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Abstract

Recent advances in statistical and machine learning have opened the possibility to forecast

the behavior of chaotic systems using recurrent neural networks. In this article we investigate

the applicability of such a framework to geophysical flows, known to involve multiple scales in

length, time and energy and to feature intermittency. We show that both multiscale dynamics and

intermittency introduce severe limitations on the applicability of recurrent neural networks, both

for short-term forecasts, as well as for the reconstruction of the underlying attractor. We suggest

that possible strategies to overcome such limitations should be based on separating the smooth

large-scale dynamics from the intermittent/small-scale features. We test these ideas on global sea-

level pressure data for the past 40 years, a proxy of the atmospheric circulation dynamics. Better

short and long term forecasts of sea-level pressure data can be obtained with an optimal choice of

spatial coarse grain and time filtering.

I. INTRODUCTION17

The advent of high-performance computing has paved the way for advanced analyses of high-18

dimensional datasets [1, 2]. Those successes have naturally raised the question of whether19

it is possible to learn the behavior of a dynamical system without resolving or even without20

knowing the underlying evolution equations. Such an interest is motivated on one side by the21

fact that many complex systems still miss a universally accepted state equation — e.g. brain22

dynamics [3], macro-economical and financial systems [4] — and, on the other, by the need of23

reducing the complexity of the dynamical evolution for the systems of which the underlying24

equations are known — e.g. on geophysical and turbulent flows [5]. Evolution equations are25

difficult to solve for large systems such as the geophysical flows, so that approximations and26

parameterizations are needed for meteorological and climatological applications [6]. These27

difficulties are enhanced by those encountered in the modelling of phase transitions that28

lead to cloud formation and convection, which are major sources of uncertainty in climate29

modelling [7]. Machine Learning techniques capable of learning geophysical flows dynamics30

would help improve those approximations and avoid running costly simulations resolving31

explicitly all spatial/temporal scales.32
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Recently, several efforts have been made to apply machine learning to the prediction of geo-33

physical data [8], to learn parameterizations of subgrid processes in climate models [9–11],34

to the forecasting [12–14] and nowcasting (i.e. extremely short-term forecasting) of weather35

variables [15–17], and to quantify the uncertainty of deterministic weather prediction [18].36

One of the greatest challenge is to replace equations of climate models with neural network37

capable to produce reliable long and short term forecast of meteorological variables. A first38

great step in this direction was the use of Echo State Networks (ESN, [19]) a particular case39

of Recurrent Neural Networks (RNN) to forecast the behavior of chaotic systems, such as40

the Lorenz 1963 [20] and the Kuramoto-Sivashinsky [21] dynamics. It was shown that RNN41

predictions of both systems attain performances comparable to those obtained with the real42

equations [22, 23]. Good performance of regularized RNN in the short-term prediction of43

multidimensional chaotic time series was obtained, both from simulated and real data [24].44

This success motivated several follow-up studies with a focus on meteorological and climate45

data. These are based on the idea of feeding various statistical learning algorithms with46

data issued from dynamical systems of different complexity, in order to study short-term47

predictability and long-term capabilities of RNN in producing a surrogate dynamics of the48

input data. Recent examples include equation-informed moment-matching for the Lorenz9649

model [25, 26], multi-layer perceptrons to reanalysis data [27], or convolutional neural net-50

works to simplified climate simulation models [28, 29]. All these learning algorithms were51

capable to provide some short-term predictability, but failed in obtaining a long-term be-52

havior coherent with the input data.53

In this article we specifically focus on how to improve the performance of ESN in simu-54

lating long trajectories of large-scale climate fields. With respect to the results presented55

in [23], we aim at going beyond the predictability horizon and investigate the ability of ma-56

chine learning algorithms in shadowing the dynamics of observed data. Such applications57

would avoid the use of general circulation models based on primitive equations to reproduce58

the evolution of a subset of variables and therefore obtain surrogates dynamics of existing59

datasets with little computational power. Previous results [27–29] suggest that RNN simu-60

lations of large-scale climate fields are not as straightforward as those of the chaotic systems61

considered by [23]. We identify two main mechanisms responsible for these limitations: (i)62

the non-trivial interactions with small-scale motions carrying energy at large scale and (ii)63

the intermittent nature of the dynamics. Intermittency triggers large fluctuations of observ-64
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ables of the motion in time and space [30] and can result in non-smooth trajectories within65

the flow, leading to local unpredictability and increasing the number of degrees of freedom66

needed to describe the dynamics [31].67

By applying ESN to multiscale and intermittent systems, we investigate how scale separation68

improves ESN predictions. Our goal is to reproduce a surrogate of the large-scale dynamics of69

global sea-level pressure fields, a proxy of the atmospheric circulation. We begin by analysing70

three different dynamical systems: we simulate the effects of small scales by artificially71

introducing small-scale dynamics in the Lorenz 1963 equations [20] via additive noise. We72

investigate the Pomeau-Manneville equations [32] stochastically perturbed with additive73

noise to have an example of intermittent behavior. We then analyse the performance of74

ESN in the Lorenz 1996 system [25]. This system dynamics is meant to mimic that of75

the atmospheric circulation and feature both large-scale and small-scale variables with an76

intermittent behavior. For all of those systems, as well as for the sea-level pressure data,77

we show how the performance of ESN in predicting the behavior of the system deteriorates78

rapidly when small-scale dynamics feedback to large scale is important. The idea of using79

moving average for scale separation is already established for meteorological variables [33].80

