp. Z ′) is a 1-dimensional foliation transverse
to ∂T . Extend φ to an isotopy of W tangential to F |W , still denoted
by φ, such that Z and φ∗(Z ′) match along ∂T , giving a global smooth
1-dimensional foliation on OpM(∂T ). Thus, ε and φ∗(ε′) give a global
even contact structure on OpM(∂T ). Then, since φ∗(η|F ) is cohomol-
ogous to η|F in H1(F |W ) (recall Definition 2.9), multiplying φ∗(λ′)
by a convenient positive function, one gets again a η-Liouville leafwise
1-form λ′′ on W , see Remark 6.2. Finally, in view of Lemma 2.13, after
multiplying again λ′′ by a convenient positive function, the η-Liouville
leafwise 1-forms λ and λ′′ moreover match along ∂T , and define a global
η-Liouville leafwise 1-form for F over M . �

remark 6.5. Our method does not seem to be able to produce con-
tactizing linear deformations for taut foliations on closed manifolds.
Precisely, Proposition 6.7 will show that starting from Theorem B, the
concave boundary cannot be eliminated in the same way as we have
eliminated the convex boundary and got Theorem C.

This problem raises the general question of whether the Eliashberg-
Gromov tightness criterion for fillable contact structures admits the
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following foliated and conformal analogue for leafwise contact struc-
tures in all dimensions.

question 6.6. Let M be an oriented compact manifold of dimension
2n + 1 ≥ 5 with nonempty smooth boundary, endowed with a coori-
ented codimension-1 foliation F , transverse to ∂M . Let α, η, λ be,
respectively, a defining form for F , an associated holonomy 1-form,
and a η-Liouville leafwise 1-form which restricts to a positive contact
form on every leaf of ∂F . Does it follow that λ is tight on every leaf
of ∂F ?

proposition 6.7. The answer to Question 6.6 is positive for the model
foliation F defined by Equation (10) on T 2n+1 = S1 ×D2n, for every
n ≥ 2 and h 6= 0.

Proof of Proposition 6.7. Let us begin, to fix ideas, with the case n = 2.
In this case, Proposition 6.7 is a simple application of the Eliashberg-
Gromov tightness criterion ([E91], [ET] and [G85]) in the noncompact
framework: every contact 3-manifold (∂M, ξ) which bounds a symplec-
tic 4-manifold (M,ω) with bounded symplectic geometry at infinity is
tight.

Consider, on ∂F , the leafwise contact structure

ξ = ker(λ|∂T 5).

Let L0 and `0 denote the compact leaf of F and its boundary, respec-
tively. Since every other leaf ` of ∂F accumulates on `0, if ξ|`0 were
overtwisted, then ξ|` would also be overtwisted. Hence, it suffices to
prove that ξ|` is tight for every non-compact leaf ` of ∂F .

Every noncompact leaf L of F being without holonomy, the holo-
nomy 1-form η = hθ is exact on L, hence (Remark 2.1) λ|L is conformal
to a genuinely Liouville form on L. In fact, the function ln(|x4|) is a
primitive of η in restriction to every noncompact leaf. The fact that
this function is bounded from above on every such leaf, which is specific
to foliations of very simple dynamics like F , seems to be crucial in the
proof.

We now show that any non-compact leaf L has bounded symplectic
geometry. The 2-form dηλ on T 5, being leafwise nondegenerate, admits
a leafwise almost complex structure J (an automorphism of the vector
bundle TF such that J2 = −id) which preserves ξ at every point of
∂T 5, and such that

g = dηλ(·, J ·)
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defines a Riemannian metric on every leaf L of F . By compacity of T 5,
the metric g|L has bounded geometry, meaning that g|L is a complete
Riemannian metric on L, whose injectivity radius is bounded away
from zero, and whose sectional curvature is bounded.

The 1-form λ′ = |x4|−1λ|L is genuinely Liouville on L; and the exact
symplectic form dλ′ = |x4|−1dηλ dominates ξ|`, in the sense that dλ′ is
nondegenerate on ξ|` at every point of `. Set

g′ =
g

|x4|
= dλ′(·, J ·).

The metric g′ is compatible with dλ′. It remains to verify that g′ is of
bounded geometry on L.

One has g′ ≥ g, so that g′ is complete as well on L. It is convenient
to introduce the solid cylinder

C = [−1, 1]×D4

and, for every s ∈ S1 = R/Z, the immersion

js : C ↪→ T 5 : (t, x) 7→ (s+ t, x)

The foliation C = j∗s (F ) of C does obviously not depend on s. Con-
sider on C the smooth family of leafwise Riemannian metrics, parame-
trized by s ∈ S1

gs = e−htj∗s (g)

Let ι0 > 0 be the minimum of their injectivity radii, and σ0 < +∞ be
the maximum of the absolute values of their sectional curvatures.

Consider the leaf La of C through the point (0, a), with a = (a1, ..., a4)
in D4 and a4 6= 0. Since x4|La = a4e

ht, on La, one has j∗s (g
′) = |a4|−1gs;

and the following bounds follow at once on La :

ι(j∗s (g
′)) = |a4|−1ι(gs) ≥ ι0

|σ(j∗s (g
′))| = |a4||σ(gs)| ≤ σ0.

The proof of Proposition 6.7 in the higher dimensions is much alike,
but instead of the original Eliashberg-Gromov tightness criterion, one
applies Niederkrüger’s tightness criterion [N06] (see also [BEM] para-
graph 10), in the noncompact framework, under the hypothesis of
bounded geometry (this noncompact version of the criterion does not
appear in the litterature, but the generalization is straightforward).

�
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