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Content

The supplementary material contains methods description (I) and 8

supplementary figures (II). Section (A) contains the numerical code for the

computation of ESN; (B) the description of the moving average discrete

and continuous filters; (C) the statistical test for the invariant distributions;

(D) description and additional analyses of the systems and data analysed.

1



I. METHODS

A. Numerical code for ESN

We report here the MATLAB code used for the computation of the Echo State Network. This

code is adapted from the original code available here: https://mantas.info/code/simpleesn/whichcomeswithfollowinglicense : https : //mantas.info/wp/wp− content/uploads/simpleesn/License.txt.Twofunctionsareintroduced :

oneforthetrainingphaseandoneforthepredictionphase

ESN training

function [Win, W, Wout]=RNN_training(data,Nres)

%This function train the Echo State network using the data provided.

%INPUTS:

%data: a matrix of the input data to train, arranged as space X time

%Nres: the number of neurons N to be used in the training

%OUTPUTS:

%Win: the input weight matrix which consists of random weights

%W: the network of neurons

%Wout: the output weights, they are adjusted to match the next iterations

inSize = size(data,1);

trainLen= size(data,2);

Win = (rand(Nres,1+inSize)-0.5) .* 1;

W = rand(Nres,Nres)-0.5;

% normalizing and setting spectral radius

opt.disp = 0;

rhoW = abs(eigs(W,1,’LM’,opt));

W = W .* ( 1.25 /rhoW);

% memory allocation

X = zeros(1+inSize+Nres,trainLen-1);

∗ Correspondence to davide.faranda@lsce.ipsl.fr
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Yt = data(:,2:end)’;

x = zeros(Nres,1);

for t = 1:trainLen-1

u = data(:,t);

x = tanh( Win*[1;u] + W*x );

X(:,t) = [1;u;x];

end

reg = 1e-8; % regularization coefficient

Wout = ((X*X’ + reg*eye(1+inSize+Nres)) \ (X*Yt))’;

end

ESN Prediction

function [Y_pred]=RNN_prediction(data,Win, W, Wout)

% This function returns the recurrent Echo State Network prediction

%INPUT:

%data: the full data matrix of the data to predict in the form (space*time)

%Win: input weights

%W: neurons matrix

%Wout: output weights

%OUTPUT:

%Y_pred: the RNN prediction

Y_pred = zeros(size(data,1),size(data,2) );

x = zeros(size(W,1),1);

u=data(:,1);

for t = 1:size(data,2)

x = tanh( Win*[1;u] + W*x );

y = Wout*[1;u;x];

Y_pred(:,t) = y;

u = y;

end

end
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B. Moving average filter

The simple moving average filter can be seen a nonparametric time series smoother (see e.g.

[1], chapter 1.5). It can be applied to smooth out (relatively) high frequencies in a time

series, both to de-noise the observations of a process or to estimate trend components, if

present. It consists of replacing the observation x(t) by a value y(t), obtained by averaging

the previous w observations. If the time is discrete (like in the Pomeau Manneville system)

it is defined as:

y(t) =
1

w

w−1∑
i=0

x(t− i),

while for continuous time systems (like the Lorenz 1963 system), the sum is formally replaced

by an integral:

y(t) =
1

w

∫ t

t−w
x(s)ds

In practice the computation always refers to the discrete time case, as even continuous

time systems are sampled at finite time steps. Since Echo State Networks are known to

be sensitive to noise (see e.g. [2]), we exploit the simple moving average filter to smooth

out high-frequency noise and assess the results for different smoothing windows w. We find

that the choice of the moving averaging window w must respect two conditions: it should

be large enough to smooth the noise but smaller than the characteristic time τ of the large-

scale fluctuations of the system. For chaotic systems, τ can be derived knowing the rate of

exponential divergence of the trajectories, a quantity linked to the Lyapunov exponents [3],

and τ is knonw as Lyapunov time.