We choose the ESN framework following the results of [22, 23], and an established literature81

about its ability to forecast chaotic time series and its stability to noise. For example, [34, 35]82

analyse and compare the predictive performance of simple and improved ESN on simulated83

and observed one-dimensional chaotic time series. We aim at understanding this sensitivity84

in a deeper way, while assessing the possibility to reduce its impact on prediction through85

simple noise reduction methods. The remaining of this article is organised as follows: first, we86

give an overview of the ESN method and provide the description of the systems used. Then,87

we show the results for the perturbed Lorenz 1963 equations, for the Pomeau-Manneville88

intermittent map, and for the Lorenz 1996 equations. We discuss the improvement in short-89

term prediction and the long-term attractor reconstruction obtained with the moving average90

filter. We conclude by testing these ideas on atmospheric circulation data.91

II. METHODS92

Reservoir computing is a variant of recurrent neural networks (RNN) in which the input93

signal is connected to a fixed and random dynamical system called reservoir [36]. The94
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principle of Reservoir computing consists in projecting first the input signal to a space of95

high dimension in order to obtain a non-linear representation of the signal; and then perform96

a new projection (linear regression or ridge regression) between the high-dimensional space97

and the output units. In our study ESN are implemented as follows. The code is given98

the in appendix and it shows the parameters used for the computations. Let u(t) be the99

K-dimensional observable consisting of t = 1, 2 . . . , T time iterations, originating from a100

dynamical system and r(t) be the N -dimensional reservoir state, then:101

r(t+ dt) = tanh(Wr(t) +Winu(t)) (1)

where W is the adjacency matrix of the reservoir: its dimensions are N ×N , and N is the102

number of neurons of the reservoir. In ESN, the neuron layers of classic deep neural networks103

are replaced by a single layer consisting of a sparsely connected random network, with104

coefficients uniformly distributed in [−0.5; 0.5]. Win, with dimensions N ×K, is the weight105

matrix of the connections between the input layer and the reservoir and the coefficients are106

randomly sampled, as for W . The output of the network at time step t+ dt is107

Woutr(t+ dt) = v(t+ dt) (2)

where v(t+ dt) is the ESN prediction, Wout with dimensions K ×N , is the weight matrix of108

the connections between the reservoir neurons and the output layer. We estimate Wout via109

a ridge regression [37]:110

Wout = v(t+ dt)r(t+ dt)T [r(t+ dt)r(t+ dt)T − λI]−1 (3)

with λ = 10−8. In the prediction phase we have a recurrent relationship:111

r(t+ dt) = tanh(Wr(t) +WinWoutr(t)). (4)

A. ESN performance indicators112

In this paper, we use three different indicators of performance of the ESN:113

114

Statistical distributional test

As a first diagnostic of the performance of ESN, we aim at assessing whether the marginal

distribution of the forecast values for a given dynamical system is significantly different

5



from the invariant distribution of the system itself. To this purpose, we conduct a χ2

test [38], designed as follows. Let U be a system observable with support RU and probability

density function fU(u), and let u(t) be a sample trajectory from U . Let now f̂U(u) be an

approximation of fU(u), namely the histogram of u over i = 1, . . . ,M bins. Note that, if

u spans the entire phase space, f̂U(u) is the numerical approximation of the Sinai-Ruelle-

Bowen measure of the dynamical system [39, 40]. Let now V be the variable generated by

the ESN forecasting, with support RV = RU , v(t) the forecast sample, gV (v) its probability

density function and ĝV (v) the histogram of the forecast sample. We test the null hypothesis

that the marginal distribution of the forecast sample is the same as the invariant distribution

of the system, against the alternative hypothesis that the two distributions are significantly

different:

H0 : fU(u) = gV (v) for every u ∈ RU

H1 : fU(u) 6= gV (v) for any u ∈ RU

Under H0, f̂U(u) is the expected value for ĝV (v), which implies that observed differences115

(ĝV (v) − f̂U(u)) are due to random errors, and are then independent and identically dis-116

tributed Gaussian random variables. Statistical theory shows that, given H0 true, the test117

statistics118

Σ =
M∑
i=1

(ĝV (v)− f̂U(u))2

f̂U(u)
(5)

is distributed as a chi-squared random variable with M degrees of freedom, χ2(M). Then, to119

test the null hypothesis at the level α, the observed value of the test statistics Σ is compared120

to the critical value corresponding to the 1 − α quantile of the chi-square distribution,121

Σc = χ2
1−α(M): if Σ > Σc, the null hypothesis must be rejected in favour of the specified122

alternative.123

In our setup, we encounter two limitations in using the standard χ2 test. First, problems124

may arise when f̂U(u), i.e. if the sample distribution does not span the entire support of the125

invariant distribution of the system. We observe this in a relatively small number of cases;126

since aggregating the bins would introduce unwanted complications, we decide to discard127

the pathological cases, controlling the effect empirically as described below. Moreover,128

even producing relatively large samples, we are not able to actually observe the invariant129

distribution of the considered system, which would require much longer simulations. As130
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a consequence, we would observe excessive rejection rates when testing samples generated131

under H0.132

We decide to control these two effects by using a Monte Carlo approach. To this purpose, we133

use 10000 samples using the system equations under the null hypothesis, and we compute134

the test statistic for each one according to Eq. (5). Then, we use the (1−α) quantile of the135

empirical distribution of Σ — instead of the theoretical χ2(M) — to determine the critical136

threshold Σc. As a last remark, we notice that we are making inference in repeated tests137

setting, as the performance of the ESN is tested 10000 times. Performing a high number of138

independent tests at a chosen level α increases the observed rejection rate: in fact, even if the139

samples are drawn under H0, extreme events become more likely, resulting in an increased140

probability to erroneously reject the null hypothesis. To avoid this problem, we apply the141

