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Université Paris-Saclay & IPSL, 91191 Gif-sur-Yvette, France.

London Mathematical Laboratory, 8 Margravine Gardens, London, W68RH, UK.

M. Vrac, P. Yiou, F.M.E. Pons, A. Hamid, G. Carella, C.G. Ngoungue Langue, S. Thao
Laboratoire des Sciences du Climat et de l’Environnement,

CE Saclay l’Orme des Merisiers, UMR 8212 CEA-CNRS-UVSQ,
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Recent advances in statistical learning have opened the possibility to forecast the behavior of
chaotic systems using recurrent neural networks. In this letter we investigate the applicability of
this framework to geophysical flows, known to be intermittent and turbulent. We show that both
turbulence and intermittency introduce severe limitations on the applicability of recurrent neural
networks, both for short term forecasts as well as for the reconstruction of the underlying attractor.
We suggest that possible strategies to overcome such limitations should be based on separating
the smooth large-scale dynamics, from the intermittent/turbulent features. We test these ideas on
global sea-level pressure data for the past 40 years, a proxy of the atmospheric circulation dynamics.

The advent of high-performance computing has paved
the way for advanced analyses of high-dimensional
datasets [1, 2]. Those successes have naturally raised the
question on whether it is possible to learn the dynamical
behavior of a system without simulating the underlying
evolution equations. Such an interest is motivated on one
side by the fact that many complex systems still miss a
universally accepted state equation — e.g. the brain dy-
namics [3], macro-economical and financial systems [4]
— and, on the other, by the need of reducing the com-
plexity of the dynamical evolution for the systems where
the underlying equations are known — e.g. on geophys-
ical and turbulent flows [5]. From a mathematical point
of view, the Navier-Stokes equations, which are the cor-
nerstone of turbulent flow dynamics, have yet to find a
complete assessment for the existence/unicity of the solu-
tions, which is a millennium Clay problem [6]. They are
difficult to simulate for large systems such as the geo-
physical flows, so that approximations and parameteri-
zations are needed for meteorological and climatological
applications [7]. These difficulties are enhanced by those
encountered in the modelling of phase transitions that
lead to clouds and convection, which are major source of
uncertainty in climate modelling [8]. Machine Learning
techniques capable to learn geophysical flows dynamics
could help improve those approximations and avoid run-
ning costly simulations representing all spatial/temporal
scales.
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Several efforts have recently been done to apply ma-
chine learning to the prediction of geophysical data [9],
to learn parameterizations of subgrid processes in climate
models [10–12], for nowcasting [13–15] and forecasting
[16–18] of weather variables, to quantify the uncertainty
of deterministic weather prediction [19]. However, these
attempts mainly consist of complementing determinis-
tic models, or short term prediction of time series data:
while their utility may be substantial, they are still far
from learning the dynamics of a complex system such
as the Earth climate. A first great step in this direc-
tion was the use of Echo State Networks (ESN, [20])
to forecast the behavior of chaotic systems, such as the
Lorenz 1963 [21] and the Kuramoto-Sivashinsky [22] dy-
namics. It was shown that ESN predictions of both sys-
tems attain performances comparable to those obtained
with the real equations [23, 24]. Good performance of
regularized ESN in the prediction of multidimensional
chaotic time series was obtained, both from simulated
and real data [25]. This success motivated several follow-
up studies with a focus on meteorological and climate
data. These are based on the idea of feeding differ-
ent statistical learning algorithms with data issued from
dynamical systems of different complexity, in order to
study short and long-term predictability. Recent exam-
ples include equation-informed moment-matching for the
Lorenz96 model [26, 27], multi-layer perceptrons to re-
analysis data [28], or convolutional neural networks to
simplified climate simulation models [29, 30]. All those
learning models were capable to recover some short-term
predictability but failed in obtaining a long term behav-
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ior coherent with the input data.
In this letter we investigate the possible origins of these

limitations by analyzing two of the most striking features
of geophysical flows, namely turbulence and intermit-
tency. Turbulence affects the dynamics by introducing
energy at several spatial and temporal scales. This re-
sults in non-smooth trajectories within the flow, leading
to local unpredictability and increasing the number of
degrees of freedom needed to describe the dynamics [31].
Intermittency triggers large fluctuations of observables of
the motion in time and space [32]. Both these effects have
made challenging the description of geophysical flow both
for short term forecast and to reconstruct the underlying
climate attractor properties.

