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We study an n-player game with random payoffs and continuous strategy sets. The payoff function of each player is defined by its expected value and the strategy set of each player is defined by a joint chance constraint. The random constraint vectors defining the joint chance constraint are dependent and follow elliptically symmetric distributions.

Introduction

The publication of the seminal book Researches into the Mathematical Principles of the Theory of Wealth by Cournot in 1838 was the trigger for the widespread use of the equilibrium under market conditions [START_REF] Cournot | Researches into the Mathematical Principles of the Theory of Wealth[END_REF]. Later, the saddle point equilibrium for a two player zero-sum game of von Neumann [START_REF] Neumann | Theory of games and economic behavior[END_REF] follows on this work. In 1950, Nash [START_REF] Nash | Non-cooperative games[END_REF] showed that for a finite strategic game there exists an equilibrium point, know as Nash equilibrium, from which there is no incentive for any player to deviate unilaterally. Despite its practical limitation, the general strategic games are extensively studied in the literature [START_REF] Başar | Dynamic Noncooperative Game Theory[END_REF][START_REF] Debreu | A social equilibrium existence theorem[END_REF][START_REF] Fan | Applications of a theorem concerning sets with convex sections[END_REF]. The theory of Nash equilibrium in deterministic setup faces challenges especially when it comes to deal with real applications with random payoffs and strategy sets. The most commonly used tool to deal with random payoffs is the expectation function [START_REF] Ravat | On the characterization of solution sets of smooth and nonsmooth convex stochastic Nash games[END_REF] which is more appropriate for risk neutral cases. The risk averse games are studied by considering an alternative payoff criterion based on risk measure CVaR [START_REF] Kannan | Addressing supply-side risk in uncertain power markets: stochastic Nash models, scalable algorithms and error analysis[END_REF][START_REF] Ravat | On the characterization of solution sets of smooth and nonsmooth convex stochastic Nash games[END_REF] and chance constraint programming [START_REF] Singh | Existence of Nash equilibrium for chanceconstrained games[END_REF][START_REF] Singh | A characterization of Nash equilibrium for the games with random payoffs[END_REF]. In [START_REF] Singh | Existence of Nash equilibrium for chanceconstrained games[END_REF], the authors studied a finite strategic game where the payoff vector of each player is elliptically distributed, and showed the existence of a Nash equilibrium. The equivalence between the Nash equilibrium of chance-constrained games (CCGs for short) in [START_REF] Singh | Existence of Nash equilibrium for chanceconstrained games[END_REF] and the global optimal solutions of a certain mathematical program is stated in [START_REF] Singh | A characterization of Nash equilibrium for the games with random payoffs[END_REF].

In the above referred games, the players payoff functions are random while the strategy sets are deterministic. However, the strategy sets containing chance constraints are often considered in various applications, e.g., risk constraints in portfolio optimization problem [START_REF] Ji | Risk-budgeting multi-portfolio optimization with portfolio and marginal risk constraints[END_REF] and resource constraints in stochastic shortest path problem [START_REF] Cheng | A second-order cone programming approach for linear programs with joint probabilistic constraints[END_REF]. Recently, the games with chance constraint based strategy sets are introduced in the literature [START_REF] Peng | Games with distributionally robust joint chance constraints[END_REF][START_REF] Peng | General sum games with joint chance constraints[END_REF][START_REF] Peng | Chance-constrained games with mixture distributions[END_REF][START_REF] Singh | A second-order cone programming formulation for two player zero-sum games with chance constraints[END_REF][START_REF] Singh | An equivalent mathematical program for games with random constraints[END_REF]. Singh and Lisser [START_REF] Singh | A second-order cone programming formulation for two player zero-sum games with chance constraints[END_REF] considered a 2-player zero-sum game with individual chance constraints and showed that a saddle point equilibrium problem is equivalent to a primaldual pair of second order cone programs when the random constraint vectors follow elliptically symmetric distribution. Singh et al. [START_REF] Singh | An equivalent mathematical program for games with random constraints[END_REF] considered an nplayer general-sum game with individual chance constraints under elliptically symmetric distributions and showed that a Nash equilibrium problem is equivalent to the global optimization of a nonlinear optimization problem. In the wake of these results, Peng et al. [START_REF] Peng | General sum games with joint chance constraints[END_REF] showed the existence of Nash equilibrium for the n-player general-sum games where the strategy profile set of each player is defined by a joint chance constraint, and the random constraint vectors are either independently normally distributed or follow a mixture of elliptical dis-tributions [START_REF] Peng | Chance-constrained games with mixture distributions[END_REF]. When the probability distributions are not completely known and belong to a given distributional uncertainty set, Peng et al. [START_REF] Peng | Games with distributionally robust joint chance constraints[END_REF] formulated the chance constraints of each player as distributional robust joint chance constrained problem. They consider several uncertainty sets, namely a density based uncertainty set and four two-moments based uncertainty sets where one of them has a nonnegative support. They show that there exists a Nash equilibrium of a distributionally robust joint chance constrained game for each uncertainty set.