Bonferroni correction [41], testing each one of the m = 10000 available samples at the level142

α′ = α
m

, with α = 0.05.143

Averaging the test results over several sample pairs u(t), v(t) we obtain a rejection rate144

0 < φ < 1 that we use to measure the adherence of a ESN trajectory v(t) to trajectories145

obtained via the equations. If φ = 0, almost all the ESN trajectories can shadow original146

trajectories, if φ = 1 none of the ESN trajectories resemble those of the systems of equations.147

Predictability Horizon148

As a measure of the predictability horizon of the ESN forecast compared to the equations,149

we use the root mean square error (RMSE):150

RMSE(τ) =

√√√√1

τ

τ∑
t=1

(u(t)− v(t))2 (6)

and we define the predictability horizon τs as the first time that RMSE exceeds a certain

threshold s. We link s to the average separation of observations in the observable U and we

fix

s =
1

T − 1

T−1∑
t=2

[u(t)− u(t− 1)].

We have tested the sensitivity of results against the exact definition of s.151

We interpret τs as a natural measure of the Lyapunov time ϑ, namely the time it takes for152

an ensemble of trajectories of a dynamical system to diverge [42, 43].153

Initial Forecast Error154

The initial error is given by η = RMSE(t = 1), for the first time step after the initial155
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condition at t = 0. We expect η to reduce as the training time increases. In this phase, the156

the smaller the initial error will be.157

158

B. Moving average filter159

Equipped with these indicators, we analyze two sets of simulations performed with and160

without smoothing, which was implemented using a moving average filter. The moving161

average operation is the integral of u(t) between t and t−w, where w is the window size of162

the moving average. The simple moving average filter can be seen as a nonparametric time163

series smoother (see e.g. [44], chapter 1.5). It can be applied to smooth out (relatively) high164

frequencies in a time series, both to de-noise the observations of a process or to estimate165

trend-cycle components, if present. Moving averaging consists, in practice, of replacing the166

observation u(t) by a value u(f)(t), obtained by averaging the previous w observations. If167

the time dimension is discrete (like in the Pomeau-Manneville system) it is defined as:168

u(f)(t) =
1

w

w−1∑
i=0

u(t− i), (7)

while for continuous time systems (like the Lorenz 1963 system), the sum is formally replaced169

by an integral:170

u(f)(t) =
1

w

∫ t

t−w
u(ς)dς. (8)

We can define the residuals as:171

δu(t) = u(f)(t)− u(t) (9)

In practice, the computation always refers to the discrete time case, as continuous time172

systems are also sampled at finite time steps. Since Echo State Networks are known to173

be sensitive to noise (see e.g. [34]), we exploit the simple moving average filter to smooth174

out high-frequency noise and assess the results for different smoothing windows w. We175

find that the choice of the moving averaging window w must respect two conditions: it176

should be large enough to smooth the noise but smaller than the characteristic time τ of177

the large-scale fluctuations of the system. For chaotic systems, τ can be derived knowing178

the rate of exponential divergence of the trajectories, a quantity linked to the Lyapunov179
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exponents [45], and τ is known as the Lyapunov time.180

181

We also remark that we can express explicitly the original variable u(t) as a function of the182

filtered variable u(f)(t) as:183

u(t) = w(u(f)(t)− u(f)(t− 1)) + u(t− w) (10)

we will test this formula for stochastically perturbed systems to evaluate the error introduced184

by the use of residuals δu.185

C. Testing ESN on filtered dynamics186

Here we describe the algorithm used to test ESN performance on filtered dynamics:187

1. Simulate the reference trajectory u(t) using the equations of the dynamical systems,188

where u(t) has been standardized by subtracting the mean and dividing by its standard189

deviation.190

2. Perform the moving average filter to obtain u(f)(t).191

3. Extract from u(f)(t) a training set u
(f)
train(t) with t ∈ {1, 2, . . . , Ttrain}.192

4. Train the ESN on u
(f)
train(t) dataset.193

5. Obtain the ESN forecast v(f)(t) for t ∈ {Ttrain + 1, Ttrain + 2, . . . , T}.194

6. Add residuals (Eq. 9) to v(f)(t) sample as v(t) = v(f)(t) + δu, where δu is randomly195

sampled from the δu(t) with t ∈ {1, 2, ..., Ttrain}.196

7. Compare v(t) and u(t > Ttrain) using the metrics φ, τ and η.197

As an alternative to step 6, one can also use Eq. (10) and obtain:198

v(t) = w(v(f)(t)− v(f)(t− 1)) + v(t− w), (11)

that does not require the use of residuals δu(t).199
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III. RESULTS200

The systems we analyze are the Lorenz 1963 attractor [20] with the classical parameters,201

discretized with a Euler scheme and a dt = 0.001, the Pomeau-Manneville intermittent202

map [32], the Lorenz 1996 equations [25] and the NCEP sea-level pressure data [46].203