By applying ESN to turbulent and intermittent sys-
tems, we investigate the limitations introduced by these
effect in applying machine learning techniques in geo-
physical flows. We begin with the simplest possible set-
up: we simulate the effects of turbulence by artificially in-
troducing small scales dynamics in the Lorenz 1963 equa-
tions [21] via additive noise. We investigate the Pomeau-
Manneville equations [33] stochastically perturbed with
additive noise to have an example of intermittent behav-
ior. We show how the performance of ESN in predicting
the behavior of the system deteriorates rapidly with in-
creasing noise and investigate how scale separation, intro-
duced with a moving average filter, recovers short-term
predictability. The idea of using moving average for scale
separation is already established for meteorological vari-
ables [34]. We choose the ESN framework following the
results of [23, 24], and an established literature about
its ability to forecast chaotic time series and its stabil-
ity to noise. For example, [35, 36] analyse and compare
the predictive performance of simple and improved ESN
on simulated and observed one-dimensional chaotic time
series. We aim at understanding this sensitivity in a
deeper way, while assessing the possibility to reduce its
impact on prediction with simple noise reduction meth-
ods. This step has a crucial importance, as noise is in-
evitably present in each dataset issued from real-world
systems. The remaining of this letter is organised as fol-
lows: first we give an overview of the ESN method and
provide the description of the systems used. Then we
show the results for the perturbed Lorenz equations and
the Pomeau-Manneville intermittent maps. We discuss
the improvement obtained on the short-term prediction
and the long-term attractor reconstruction obtained with
the moving average filter (see [37]-B). We conclude by
testing these ideas on atmospheric circulation data.

Echo State Networks (ESN) are implemented as fol-
lows. The code is given in [37]. Let x(t) be the K-
dimensional observable originating from the dynamical
system and r(t) be the N dimensional reservoir state,
then:

r(t+ dt) = tanh(Wr(t) +Winx(t)) (1)

where W is the adjacency matrix of the reservoir: its di-
mensions are N × N , and N is the number of neurons

of the reservoir. The coefficients are randomly sampled
from a uniform distribution in [−0.5; 0.5]. Win, with di-
mensions N ×K, is the weight matrix of the connections
between the input layer and the reservoir and the coef-
ficients are randomly sampled, as for W . The output of
the network at time step t+dt is Woutr(t+dt) = x̂(t+dt).
where x̂(t+ dt) is the ESN prediction, Wout with dimen-
sions K × N , is the weight matrix of the connections
between the reservoir neurons and the output layer. We
estimate Wout via a ridge regression [38]. In the predic-
tion phase we have a recurrent relationship:

r(t+ dt) = tanh(Wr(t) +WinWoutr(t)). (2)

The systems we analyze are the Lorenz 1963 attractor
[21] with the classical parameters, discretized with a Eu-
ler scheme and a dt = 0.001 and the Pomeau-Manneville
intermittent map with β = 0.91 [33](see also [37]-C).
The systems are perturbed via additive noise drawn from
a Gaussian distribution with zero mean and ε standard
deviation. The initial conditions are randomly selected
within a long trajectory of 5·106 iterations. The training
phase is fixed to 105 iterations, starting from the initial
conditions, and the prediction phase to 104 iterations.
These values have been derived after studying the per-
formance of the ESN as a function of different learning
windows (see [37]-C). For each dataset we run the ESN
only once but for 100 different initial conditions.