In [START_REF] Peng | Games with distributionally robust joint chance constraints[END_REF][START_REF] Peng | General sum games with joint chance constraints[END_REF][START_REF] Peng | Chance-constrained games with mixture distributions[END_REF], the authors assume that the random constraint vectors are independently distributed. However, the random variables are usually dependent in real world applications. In order to study the dependence structure of random variable, the concept of copula was introduced by Abe Sklar in 1959 [START_REF] Sklar | Fonctions de repartition an dimensions et leurs marges[END_REF], as a solution to a probability problem stated by Maurice Fréchet in the context of random metric spaces. Copulas are functions used to distinguish the marginal distributions from a given dependent structure based multivariate distribution. Henrion and Strukgarek [START_REF] Henrion | Convexity of chance constraints with independent random variables[END_REF] introduced the notion of log-exp concavity of copula to investigate the convexity of elliptically dependent distributed joint chance constraints. We refer the reader to [START_REF] Nelson | An introduction to copulas[END_REF] for a detailed introduction to the theory of copulas.

In this paper, we extend the results of [START_REF] Peng | General sum games with joint chance constraints[END_REF][START_REF] Peng | Chance-constrained games with mixture distributions[END_REF] to the general case where the payoff function is random and the strategy profile set of each player is defined by elliptically distributed dependent joint chance constraints. We derive a new reformulation of joint chance constraint with dependent random constraint vectors and show that there exists a Nash equilibrium of the game under mild conditions on the payoff functions.

The rest of the paper is organized as follows. Section 2 contains the definition of an n-player CCG. In Section 3, we prove the existence of a Nash equilibrium of the CCG under elliptical distributions. We conclude the paper in Section 4.

The model and preliminary results

Chance-constrained game

We consider an n-player CCG, where H = {1, 2, .., n} is the set of players.

Let S i ⊂ R di be the strategy set of player i which is a non-empty, convex and compact set. For each i ∈ H, S -i denotes the set of strategy vectors of all players j, j = i. A strategy profile x = (x 1 , x 2 , . . . , x n ) ∈ S is represented as (x i , x -i ) where x i denotes the strategy of player i and x -i denotes the vector of strategies of the players other than player i. The strategy set of player i, i ∈ H, is further restricted by the following joint chance constraint

P(V i x i ≤ D i ) ≥ α i , (1) 
where

α i ∈ [0, 1] is a given probability level, D i = (D i,1 , ..., D i,Ki ) T ∈ R Ki is a deterministic vector and V i = [V i,1 , ..., V i,Ki ] T is a K i × d i random matrix,
where V i,k denotes the kth row of matrix V i ; T denotes the transposition.

Let J i = {1, 2, . . . , K i } denotes the index set of ith player's constraints. The feasible strategy set of player i is defined as

S i αi = x i ∈ S i | P(V i x i ≤ D i ) ≥ α i .
We assume that for each i ∈ H, S i αi is a non-empty set. Let α = (α i ) i∈H be the confidence level vector and S α = n i=1 S i αi be the set of all feasible strategy profiles. The payoff function of each player is defined using random variables. For each x ∈ S α , the payoff of player i is given by f i (x, ζ) where ζ is an m-dimensional random vector. We use expected value approach to model the payoff function of each player. Therefore, the payoff function of player i is given by

p i (x) = E[f i (x, ζ)], ∀ x ∈ S α . (2) 
We assume that the CCG is of complete information, i.e., the payoff function, the strategy set of each player, and the confidence level vector α are known to all the players. Definition 2.1 A strategy profile y * is a Nash equilibrium of the CCG at confidence level vector α if for each i ∈ H

p i (y i * , y -i * ) ≥ p i (x i , y -i * ), ∀ x i ∈ S i αi .
Assumption 1. For each player i, i ∈ H, the following conditions hold.