204

Lorenz 1963 equations205

The Lorenz [20] system is a simplified model of Rayleigh-Benard convection, derived206

by E.N. Lorenz. It is an autonomous continuous dynamical system with three variables207

u ∈ {x, y, z} parametrizing respectively the convective motion, the horizontal temperature208

gradient and the vertical temperature gradient. It writes:209

dx

dt
= σ(y − x) + εξx(t)

dy

dt
= −xz + %x− y + εξy(t),

dz

dt
= xy − bz + εξz(t), (12)

where σ, % and b are three parameters, σ mimicking the Prandtl number and % the reduced210

Rayleigh number. The Lorenz model is usually defined using Eq. (12), with σ = 10, % = 28211

and b = 8/3. A deterministic trajectory of the system is shown in Figure 1a). It has been ob-212

tained via integrating numerically the Lorenz equations with an Euler scheme (dt = 0.001).213

The systems is perturbed via additive noise: ξx(t), ξy(t) and ξz(t) are random variable all214

drawn from a Gaussian distribution. The initial conditions are randomly selected within215

a long trajectory of 5·106 iterations. First, we study the dependence of the ESN on the216

training length in the deterministic system (ε = 0, Figure 1b-d). We analyse the behavior217

of the rejection rate φ (panel b), the predictability horizon τs (panel c) and the initial error218

η (panel d) as a function of the training sample size. Our analysis suggests that t ∼ 102 is219

a minimum sufficient choice for the training window. We compare this time to the typical220

time scales of the motion of the sytems, determined via the maximum Lyapunov exponent221

λ. For the Lorenz 1963 system, λ = 0.9, so that the Lyapunov time ϑ ≈ O
(
1
λ

)
≈ 1.1.222

From the previous analysis we should train the network at least for t > 100ϑ. For the other223

systems analysed in this article, we take this condition as a lower boundary for the training224

times.225

226
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To show the effectiveness of the moving average filter in boosting the machine-learning227

performances we produce 10 ESN trajectories obtained without moving average (Figure 2-228

green) and with (Figure 2-red) a moving average window w = 0.01 and compare them to229

the reference trajectory (blue) obtained with ε = 0.1. The value of w = 10dt = 0.01 respects230

the condition w � ϑ. Indeed, the RMSE averaged over the two groups of trajectories231

(Figure 2-b) shows an evident gain of accuracy (a factor of ∼ 10) when the moving average232

procedure is applied. We now study in a more systematic way the dependence of the ESN233

performance on noise intensity ε, network size N and for three different averaging windows234

w = 0, w = 0.01, w = 0.05. We produce, for each combination, 100 ESN forecasts. Figure 3235

shows φ (a), log(τs=1) (b) and log(η) (c) computed setting u ≡ x variable of the Lorenz236

1963 system (results qualitatively do not depend on the chosen variable). In each panel237

from left to right the moving average window is increasing, upper sub-Panels are obtained238

using the exact expression in Eq. 11 and lower panels using the residuals in Eq 9. For239

increasing noise intensity and for small reservoirs sizes, the performances without moving240

average (left subpanels) rapidly get worse. The moving average smoothing with w = 0.01241

(central sub-panels) improves the performance for log(τs=1) (b) and log(η) (c), except when242

the noise is too large (ε = 1). When the moving average window is too large (right panels),243

the performances of φ decrease. This failure can be attributed to the fact that residuals δu244

(Eq.9) are of the same order of magnitude of the ESN predicted fields for ε large. Indeed,245

if we use the formula provided in Eq. 11 as an alternative to step 6, we can evaluate the246

error introduced in the residuals. The results shown in Figure 3 suggest that residuals can247

be used without problems when the noise is small compared with the dynamics. When ε is248

close to one, the residuals overlay the deterministic dynamics and ESN forecast are poor.249

In this case, the exact formulation in Eq. 11 appears much better.250

Pomeau-Manneville intermittent map251

Several dynamical systems, including Earth climate, display intermittency, i.e., the time252

series of a variable issued by the system can experience sudden chaotic fluctuations, as well253

as a predictable behavior where the observables have small fluctuations. In atmospheric254

dynamics, such a behavior is observed in the switching between zonal and meridional phases255

of the mid-latitude dynamics if a time series of the wind speed at one location is observed:256

when a cyclonic structure passes through the area, the wind has high values and large257

fluctuations, when an anticyclonic structure is present the wind is low and fluctuations are258
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smaller [47, 48]. It is then of practical interest to study the performance of ESN in Pomeau259

Manneville predictions as they are a first prototypical example of the intermittent behavior260

found in climate data.261

In particular, the Pomeau-Manneville [32] map is probably the simplest example of inter-262

mittent behavior, produced by a 1D (here u = x) discrete deterministic map given by:263

xt+1 = mod(xt + x1+at , 1) + εξ(t), (13)

where 0 < a < 1 is a parameter. We use a = 0.91 in this study and a trajectory consisting of264

5×105 iterations. The systems is perturbed via additive noise ξ(t) drawn from a Gaussian265

distribution. It is well known that Pomeau-Manneville systems exhibit sub-exponential266

separation of nearby trajectories and then the Lyapunov exponent is λ = 0. However, one267

can define a Lyapunov exponent for the non-ergodic phase of the dynamics and extract a268

characteristic time scale [49]. From this latter reference, we can derive a value λ ' 0.2 for269

a = 0.91, implying w < τ ' 5. We find that the best match between ESN and equations in270

terms of the φ indicator are obtained for w = 3.271

272

Results for the Pomeau-Manneville map are shown in Figure 4. We first observe that the273