In this paper, we use three different indicators of per-
formance of the ESN: i) an indicator based on the χ2

distance to assess whether the ESN forecast has repro-
duced a distribution of variable compatible with the in-
variant density of the system (see [37]-B). Here, by the
term invariant density we refer to the physical measure of
the discretized attractors, often referred to as the Sinai-
Bowen-Ruelle measure [39]. The null hypothesis to be
rejected is that the ESN generated data have the same
distribution as those generated using the equations. We
define φ as the rate of failure of this test averaged over
100 initial conditions. ii) a measure of the predictabil-
ity horizon of the ESN forecast compared to the equa-
tions. For this purpose we use the root mean square er-
ror (RMSE) and define the saturation time τs as the first
time that RMSE exceeds a certain threshold s (defined
as 1/10 of the average distance on the attractor. Results
are independent on s provided that it is smaller than the
average distance on the attractor and few orders of mag-
nitude larger of the numerical precision.) iii) the initial
error η = RMSE(t=1). Equipped with these indicators
we analyze two sets of simulations performed with and
without moving average. The moving average operation
is the integral of x(t) between t and t−w, where w is the
window size of the moving average.

For the Lorenz attractor, we perform an ensemble of
100 ESN forecast varying both the noise intensity ε and
the network size N . In Fig. 1(a,c,e) ESN forecasts are
run without moving average while in Fig. 1(b,d,f) we ap-
ply moving average with w = 10dt (dt = 0.001). Panels
(a,b) show φ, the rate of failure of the χ2 test averaged
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FIG. 1. Lorenz 1963 analysis for increasing noise intensity ε
(x-axes), and number of neurons N (y-axes). The colorscale
represents: φ the rate of failure of the χ2 test (size α = 0.05)
(a-b); the logarithm of saturation time log(τs=1) (c,d); the
logarithm of initial error log(η) (e,f). All the values are av-
erages over 100 realizations. Panels (a,c,e) refers to results
without moving average, panels (b,d,f) with averaging win-
dow w = 10dt.

over the 100 initial conditions and computed considering
only the x variable of the Lorenz 1963 system (results
do not depend on the chosen variable). For increasing
noise intensity and for small reservoirs sizes the perfor-
mances without moving average rapidly get worse. The
moving average operation with w = 10 greatly improves
the three indicators except when the noise is too large
(e.g.ε = 1). In this case, for any number of neurons, the
moving average operation smooths too much the data.
Furthermore the results exhibit only a weak dependence
on the reservoir size. In [37] (section C and Figs S1-S4)
we give additional details on those computations.

The analysis for the Pomeau-Manneville map (defini-
tion is provided in [37]-C) is shown in Fig. 2. We first
observe that the forecast of the intermittent dynamics of
the Pomeau-Manneville map is much more complicated
than for the Lorenz system. This is a consequence of the
intermittent behavior of this system. The ESN can never
simulate an intermittent behavior, for all combinations
of noise intensity and reservoir sizes. This is reflected
in the behavior of the indicators. Independently from
the network size considered, in the deterministic limit,
the ESN fails to reproduce the invariant density in 80%
of the cases (φ ' 0.8). For intermediate noise intensi-
ties φ > 0.9 (Fig. 2-a). The saturation time τs=1 for the
short term forecast is small (Fig. 2c) as well as the initial
error (Fig. 2e).

FIG. 2. Analysis of the Pomeau-Manneville system for in-
creasing noise intensity ε (x-axes), and number of neurons N
(y-axes). The color scale represents: φ the rate of failure of
the χ2 test (size α = 0.05) (a-b); the logarithm of saturation
time log(τs=1) (c,d); the logarithm of initial error log(η) (e,f).
All the values are average over 100 realizations. Panels (a,c,e)
refers to results without moving average, panels (b,d,f) with
averaging window w = 3.

The moving average procedure with w = 3 (see [37]-
C for a justification of this value) partially improves the
performances (Fig. 2b,d,f) and it enables ESN to simulate
an intermittent behavior (Fig. 3). Panel (a) shows the in-
termittent behavior of the data generated with the ESN
trained on moving averaged data of Pomeau-Manneville
system (red) and compare to the target time series (blue).
Panel (b) displays the spectra which show in both cases
a power law decay, typical of turbulent phenomena. Al-
though the intermittent behavior is captured, this real-
ization of ESN shows a different distribution of invariant
density (not shown), concentrated around x = 0.5 for the
ESN prediction and around x = 0 for the original data.