1.

f i (., x -i , ζ) is a concave function of x i for every (x -i , ζ) ∈ S -i × R m . 2. f i (•) is a continuous function. 3. p i (x) is finite valued for every x ∈ S.
Under Assumption 1, the payoff function of player i defined by ( 2) is a continuous function of x and it is a concave function of x i for every x -i [20].

Basic concepts and known results

In this section, we present some basic definitions and important results which are used in our subsequent analysis.

Definition 2.2 An n-dimensional random vector X follows a spherical distribution if there exists a function Ψ : R → R such that the characteristic function φ X (t) of X is given by

φ X (t) = E(e it T X ) = Ψ (t T t).
The function Ψ is called a characteristic generator of the spherical distribution. Not all elliptical distributions have a probability density function. Whenever it exists, it has the form

f U (z) = c det(Σ) g s (z -µ) T Σ -1 (z -µ) ,
where g s is a nonnegative function called radial density and c > 0 is a normalization factor which makes f U a probability density function.

Definition 2.4 (Definition 2.2, [START_REF] Henrion | Convexity of chance constraints with independent random variables[END_REF]) A real function f : R → R is rdecreasing for some real number r ∈ R, if f is continuous on (0, +∞) and there exists some strictly positive real number t * such that the function t → t r f (t)

is strictly decreasing on (t * , +∞). of an 1-dimensional real-valued random variable X has r-decreasing density if the probability density function of X is r-decreasing for some real number

r ∈ R.
Table 1 presents some 1-dimensional spherical distributions with r-decreasing densities for some values of r and their thresholds t * .

Table 1 List of selected 1-dimensional spherical distributions with r-decreasing density and

their thresholds t * . Distribution Radial density r t * Normal e -1 2 u 2 r > 0 √ r t 1 + 1 ν u 2 -(1+ν)/2 , ν > 0, ν integer 0 < r < ν + 1 rν ν+1-r Laplace e -|u| r > 0 r √ 2 Kotz type u 2(N -1) e -qu 2s , q, s > 0, N > 1 2 r > 2(1 -N ) 2s 2(N -1)

+r 2qs

Pearson type VII

1 + u 2 m -N , m > 0, N > 1 2 0 < r < 2N rm 2N -r Definition 2.6 A function C : [0, 1] K → [0, 1] is a K-dimensional copula if
C is a joint CDF of a K-dimensional random vector, on the unit cube [0, 1] K , whose marginals are uniformly distributed on [0, 1].

Proposition 2.1 (Sklar's Theorem) Given F : R K → [0, 1] is a joint CDF of a K-dimensional random vector and F 1 , ..., F K are the marginal CDFs, respectively. Then, there exists a K-dimensional copula C such that

F (z) = C (F 1 (z 1 ), ..., F K (z K )) .
Moreover, if F i is continuous for any i = 1, ..., K, then C is uniquely given by

C(u) = F F (-1) 1 (u 1 ), ..., F (-1) K (u K ) .
Proposition 2.2 (Fréchet-Hoeffding upper bound) For any K-dimensional

copula C and K-dimensional vector u = (u 1 , ..., u K ) ∈ [0, 1] K , we have C(u) ≤ min k=1,...,K u k .
Definition 2.7 A K-dimensional copula C is strictly Archimedean if there exists a continuous and strictly decreasing function ψ : (0, 1] → [0, +∞), such that ψ(1) = 0, lim t→0 ψ(t) = +∞, and for any K-dimensional vector

u = (u 1 , ..., u K ) ∈ [0, 1] K , we have C(u) = ψ (-1) K i=1 ψ(u i ) .
The function ψ is called a generator of the copula C.