ESN forecast of the intermittent dynamics of the Pomeau-Manneville map is much more274

challenging than for the Lorenz system as a consequence of the intermittent behavior of this275

system. For the simulations performed with w = 0, the ESN cannot simulate an intermittent276

behavior, for all noise intensities and reservoir sizes. This is reflected in the behavior of the277

indicators. In the deterministic limit, the ESN fails to reproduce the invariant density in278

80% of the cases (φ ' 0.8). For intermediate noise intensities φ > 0.9 (Figure 4-a). The pre-279

dictability horizon log(τs=0.5) for the short term forecast is small (Figure 4d) and the initial280

error large (Figure 4g). The moving average procedure with w = 3 partially improves the281

performances (Figure 4b,c,e,f,h,i) and it enables ESN to simulate an intermittent behavior282

(Figure 5). Performances are again better when using the exact formula (Figure 4b,e,h) than283

using the residuals δu (Figure 4c,f,i). Figure 5a) shows the intermittent behavior of the data284

generated with the ESN trained on moving averaged data of Pomeau-Manneville system285

(red) and compare to the target time series (blue). ESN simulations do not reproduce the286

intermittency in the average of the target signal. They only show some second order inter-287

mittency in the fluctuations. Figure 5b) displays the power spectra showing in both cases288
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a power law decay, which are typical of turbulent phenomena. Although the intermittent289

behavior is captured, this realization of ESN shows that the values are concentrated around290

x = 0.5 for the ESN prediction, whereas the non-intermittent phase peaks around x = 0 for291

the target data.292

293

The Lorenz 1996 system294

Before running the ESN algorithm on actual climate data, we test our idea in a more295

sophisticated, and yet still idealized, model of atmospheric dynamics, namely the Lorenz296

1996 equations [25]. This model explicitly separates two scales and therefore will provide a297

good test for our ESN algorithm. The Lorenz 1996 system consists of a lattice of large-scale298

resolved variablesX, coupled to small-scale variables Y , whose dynamics can be intermittent,299

so that u ∈ {X, Y }. The model is defined via two equations:300

dXi

dt
= Xi−1(Xi+1 −Xi−2)−Xi + F − hc

b

J∑
j=1

Yj,i,

dYj,i
dt

= cbYj+1,i(Yj−1,i − Yj+2,i)− cYj,i +
hc

b
Xi

(14)

where i = 1, . . . , I and j = 1, 2, . . . , J denote respectively the number of large-scale X301

and small-scale Y variables. Large-scale variables are meant to represent the meanders302

of the jet-stream driving the weather at mid-latitudes. The first term on the right-hand303

side represents advection, the second diffusion, while F mimics an external forcing. The304

system is controlled via the parameters b and c (the time scale of the the fast variables305

compared to the small variables) and via h (the coupling between large and small scales).306

From now on, we fix I = 30, J = 5 and F = b = 10 as these parameters are typically used to307

explore the behavior of the system [50]. We integrate the equations with an Euler scheme308

(dt = 10−3) from the initial conditions Yj,i = Xi = F , where only one mode is perturbed as309

Xi=1 = F + ε and Yj,i=1 = F + ε2. Here ε = 10−3. We discard about 2 · 103 iterations to310

reach a stationary state on the attractor, and we retain 5 ·104 iterations. When c and h vary,311

different interactions between large and small scales can be achieved. A few examples of312

simulations of the first mode X1 and Y1 are given in Figure 6. Figure 6a,c show simulations313

obtained for h = 1 by varying c: the larger c the more intermittent the behavior of the fast314

scales. Figure 6.b,d) show simulations obtained for different coupling h at fixed c = 10:315
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when h = 0, there is no small-scale dynamics.316

317

In the Lorenz 1996 model we can explore what happens to the ESN performances if we turn318

on and off intermittency and/or the small-to-large-scale coupling, without introducing any319

additional noise term. Moreover, we can also learn the Lorenz 1996 dynamics on the X vari-320

ables only, or learn the dynamics on both X and Y variables. The purpose of this analysis is321

to assess whether the ESN are capable of learning the dynamics of the large-scale variables322

X alone, and how this capability is influenced by the coupling and the intermittency of the323

small-scale variables Y . Using the same simulations presented in Figure 6, we train the324

ESN on the first 2.5 · 104 iterations, and then perform, changing the initial conditions 100325

different ESN predictions for 2.5 · 104 more iterations. We apply our performance indicators326

not to the entire I-dimensional X variable (X1, . . . , XI), as the χ2 test becomes intractable327

in high dimensions, but rather to the spatial average of the large-scale variables X. The328

behavior of each variable Xi is similar, so the average is representative of the collective329

behavior. The rate of failure φ is very high (not shown) because even when the dynamics is330

well captured by the ESN the variables are not scaled and centered as those of the original331

systems. For the following analysis, we therefore replace φ with the χ2 distance T (Eq. (5)).332

The use of T allows for better highlighting the differences in the ESN performance with333

respect to the chosen parameters. The same considerations also apply to the analysis of the334

sea-level pressure data reported in the next paragraph.335

336

Results of the ESN simulations for the Lorenz 1996 system are reported in Figure 7. In Fig-337

ure 7a,c,e) ESN predictions are obtained by varying c at fixed h = 1, while in Figure 7b,d,f)338

by varying h at fixed c = 10. The continuous lines refer to results obtained feeding the339