We now test the effectiveness of the moving average
procedure in learning the behavior of turbulent and in-
termittent systems on climate data issued by reanalysis
projects. We use data from the National Centers for En-
vironmental Prediction (NCEP) version 2 [Donner la ref-
erence, e.g. Kisler et al., BAMS]. We consider the global
sea-level pressure (SLP) fields every dt = 6 h from 1979
to 31/08/2019 ([37]-C). Since these data are spatially ex-
tended, we need to investigate also the effect of spatial
resolution on ESN performance. We find that higher pre-
dictability and better correspondence of long term be-
havior is achieved for a spatial coarse grain factor cg = 4
(see [37]-C and Figs. S6-S7). Focusing on cg = 4, we ex-
tract randomly from the data a day in the first 25 years,
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FIG. 3. Pomeau-Manneville ESN simulation obtained using
the moving average time series with w = 3 showing an inter-
mittent behavior (red) and compared to the target trajectory
(blue). Evolution of trajectories in time (a) and Fourier power
spectra (b).

FIG. 4. ESN performance for the NCEP SLP 1979-2019 data.
a) χ2 distance; (b) the saturation time τs in hours with s = 1.5
hPa. (c) the logarithm of the initial error η in hPa. Averaging
window sizes w are shown with different colors.

and then we train the ESN with 10 years of SLP data and
start a long prediction of 5 years just after the training.
We consider the same performance indicators introduced
before. However, rather than the rate of failure of the
χ2 test, we show the χ2 distance averaged over 100 long
forecasts (Figure 4-a), for the global mean SLP. Results

are shown for different w (colors) and network sizes N .
Fig. 4-b,c) show respectively τs in hours, as a measure of
the predictability horizon of ESN forecasts, and log(η).
The results show a great dependence on N and w. Indeed
the the behavior of the three indicators is not monotonic
with N . Depending on w, there is a network size which
causes a loss of prediction power due to overfitting. The
moving average procedure improves the performance but
only for small network sizes. Visual inspection shows
that the best combination is found to be for w=12 h and
N = 200. We compare in details the results obtained
for two 10 years prediction with w = 0h and w = 12 h
at N = 200 and cg = 4 fixed. At the beginning of the
forecast time (Video S1), the target field (Video S1-a) is
close to both what is obtained with w = 0 h (Video S1-b)
and w = 12 h (Video S1-c). However, when looking after
24000 h (Video S2), of course we do not expect to see
agreement among the three datasets. Indeed we are well
beyond the predictability horizon. However, we remark
that the dynamics for the run with w = 0 h is steady:
positions of cyclones and anticyclones barely evolve with
time. Instead, the run w = 12 h shows a richer dynamical
evolution with generation and annihilation of cyclones.
This visual impression is confirmed by the distribution
and spectral analysis presented in ([37] Fig. S8).

We have analysed the performance of ESN in reproduc-
ing the behavior of noisy and intermittent data, as those
measured as observables of geophysical flows. The per-
formance of ESN in predicting both short and long term
behaviors rapidly drops when the systems are perturbed
with noise. However, we found that a good predictability
is partially recovered when scale separation is performed.
Here we have used a simple moving-average filter and
shown that a careful choice of the moving-average win-
dow can enhance predictability. The results also apply to
geophysical datasets: here we analysed the atmospheric
circulation, represented by an SLP field. Heuristically,
the moving-average operation helps both in smoothing
the signal and by providing the ESN with a wider tem-
poral information. In some sense, this is reminiscent of
the embedding procedure [40], where the signal behav-
ior is reconstructed by providing not only information on
the previous time step, but on previous times depending
on the complexity. In future works, it will be interesting
to use other learning architectures and other methods
of separating large- from small-scale components [41–
43]. Our results give a more formal framework for ap-
plications of machine learning techniques on geophysical
data. For example, [12, 44] have shown the capabilities
of spatial separation of scales and the interest of learn-
ing subgrid dynamics. Indeed, several difficulties encoun-
tered in the application of machine learning on climate
data could be overcome if the appropriate framework is
used [19, 27, 29].
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