Table 2 presents a selection of some strictly Archimedean copulas with their generators. 

Independent - -log(t) Gumbel-Hougaard θ ≥ 1 [-log(t)] θ Frank θ > 0 -log e -θt -1 e -θ -1 Clayton θ > 0 1 θ (t θ -1) Joe θ ≥ 1 -log[1 -(1 -t) θ ] Definition 2.8 A function f : R → R is K-monotonic on an open interval
I ⊆ R for some positive integer K ≥ 2, if the following three conditions hold:

1. f is differentiable up to the order (K -2) on I,

2. The derivatives of f are satisfied by

(-1) k d k dt k f (t) ≥ 0, 0 ≤ k ≤ K -2,
for all t ∈ I,

3. The function t → (-1) K-2 d K-2 dt K-2 f (t)
is nonincreasing and convex on I.

Proposition 2.3 (Theorem 2.2, [START_REF] Mcneil | Multivariate Archimedean copulas, d-monotone functions and l1-norm symmetric distributions[END_REF]) Given ψ : (0, 1] → [0, +∞) is a strictly decreasing function such that ψ(1) = 0 and lim t→0 ψ(t) = +∞. Then, ψ is the generator of a K-dimensional strictly Archimedean copula if and only if the inverse function ψ (-1) is K-monotonic on (0, +∞) and continuous on

[0, +∞). Definition 2.9 A function f : Q → (0, +∞) is r-concave on a convex set Q ⊂ R s for a given r ∈ (-∞, +∞) if for any x, y ∈ Q and α ∈ [0, 1], f (αx + (1 -α)y) ≥ [αf (x) r + (1 -α)f (y) r ] 1 r , when r = 0, f (αx + (1 -α)y) ≥ f (x) α f (y) 1-α , otherwise.

Existence of Nash equilibrium

For each i ∈ H, we assume that the random constraint vector

V i,k ∼ Ellip(µ i,k , Σ i,k , Ψ i,k ), k ∈ J i . Let λ i,k
,min be the smallest eigenvalue of the positive definite matrix

Σ i,k . Define, Si αi = S i αi \ {0}, then for x i ∈ Si αi , let ξ i,k (x i ) = (V i,k ) T x i -(µ i,k ) T x i (x i ) T Σ i,k x i . g i,k (x i ) = D i,k -(µ i,k ) T x i (x i ) T Σ i,k x i . (3) 
It is well known that ξ i,k (x i ) follows 1-dimensional spherical distribution with characteristic generator Ψ i,k [START_REF] Fang | Symmetric multivariate and related distributions[END_REF]. Using the above mentioned notations, the constraint (1) can be written as

P ξ i,k (x i ) ≤ g i,k (x i ), k ∈ J i ≥ α i . (4) 
By Proposition 2.1, (4) can be equivalently written as

C i x i (F i,1 • g i,1 )(x i ), ..., (F i,Ki • g i,Ki )(x i ) ≥ α i , (5) 
where C i x i is the K i -dimensional copula of the random vector (ξ i,k (x i )) Ki k=1 and F i,k is the cumulative distribution function of ξ i,k (x i ); • denotes the function composition.

Assumption 2. There exists a K i -dimensional copula C i such that C i x i = C i for all x i ∈ S i , and C i is a K i -dimensional strictly Archimedean copula with a generator ψ i such that the inverse function ψ (-1) i is 4-monotonic on (0, +∞). 

K i ≥ 4.
Under Assumption 2, we can equivalently write (5) as

i [(F i,1 • g i,1 )(x i ), ..., (F i,Ki • g i,Ki )(x i )] ≥ α i . (6) 
Proposition 3.1 If x i ∈ Si αi and Assumption 2 holds, the joint chance constraint (1) is equivalent to

         (i) (F i,k • g i,k )(x i ) ≥ ψ (-1) i (y i,k ψ i (α i )), k ∈ J i .
(ii)

k∈J i y i,k = 1, y i,k ≥ 0, k ∈ J i . (7) 
Proof. Let x i ∈ Si αi . Under Assumption 2, the joint chance constraint (1) is equivalent to [START_REF] Debreu | A social equilibrium existence theorem[END_REF]. It is enough to show the equivalence between ( 6) and [START_REF] Fan | Applications of a theorem concerning sets with convex sections[END_REF].