ESN with only the X variables, dotted lines with both X and Y . For the χ2 distance T340

(Figure 7a,b), performances show a large dependence on both intermittency c and coupling341

h. First of all, we remark that learning both X and Y variables lead to higher distances T ,342

except for the non intermittent case, c = 1. For c > 1, the dynamics learnt on both X and343

Y never settles on a stationary state resembling that of the Lorenz 1996 model. When c > 1344

and only the dynamics of the X variables is learnt, the dependence on N when h is varied is345

non monotonic and better performances are achieved for 800 < N < 1200. For this range,346

the dynamics settles on stationary states whose spatio-temporal evolution resembles that of347
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the Lorenz 1996 model, although the variability of time and spatial scales is different from348

the target. An example is provided in Figure 8, for N = 800.349

350

Let us now analyse the two indicators of short-term forecasts. Figure 7c,d) display the351

predictability horizon τs with s = 1. The best performances are achieved for the non-352

intermittent case c = 1 and learning both X and Y . When only X is learnt, we again353

get better performances in terms of τs for rather small network sizes. The performances354

for c > 1 are better when only X variables are learnt. The good performance of ESN in355

learning only the large-scale variables X are even more surprising when looking at initial356

error η (Figure 7), which is one order of magnitude smaller when X, Y are learnt. Despite357

this advantage in the initial conditions, the ESN performances on (X, Y ) are better only358

when the dynamics of Y is non-intermittent. We find clear indications that large intermit-359

tency (c = 25) and strong small-to-large scale variables coupling (h = 1) worsen the ESN360

performances, supporting the claims made for the Lorenz 1963 and the Pomeau-Manneville361

systems.362

363

The NCEP sea-level pressure data364

We now test the effectiveness of the moving average procedure in learning the behavior of365

multiscale and intermittent systems on climate data issued by reanalysis projects. We use366

data from the National Centers for Environmental Prediction (NCEP) version 2 [46] with a367

horizontal resolution of 2.5◦. We adopt the global 6 hourly sea-level pressure (SLP) field from368

1979 to 31/08/2019 as the meteorological variable proxy for the atmospheric circulation.369

It traces cyclones (resp. anticyclones) with minima (resp. maxima) of the SLP fields.370

The major modes of variability affecting mid-latitudes weather are often defined in terms371

of the Empirical Orthogonal Functions (EOF) of SLP and a wealth of other atmospheric372

features [51, 52], ranging from teleconnection patterns to storm track activity to atmospheric373

blocking can be diagnosed from the SLP field.374

In addition to the time moving average filter, we also investigate the effect of spatial coarse-375

graining the SLP fields by a factor c and perform the learning on the reduced fields. We use376

the nearest neighbor approximation, which consist in taking from the original dataset the377

closest value to the coarse grid. Compared with methods based on averaging or dimension378

reduction techniques such as EOFs, the nearest neighbors approach has the advantage of379
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not removing the extremes (except if the extreme is not in one of the closest gridpoint) and380

preserve cyclonic and anticyclonic structures. For c = 2 we obtain a horizontal resolution381

of 5◦ and for c = 4 a resolution 10◦. For c = 4 the information on the SLP field close to382

the poles is lost. However, in the remaining of the geographical domain, the coarse grained383

fields still capture the positions of cyclonic and anticyclonic structures. Indeed, as shown384

in [53], this coarse grain field still preserves the dynamical properties of the original one.385

There is therefore a certain amount of redundant information on the original 2.5◦ horizontal386

resolution SLP fields.387

The dependence of the quality of the prediction for the sea-level pressure NCEPv2 data on388

the coarse graining factor c and on the moving average window size w is shown in Figure 9.389

We show the results obtained using the residuals (Eq. 9). Figure 9a-c) show the distance390

from the invariant density, using the χ2 distance T . Here it is clear that by increasing w,391

we get better forecast with smaller network sizes N . A large difference for the predictability392

expressed as predictability horizon τs, s = 1.5 hPa (Figure 9d-f) emerges when SLP fields393

are coarse grained. We gain up to 10h in the predictability horizon with respect to the394

forecasts performed on the original fields (c = 0). This gain is also reflected by the initial395

error η (Figure 9g-i). From the combination of all the indicators, after a visual inspection,396

we can identify the best-set of parameters: w = 12 h, N = 200 and c = 4. Indeed this is397

the case such that, with the smallest network we get almost the minimal χ2 distance T , the398

highest predictability (32 h) and one of the lowest initial errors. We also remark that, for399

c = 0 (panels (c) and (i)), the fit always diverges for small network sizes.400

We compare in details the results obtained for two 10-year predictions with w = 0h and401

w = 12h at N = 200 and c = 4 fixed. At the beginning of the forecast time (Supplementary402