C. Statistical tests for Invariant distributions

As a first diagnostic of the performance of ESN, we aim at assessing whether or not the

marginal distribution of the forecast values for a given dynamical system is significantly

different from the invariant distribution of the system itself. To this purpose, we perform a χ2
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test [4], conducted as follows. Let X be a random variable - in our case the system observable

- with domain RX and probability density function fX(x), and let x be a sample from X.

Let now hi(x) be an approximation of fX(x), namely the histogram of x over i = 1, . . . ,M

bins.Note that, if x spans the entire phase space, hi(x) is the numerical approximation of

the Sinai-Ruelle-Bowen measure of the system [5]. Let now x̂ be the forecast sample, gX(x̂)

its probability density function and ĥi(x̂) be the histogram of the forecast sample. We

test the null hypothesis that the marginal distribution of the forecast sample is the same

as the invariant distribution of the system, against the alternative hypothesis that the two

distributions are significantly different:

H0 : fX(x) = gX(x̂) for all x ∈ RX

H1 : fX(x) 6= gX(x̂) for any x ∈ RX

Under H0, hi(x) is the expected value of ĥi(x̂), which implies that observed differences

(ĥi(x̂)−hi(x)) are due to random errors, and are then independent and identically distributed

Gaussian random variables. Statistical theory shows that, given H0 true, the test statistics

T =
M∑
i=1

(ĥi(x̂)− hi(x))2

hi(x)
(1)

is distributed as a chi-squared random variable with M degrees of freedom, χ2(M). Then, to

test the null hypothesis at the level α, the observed value of the test statistics T is compared

to the critical value corresponding to the 1 − α percentile of the chi-square distribution,

Tc = χ2
1−α(M): if T > Tc, the null hypothesis must be rejected.

In our setup, we encounter two limitations in using this standard χ2 test. First, problems

may arise when hi(x) = 0, i.e. if the support of the sample distribution is wider than the

support of the invariant distribution of the system. We observe this in a relatively small

number of cases; since aggregating the bins would introduce unwanted complications, we

decide to discard the pathological cases, controlling the effect empirically as described below.

Moreover, even producing relatively large samples, we are not able to actually observe the

invariant distribution of the considered system, which would require much longer simulations.

As a consequence, we observe excessive rejection rates when testing samples generated under

H0.

We decide to control these two effects by using a Monte Carlo approach. To this purpose,
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we simulate 10000 samples under the null hypothesis (i.e. using the system equation), and

we compute the test statistic for each one according to equation 1. Then, we use the (1−α)

percentile of the empirical distribution of T - instead the theoretical χ2(M) - to determine

the critical threshold Tc. As a last remark, we should notice that we are in the case of

repeated tests, as the performance of the ESN is tested 100 times. In such cases, testing

each sample separately at the chosen level α induces an increase in the observed rejection

rate: in fact, extreme cases become more likely when many samples are drawn, even from H0,

and tested, resulting in an increased probability to erroneously reject the null hypothesis.

To avoid this problem, we apply the Bonferroni correction ([6]), testing each one of the m

available samples at the level α′ = α
m

. The level α used in the paper is 0.05

D. Systems analyzed

Lorenz 1963 equations

The Lorenz [7] system is a simplified model of Rayleigh-Benard convection, derived by

E.N. Lorenz. It is an autonomous continuous dynamical system with three variables x, y

and z parametrizing respectively the convective motion, the horizontal temperature gradient

and the vertical temperature gradient. It writes:

dx

dt
= σ(y − x)

dy

dt
= −xz + %x− y,

dz

dt
= xy − bz, (2)

where σ, r and b are three parameters, σ mimicking the Prandtl number and % the reduced

Rayleigh number. The Lorenz model is usually defined using equations (2), with σ = 10,

% = 28 and b = 8/3. The trajectory used in this article is shown in Supplementary Figure 1

and it has been obtained via integrating numerically the Lorenz equations with an Euler

scheme (dt = 0.001). The dependence on the ESN learning from the training length are

studied in Supplementary Figure 2, which suggests that ∼ 105 time steps is a sufficient choice

for the training set length. The maximum Lyapunov exponent of the system is λ = 0.9,

so that the Lyapunov time τ ≈ O
(
1
λ

)
≈ 1.1. Supplementary Figure 3 shows the benefit
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of applying a moving average filter of window size w = 10dt to perform ESN prediction.