Since, C i is strictly Archimedean copula, (6) is equivalent to

k∈J i (ψ i • F i,k • g i,k )(x i ) ≤ ψ i (α i ). (8) 
Define K i -dimensional vector y i = (y i,1 , ..., y i,Ki ) ∈ [0, 1] Ki such that

y i,k = (ψ i • F i,k • g i,k )(x i ) j∈J i (ψ i • F i,j • g i,j )(x i ) , k ∈ J i .
From non-increasing property of ψ -1 i , it follows that (x i , y i ) satisfies [START_REF] Fan | Applications of a theorem concerning sets with convex sections[END_REF]. Conversely, we assume (x i , y i ) satisfies [START_REF] Fan | Applications of a theorem concerning sets with convex sections[END_REF]. By adding all the constraints (i) of ( 7)

after applying ψ i (•) on both sides, we can say that x i satisfies (8) which is equivalent to [START_REF] Debreu | A social equilibrium existence theorem[END_REF].

The convexity of the feasible strategy set S i αi plays a very important role in showing the existence of Nash equilibrium. We show that there exists

α * i ∈ [0, 1] such that S i αi is a convex set for all α i ∈ (α * i , 1]. For each i ∈ H, define an index set I (i) = {k ∈ J i | µ i,k = 0} and a set of real numbers {r i,k | k ∈ J i } such that r i,k > 1, if k ∈ I (i) , r i,k = 1, if k / ∈ I (i) .        (9) 
Lemma 3.1 Let Assumption 2 holds and for each k ∈ J i , the CDF F i,k has (r i,k + 1)-decreasing density with a threshold t * i,k , where r i,k is defined by [START_REF] Henrion | Convexity of chance constraints with independent random variables[END_REF] and t * i,k refers to Definition 2.4. Then, S i αi is a convex set for all α i ∈ (α * i , 1],

where

α * i := max 1 2 , max k∈I (i) F i,k r i,k + 1 r i,k -1 λ -1 2 i,k,min ||µ i,k || , max k∈J i F i,k (t * i,k ) . ( 10 
)
In order to prove Lemma 3.1, we need the three following lemmas.

Lemma 3.2 Let α i ∈ ( 1 2 , 1] and x i ∈ Si αi . Then, D i,k > (µ i,k ) T x i for all k ∈ J i .
Proof. The proof is given in 4.

Lemma 3.3 Let r i,1 , ..., r i,Ki be the real numbers defined by (9) and for each k ∈ I (i) , define

Ω i,k := x i ∈ S i | D i,k -µ T i,k x i > r i,k + 1 r i,k -1 λ -1 2 i,k,min ||µ i,k || (x i ) T Σ i,k x i .
Then,

Conv( Si αi ) ⊂ k∈I (i) Ω i,k , for all α i ∈ (α * * i , 1],
where

α * * i = max 1 2 , max k∈I (i) F i,k r i,k + 1 r i,k -1 λ -1 2 i,k,min ||µ i,k || , ( 11 
)
and Conv represents the convex hull. Moreover, for any convex subset Q i,k of

k∈I (i) Ω i,k such that 0 / ∈ Q i,k , g i,k (x i ) is defined and (-r i,k )-concave on Q i,k for all k ∈ J i
Proof. The proof is given in 4.

Lemma 3.4 Let Assumption 2 holds. Then, ψ

(-1) i (y i,k ψ i (α i )) is a convex function of y i,k for all α i ∈ [0, 1].
Proof. The proof is given in 4.

We present the proof of Lemma 3.1 using the results of Lemma 3.2, Lemma 3.3 and Lemma 3.4.