Video 1), the target field (panel a) is close to both that obtained with w = 0h (panel b)403

and w = 12h (panel c). When looking at a very late time (Supplementary Video 2), of404

course we do not expect to see agreement among the three datasets. Indeed we are well405

beyond the predictability horizon. However, we remark that the dynamics for the run with406

w = 0h is steady: positions of cyclones and anticyclones barely evolve with time. Instead,407

the run with w = 12h shows a richer dynamical evolution with generation and annihilation408

of cyclones. A similar effect can be observed in the ESN prediction of the Lorenz 96 system409

shown in Figure 8b) where the quasi-horizontal patterns indicate less spatial mobility than410

the original system (Figure 8a).411
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In order to assess the performances of the two ESNs with and without moving average412

in a more quantitative way, we present the space-time distributions in Figure 10a). The413

distribution obtained for the moving average w = 12h has more realistic tails and matches414

better than the run w = 0h that of the target data. Figure 10b-d) shows the wavelet415

spectrograms (or scalograms) [54]. The scalogram is the absolute value of the continuous416

wavelet transform of a signal, plotted as a function of time and frequency. The target417

data spectrogram (b) presents a rich structure at different frequencies and some interannual418

variability. The wavelet spectrogram of non-filtered ESN run w = 0 h (c) shows no short419

time variability and too large interseasonal and interannual variability. The spectrogram of420

the target data is better matched by the run with w = 12 h (d) which shows that, on time421

scales of days to weeks, there is a larger variability.422

IV. DISCUSSION423

We have analysed the performance of ESN in reproducing both the short and long-term424

dynamics of observables of geophysical flows. The motivation for this study came from the425

evidence that a straightforward application of ESN to high dimensional geophysical data426

(such as the 6 hourly global gridded sea-level pressure data) does not yield to the same427

results quality obtained by [23] for the Lorenz 1963 and the Kuramoto-Sivashinsky models.428

Here we have investigated the causes for this behavior and identified two main bottlenecks:429

(i) intermittency and (ii) the presence of multiple dynamical scales, which both appear in430

geophysical data. In order to illustrate this effect, we have first analysed two low dimensional431

systems, namely the Lorenz 1963 [20] and the Pomeau-Manneville [32] equation. To mimic432

multiple dynamical scales, we have added noise terms to the dynamics. The performance of433

ESN in predicting rapidly drops when the systems are perturbed with noise. Filtering the434

noise allows to partially recover predictability. It also enables to simulate some qualitative435

intermittent behavior in the Pomeau-Manneville dynamics. This feature could be explored436

by changing the degree of intermittency in the Pomeau-Manneville map as well as perform-437

ing parameter tuning in ESN. This is left for future work. Here we have used a simple438

moving-average filter and shown that a careful choice of the moving-average window can439

enhance predictability. As an intermediate step between the low-dimensional models and440

the application to the sea-level pressure data, we have analysed the ESN performances on441
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the Lorenz 1996 system [25]. This system was introduced to mimic the behavior of the at-442

mospheric jet at mid-latitude, and features a lattice of large-scale variables, each connected443

to small-scale variables. Both the coupling between large and small scales and intermittency444

can be tuned in the model, giving rise to a plethora of behaviors. For the Lorenz 1996 model,445

we did not have to apply a moving average filter to the data, as we can train the ESN on the446

large-scale variables only. Our computations have shown that, whenever the small scales are447

intermittent, or the coupling is strong, learning the dynamics of the coarse grained variable448

is more effective, both in terms of computation time and performances. The results also449

apply to geophysical datasets: here we analysed the atmospheric circulation, represented450

by sea-level pressure fields. Again we have shown that both a spatial coarse-graining and a451

time moving-average filter improve the ESN perfomances.452

453

Our results may appear rather counter-intuitive, as the weather and climate modelling454

communities are moving towards extending simulations of physical processes to small scales.455

As an example, we cite the use of highly-resolved convection-permitting simulations [55]456

as well as the use of stochastic (and therefore non-smooth) parameterizations in weather457

models [56]. We have, however, a few heuristic arguments on why the coarse-gaining and458

filtering operations should improve the ESN performances. First of all, the moving-average459

operation helps both in smoothing the signal and by providing the ESN with a wider tem-460

poral information. In some sense, this is reminiscent of the embedding procedure [57], where461

the signal behavior is reconstructed by providing not only information on the previous time462

step, but on previous times depending on the complexity. The filtering procedure can also463

be motivated by the fact that the active degrees of freedom for the sea-level pressure data464

are limited. This has been confirmed by [53] via coarse-graining these data and showing465

that the active degrees of freedom are independent on the resolution, in the same range466

explored in this study. In other words, including small scales in the learning of sea-level467

pressure data, does not provide additional information on the dynamics and push towards468

over-fitting and saturating the ESN with redundant information. The latter consideration469

poses also some caveats on the generality of our results: we believe that this procedure is not470

beneficial whenever a clear separation of scales is not achievable, e.g. in non-confined 3-D471

turbulence. Moreover, in this study, note that three sources of stochasticity were present:472

(i) in the random matrices and reservoir, (ii) in the perturbed initial conditions and (iii) in473
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the ESN simulations when using moving average filtered data with sampled deltau compo-474

nents. The first one is inherent to the model definition. The perturbations of the starting475

conditions allow characterizing the sensitivity of our ESN approach to the initial conditions.476

The stochasticity induced by the additive noise deltau provides a distributional forecast at477

each time t. Although this latter noise can be useful to simulate multiple trajectories and478

evaluate their long-term behaviour, in practice, i.e., in the case where a ESN would be used479

operationally to generate forecasts, one might not want to employ a stochastic formulation480

with an additive noise, but rather the explicit and deterministic formulation in Eq. 11. This481

exemplifies the interest of our ESN approach for possible distinction between forecasts and482

long-term simulations, and therefore makes it flexible to adapt to the case of interest.483