Panel (a) shows 10 trajectories obtained with (red) and without (green) moving average

and compared to the reference trajectory (blue). As suggested by the visual inspection, the

RMSE analysis (panel b) shows an evident gain of performance when the moving average

procedure is applied. Note that this improvement relies on the choice of an averaging

window representing the best trade-off between effective de-noising and loss of information,

so that too large smoothing windows result in a deterioration of the performance of the

network (other than a less accurate representation of the system dynamics). For example,

supplementary Figure 4 shows the decrease in performance of the ESN between our chioce

of w = 10 and the larger value w = 50.

Pomeau Manneville intermittent map

Several dynamical systems, including Earth climate, display intermittency, i.e. the time

series of a variable issued by the system can experience sudden chaotic fluctuations, as well

as a predictable behavior where the observables have small fluctuations. In atmospheric

dynamics, such behavior is observed in the switching between zonal and meridional phases

of the mid-latitude dynamics if a time series of the wind speed at one location is observed:

when a cyclonic structure passes through the area, the wind has high values and large

fluctuations, when an anticyclonic structure is present the wind is low and and fluctuations

are smaller [8, 9]. It is then of practical interest to study the performance of ESN in Pomeau

Manneville predictions as they are then hopefully applicable to climate data.

In particular, the Pomeau-Manneville [10] map is probably the simplest example of inter-

mittent behavior, produced by a 1D discrete deterministic map given by:

xt+1 = mod(xt + x1+at , 1), (3)

where 0 < a < 1 is a parameter. We use a = 0.91 in this study and a trajectory consisting of

5×105 iterations (see Supplementary Figure 5-a) for the trajectory and (b) for the invariant

density ρ(x)). It is well known that Pomeau-Manneville systems exhibit sub-exponential

separation of nearby trajectories and then the Lyapunov exponent is λ = 0. However, one

can define a Lyapunov exponent for the non-ergodic phase of the dynamics and extract a

characteristic time scale [11]. From this latter reference we can derive a value λ ' 0.2 for

a = 0.91, implying w < τ ' 5. We find that the best results are obtained for w = 3.
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The NCEP sea-level pressure data

In this study we adopt the 6 hourly sea-level pressure (SLP) field as the meteorological

variable proxy for the atmospheric circulation. It traces cyclones (resp. anticyclones) with

minima (resp. maxima) of the SLP fields. The major modes of variability affecting mid-

latitudes weather are often defined in terms of the empirical orthogonal functions of SLP

and a wealth of other atmospheric features [12, 13], ranging from teleconnection patterns to

storm track activity to atmospheric blocking can be diagnosed from the SLP field. We base

our study on NCEP/NCAR reanalysis version 2 [14] data over the period 1979-2019, with

a horizontal resolution of 2.5◦.

In analogy with the time moving average filter (see section B) of this supplementary material,

we investigate the effect of spatial coarse-graining the SLP fields by a factor c and perform

the learning on the reduced fields. We use the nearest neighbor approximation, which

consist in taking from the original dataset, the closest value to the coarse grid. Compared

with methods based on averaging or dimension reduction techniques such as the Emprical

Orthogonal Functions, the nearest neighbors approach has the advantage of not removing the

extremes and preserve cyclonic and anticyclonic structures. An illustration of the obtained

coarse grained field for the 01/01/1981 is provided in Supplementary Figure 6. For c = 2

we obtain an horizontal resolution of 5◦ and for c = 4 a resolution 10◦. For c = 4 the

information on the SLP field close to the poles is lost. However, in the remaining of the

geographical domain, the coarse grained field still capture the positions of cyclonic and

anticyclonic structures. Indeed, as shown in [15], this coarse grain field still preserves the

dynamical properties of the original one. There is therefore a certain amount of redundant

information on the original 2.5◦ horizontal resolution SLP fields.