Proof of Lemma 3.1. Let α i ∈ (α * i , 1], λ ∈ [0, 1] and z 1 , z 2 ∈ S i αi . We need to show that λz 1 + (1 -λ)z 2 ∈ S i αi .
Case 1: Let z 1 = 0 or z 2 = 0. Without loss of generality, we assume that z 2 = 0. This gives D i,k ≥ 0 for all k ∈ J i , which in turn implies that

P(V i λz 1 ≤ D i ) ≥ P(V i z 1 ≤ D i ) ≥ α i . Hence, λz 1 + (1 -λ)z 2 ∈ S i αi .
Case 2: Let z 1 = 0, z 2 = 0 and λz 1 + (1 -λ)z 2 = 0. In this case,

z 2 = -λ 1-λ z 1 ∈ Si αi and z 1 ∈ Si αi . It follows from Lemma 3.2 that (µ i,k ) T z 1 > λ -1 λ D i,k , (µ i,k ) T z 1 < D i,k , ∀ k ∈ J i .
This implies that D i,k ≥ 0 for all k ∈ J i . Therefore,

λz 1 + (1 -λ)z 2 = 0 ∈ S i αi .
Case 3: Let z 1 = 0, z 2 = 0 and 0 ∈ Seg(z 1 , z 2 ), where Seg(z 1 , z 2 ) =

{z 1 + l(z 2 -z 1 ), 0 ≤ l ≤ 1}.
Then, the points on the line segment Seg(z 1 , z 2 )

are either belong to Seg(z 1 , 0) or Seg(0, z 2 ). It follows from Case 1 that Seg(z 1 , 0) and Seg(0, z 2 ) are subset of S i αi . Therefore,

λz 1 + (1 -λ)z 2 ∈ S i αi for all λ ∈ [0, 1]. Case 4: Let z 1 = 0, z 2 = 0 such that 0 / ∈ Seg(z 1 , z 2 ). It is clear that Seg(z 1 , z 2 ) ⊂ Conv( Si αi )
. From Lemma 3.3, g i,k (•) is defined and (-r i,k )concave on Seg(z 1 , z 2 ). Therefore,

g i,k (λz 1 + (1 -λ)z 2 ) ≥ λ(g i,k (z 1 )) -r i,k + (1 -λ)(g i,k (z 2 )) -r i,k -1 r i,k . (12) 
Since, z 1 ∈ Si αi , from Lemma 3.2 g i,k (z 1 ) > 0 and it follows from (6) that

C i [(F i,1 • g i,1 )(z 1 ), ..., (F i,Ki • g i,Ki )(z 1 )] > α * i . (13) 
By using Proposition 2.2 and the definition of α * i from (10), we get

F i,k (g i,k (z 1 )) > α * i ≥ F i,k (t * i,k ). (14) 
This implies that

0 < g i,k (z 1 ) -r i,k < (t * i,k ) -r i,k . Similarly, 0 < g i,k (z 2 ) -r i,k < (t * i,k ) -r i,k .
By applying the non-decreasing function F i,k (•) on both side of ( 12), we can write

(F i,k • g i,k )(λz 1 + (1 -λ)z 2 ) ≥ F i,k λ(g i,k (z 1 )) -r i,k + (1 -λ)(g i,k (z 2 )) -r i,k -1 r i,k . (15) 
Since, F i,k (•) has (r i,k + 1)-decreasing density, from Lemma 3.1 of [START_REF] Henrion | Convexity of chance constraints with independent random variables[END_REF], the

function t → F i,k t -1 r i,k is concave on (0, (t * i,k ) -r i,k
). Therefore, we can write

F i,k λ(g i,k (z 1 )) -r i,k + (1 -λ)(g i,k (z 2 )) -r i,k -1 r i,k ≥ λ (F i,k • g i,k )(z 1 ) + (1 -λ) (F i,k • g i,k )(z 2 ) . (16) 
From ( 15) and ( 16), we have

(F i,k • g i,k )(λz 1 + (1 -λ)z 2 ) ≥ λ (F i,k • g i,k )(z 1 ) + (1 -λ) (F i,k • g i,k )(z 2 ) . ( 17 
)
This implies that the composition function ) k∈J i is also a feasible point of [START_REF] Fan | Applications of a theorem concerning sets with convex sections[END_REF]. Again from the equivalence of Si αi and ( 7),

(F i,k • g i,k )(•)
λz 1 +(1-λ)z 2 ∈ Si αi which in turn implies that λz 1 +(1-λ)z 2 ∈ S i αi .
Next, we prove that S i αi is a closed set.