484

In future work, it will be interesting to use other learning architectures and other methods485

of separating large- from small-scale components [58–60]. For example, our results give a486

more formal framework for applications of machine learning techniques on geophysical data.487

Deep-learning approaches have proven useful in performing learning at different time and488

spatial scales whenever each layer is specialized in learning some specific features of the489

dynamics [11, 61]. Indeed, several difficulties encountered in the application of machine490

learning on climate data could be overcome if the appropriate framework is used, but this491

requires a critical understanding of the limitations of the learning techniques.492
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FIG. 1. a) Lorenz 1963 attractor obtained with a Euler scheme with dt = 0.001, σ = 10, r = 28

and b = 8/3. Panels b-d) show the performances indicator as a function of the training time. b)

the rejection rate φ of the invariant density test for the x variable; c) the first time t such that the

RMSE>1; d) the initial error η. The error bar represents the average and the standard deviation

of the mean over 100 realizations.
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FIG. 2. a) Trajectories predicted using ESN on the Lorenz 1963 attractor for the variable x. The

attractor is perturbed with Gaussian noise with variance ε = 0.1. The target trajectory is shown in

blue. 10 trajectories obtained without moving average (green) show an earlier divergence compared

to 10 trajectories where the moving average is performed with a window size of w = 10dt = 0.01

(red). Panel (b) shows the evolution of the log(RMSE), averaged over the trajectories for the cases

with w = 0.01 (red) and w = 0 (green). The trajectories are all obtained after training the ESN

for 105 time-steps. Each trajectory consists of 104 timesteps.
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FIG. 3. Lorenz 1963 analysis for increasing noise intensity ε (x-axes), and number of neurons N

(y-axes). The colorscale represents: φ the rate of failure of the χ2 test (size α = 0.05) (a); the

logarithm of predictability horizon log(τs=1) (b); the logarithm of initial error log(η) (c). All the

values are averages over 30 realizations. Left sub-panels refer to results without moving average,

central sub-panels with averaging window w = 0.01, right hand-side panels with averaging window

w = 0.03. Upper sub-panels are obtained using the exact expression in Eq. 11 and lower sub-

panels using the residuals in Eq 9. The trajectories are all obtained after training the ESN for 105

time-steps. Each trajectory consists of 104 timesteps.27



FIG. 4. Analysis of the Pomeau-Manneville system for increasing noise intensity ε (x-axes), and

number of neurons N (y-axes). The colorscale represents: φ the rate of failure of the χ2 test (size

α = 0.05) (a-c); the logarithm of predictability horizon log(τs=0.5) (d-f); the logarithm of initial

error log(η) (g-i). All the values are averages over 30 realizations. Panels a,d,g) refer to results

without moving average, b,c,e,f,h,i) with averaging window w = 3, c,f,i). Panels b,e,h) are obtained

using the exact expression in Eq. 11 and c,f,i) using the residuals in Eq 9. The trajectories are all

obtained after training the ESN for 105 time-steps. Each trajectory consists of 104 timesteps.
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FIG. 5. Pomeau-Manneville ESN simulation (red) showing an intermittent behavior and compared

to the target trajectory (blue). The ESN trajectory is obtained after training the ESN for 105 time-

steps using the moving average time series with w = 3. It consists of 104 timesteps. Cases w = 0

are not shown as trajectories always diverge. Evolution of trajectories in time (a) and Fourier

power spectra (b).
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FIG. 6. Lorenz 1996 simulations for the large-scale variable X1 (a,b) and small-scale variable Y1,1

(c,d). Panels (a,c) show simulations varying c at fixed h = 1. The larger c, the more intermittent

the behavior of the fast scales. Panels (b,d) show simulations varying the coupling h for fixed

c = 10. When h = 0, there is no small-scale dynamics. y-axes are in arbitrary units, time-series

are shifted for better visibility.
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FIG. 7. Lorenz 1996 ESN prediction performance for the large-scale variables X only. a,b) χ2

distance T ; (c,d) the predictability horizon τs with s = 1. (e,f) the initial error η in hPa. In (a,c,e)

ESN predictions are made varying c at fixed h = 1. In (b,d,f) ESN predictions are made varying h

at fixed c = 10. Continuous lines show ESN prediction performance made considering X variables

only, dotted lines considering both X and Y variables.
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FIG. 8. Example of (a) target Lorenz 1996 spatio-temporal evolution of large-scale variables X for

c = 1, h = 1 and (b) ESN prediction realized with N = 800 neurons. Note that the colors are not

on the same scale for the two panels.
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FIG. 9. Dependence of the quality of the results for the prediction of the sea-level pressure NCEPv2

data on the coarse graining factor c and on the moving average window size w. a-c) χ2 distance

T ; d-f) predictability horizon (in hours) τs, s = 1.5 hPa; g-i) logarithm of initial error η. Different

coarse grain factor c are shown with different colors. a,d,g) w = 0, b,e,h) w = 12 h, c,f,i) w = 24

h.
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FIG. 10. a) Distributions of 10 years of 6h spatial and temporal data at all grid points obtained

for the target NCEPv2 SLP data (blue), an ESN with c = 4 and w = 0 h (red), and an ESN with

c = 4 and w = 12 h (orange). b-d) wavelet spectrograms for the NCEPv2 SLp target data (b), a

run with c = 4 w = 0 h (c), and with c = 4 and w = 12 h (d).
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