The dependence of the quality of the results for the prediction of the sea-level pressure

NCEPv2 data on the coarse graining factor c and on the moving average window size w is

shown in Supplementary Figure 7. Panels a-c) show the distance from the invariant density,

using the χ2 divergence. Here it is clear that by increasing w, we get better forecast with

smaller network sizes N , while small differences are found when the SLP fields are coarse

grained. A large difference for the predicatibility expressed as saturation time τs, s = 1.5

hPa (panels d-f) emerges when SLP fields are coarse grained. We gain up to 10h in the

predictability horizon with respect to the forecasts performed on the original fields (c = 0).
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This gain is also reflected by the initial error η (panels g-i). From the combination of all

the indicators, after a visual inspection, we can identify the best-set of parameters: w = 12

h, N = 200 and c = 4. Indeed this is the case such that, with the smallest network we get

the almost the minimal χ2 distance, the highest predictability (32 h) and one of the lowest

initial errors. We also remark that, for c = 0 (panels (c) and (i)), the fit always diverges for

small network sizes. We have used the best-set of parameters in the main text.

We compare in details the results obtained for two 10 years prediction with w = 0 h and

w = 12 h at N = 200 and c = 4 fixed. At the beginning of the forecast time (Supplementary

Video 1), the target field (panel a) is close to both that obtained with w = 0h (panel b)

and w = 12 h (panel c). However, when looking at a very late time (Supplementary Video

2), of course we do not expect to see agreement among the three datasets. Indeed we are

well beyond the predictability horizon. However, we remark that the dynamics for the run

w = 0 h is steady: positions of cyclones and anticyclones barely evolve with time. Instead,

the run w = 12 h shows a richer dynamical evolution with generation and annihilation of

cyclones.

In order to assess the two performances of ESN with and without moving average in a

more quantitative way we present the space-time distributions in Supplementary Figure 8-

a). The distribution obtained for the moving average w = 12 h has more realistic tails and

matches better than the run w = 0 h that of the target data. Supplementary Figure 8b-d)

shows the wavelet spectrograms (or scalograms) [16]. The scalogram is the absolute value

of the continuous wavelet transform of a signal, plotted as a function of time and frequency.

The target data spectrogram (b) presents a rich structure at different frequencies and some

interannual variability. The wavelet spectrogram of non-filtered ESN run w = 0 h (c)

shows no short time variability and too large interseasonal and interannual variability. The

spectrogram of the target data is better matched by the run with w = 12 h (d) which shows

that on time scales of days to weeks there is a larger variability.

[1] P. J. Brockwell and R. A. Davis, Introduction to time series and forecasting (springer, 2016).

[2] Z. Shi and M. Han, Support vector echo-state machine for chaotic time-series prediction, IEEE

9



Transactions on Neural Networks 18, 359 (2007).

[3] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, Determining lyapunov exponents from

a time series, Physica D: Nonlinear Phenomena 16, 285 (1985).

[4] W. G. Cochran, The χ2 test of goodness of fit, The Annals of Mathematical Statistics , 315

(1952).

[5] J.-P. Eckmann and D. Ruelle, Ergodic theory of chaos and strange attractors, in The theory

of chaotic attractors (Springer, 1985) pp. 273–312.

[6] C. Bonferroni, Teoria statistica delle classi e calcolo delle probabilita, Pubblicazioni del R

Istituto Superiore di Scienze Economiche e Commericiali di Firenze 8, 3 (1936).

[7] E. N. Lorenz, Deterministic nonperiodic flow, Journal of the atmospheric sciences 20, 130

(1963).

[8] E. R. Weeks, Y. Tian, J. Urbach, K. Ide, H. L. Swinney, and M. Ghil, Transitions between

blocked and zonal flows in a rotating annulus with topography, Science 278, 1598 (1997).

[9] D. Faranda, G. Masato, N. Moloney, Y. Sato, F. Daviaud, B. Dubrulle, and P. Yiou, The

switching between zonal and blocked mid-latitude atmospheric circulation: a dynamical sys-

tem perspective, Climate Dynamics 47, 1587 (2016).

[10] P. Manneville, Intermittency, self-similarity and 1/f spectrum in dissipative dynamical sys-

tems, Journal de Physique 41, 1235 (1980).

[11] N. Korabel and E. Barkai, Pesin-type identity for intermittent dynamics with a zero lyaponov

exponent, Physical review letters 102, 050601 (2009).

[12] J. W. Hurrell, Decadal trends in the north atlantic oscillation: regional temperatures and

precipitation, Science 269, 676 (1995).

[13] G. Moore, I. A. Renfrew, and R. S. Pickart, Multidecadal mobility of the north atlantic

oscillation, Journal of Climate 26, 2453 (2013).

[14] S. Saha, S. Moorthi, X. Wu, J. Wang, S. Nadiga, P. Tripp, D. Behringer, Y.-T. Hou, H.-y.

Chuang, M. Iredell, et al., The ncep climate forecast system version 2, Journal of Climate 27,

2185 (2014).

[15] D. Faranda, G. Messori, and P. Yiou, Dynamical proxies of north atlantic predictability and

extremes, Scientific reports 7, 41278 (2017).

[16] L. Hudgins, C. A. Friehe, and M. E. Mayer, Wavelet transforms and atmopsheric turbulence,

Physical Review Letters 71, 3279 (1993).

10



II. SUPPLEMENTARY FIGURES

Supplementary Figure 1. Lorenz attractor obtained with an Euler scheme with dt = 0.001, σ = 10,

r = 28 and b = 8/3.
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Supplementary Figure 2. Dependence of the ESN performance on the learning window for the

Lorenz attractor. a) the rejection rate φ of the invariant density test for the x variable; b) the first

time t such that the RMSE>1; c) the initial error η. The errorbar represents the average and the

standard deviation of the mean over 100 realizations.
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Supplementary Figure 3. a) Trajectories predicted using ESN on the Lorenz 1963 attractor for

the variable x. The attractor is perturbed with Gaussian noise with variance ε = 0.1. The

target trajectory is shown in blue. 10 Trajectories obtained without moving average (green) show

an earlier divergence compared to 10 trajectories where the moving average is performed with a

window size of w = 10dt (red). Panel (b) shows the evolution of the RMSE, averaged over the

trajectories for the cases with w = 10dt (red) and w = 0 (green).
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Supplementary Figure 4. Lorenz 1963 analysis for increasing noise intensity ε (x-axes), and number

of neurons N (y-axes). The color-scale represents: the rejection rate φ of the invariant density test

for the x variable (a-b); logarithm saturation time log(τs=1) (c,d); logarithm of initial error log(η)

(e,f). All the values are average over 100 realizations. Panels (a,c,e) refers to results with averaging

window w = 10dt, panels (b,d,f) to results with averaging window w = 50dt.
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Supplementary Figure 5. a) Trajectory of the Pomeau-Manneville map with a = 0.91 and 5× 105

iterations. b) Invariant density for the same trajectory shown in panel (a).

Supplementary Figure 6. Effects of spatial coarse grain NCEPv2 sea-level pressure (SLP) fields.

a) original field for 01/01/1981, b) coarse grained field (factor c = 2, c) coarse grained field c = 4.
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Supplementary Figure 7. Dependence of the quality of the results for the prediction of the sea-level

pressure NCEPv2 data on the coarse graining factor c and on the moving average window size w.

a-c) χ2 distance; d-f) saturation time (in hours) τs, s = 1.5 hPa; g-i) logarithm of initial error η.

Different coarse grain factor c are shown with different colors. a,d,g) w = 0, b,e,h) w = 12 h, c,f,i)

w = 24 h.
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Supplementary Figure 8. a) Distributions of 10 years of 6h spatial and temporal data at all grid

points obtained for the target NCEPv2 SLP data (blue), an ESN with c = 4 and w = 0 h (red),

and an ESN with c = 4 and w = 12 h (orange). b-d) wavelet spectrograms for the NCEPv2 SLp

target data (b), a run with c = 4 w = 0 h (c), and with c = 4 and w = 12 h (d).
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