Lemma 3.5 The probability function x i → P(V i x i ≤ D i ) used in the joint chance constraint (1) of player i is continuous on Si , where Si = S i \ {0}.

Proof. We can write P(V i x i ≤ D i ) as follows

P(V i x i ≤ D i ) = E I {V i x i ≤D i } = E k∈J i I {(V i,k ) T x i ≤D i,k } ,
where I A denotes the indicator function of an event A. Given x i ∈ Si and a sequence x i j ∈ Si such that x i j → x i when j → +∞. For each k ∈ J i ,

let A i,k = ω | (V i,k (ω)) T x i > D i,k and B i,k = ω | (V i,k (ω)) T x i < D i,k .
For ω ∈ A i,k , we have I {(V i,k ) T x i ≤D i,k } (ω) = 0. Since, x i j → x i , there exists a positive integer N (ω) such that for all j > N (ω), we have

(V i,k (ω)) T x i j > D i,k .
In other words, I {(V i,k ) T x i j ≤D i,k } (ω) = 0, for all j > N (ω). Hence,

I {(V i,k ) T x i j ≤D i,k } → I {(V i,k ) T x i ≤D i,k } on A i,k , j → +∞.
Similarly,

I {(V i,k ) T x i j ≤D i,k } → I {(V i,k ) T x i ≤D i,k } on B i,k , j → +∞. Define C i,k = ω | (V i,k (ω)) T x i = D i,k . Using the notations from (3), C i,k = ω | ξ i,k (x i )(ω) = g i,k (x i )
. Since, ξ i,k (x i ) follows an 1-dimensional real continuous distribution with a density function, P(ξ i,k (x i ) = c) = 0, for any c ∈ R.

In other words

, C i,k is a negligible set. Note that A i,k ∪ B i,k ∪ C i,k = Ω,
where Ω is the sample space. Therefore, for each k

∈ J i , I {(V i,k ) T x i j ≤D i,k } → I {(V i,k ) T x i ≤D i,k
} almost everywhere which in turn implies that I {V i x i j ≤D i } → I {V i x i ≤D i } almost everywhere. Moreover, I {V i x i j ≤D i } is upper bounded by a positive integrable function I Ω . Then, it follows from dominated convergence theorem that E(I {V i x i j ≤D i } ) → E(I {V i x i ≤D i } ) as j → +∞. Therefore,

P(V i x i ≤ D i ) is a continuous function on Si .
Lemma 3.6 The feasible strategy set S i αi of player i is a closed set.

Proof. Given x i ∈ S i and a sequence x i j ∈ S i αi such that x i j → x i when j → +∞. If x i = 0, the proof follows from Lemma 3.5. If x i = 0, we need to prove that 0 ∈ S i αi . Let 0 / ∈ S i αi and x i j = 0 for all j ∈ N. Then, there exists k * ∈ J i such that D i,k * < 0. For each j ∈ N, we have

P(V i x i j ≤ D i ) ≤ P((V i,k * ) T x i j ≤ D i,k * ).
It follows from the Cauchy-Schwarz inequality that P((

V i,k * ) T x i j ≤ D i,k * ) ≤ P(-||V i,k * || × ||x i j || ≤ D i,k * ) = P(||V i,k * || × ||x i j || ≥ -D i,k * ). Hence, P(V i x i j ≤ D i ) ≤ P(||V i,k * || × ||x i j || ≥ -D i,k * ). = P ||V i,k * || ≥ -D i,k * ||x i j || . (18) 
As -D i,k * > 0 and x i j → 0, we deduce that

P ||V i,k * || ≥ -D i,k * ||x i j || → 0. Then, from (18) 
, we have

P(V i x i j ≤ D i ) → 0, j → +∞. (19) 
However, as x i j ∈ S i αi , we deduce that P(V i x i j ≤ D i ) ≥ α i , for all j ∈ N which contradicts [START_REF] Peng | General sum games with joint chance constraints[END_REF]. Therefore, 0 ∈ S i αi .

The feasible strategy set S i αi is a compact set because, from Lemma 3.6, it is a closed subset of the compact set S i . Finally, we show that there exists a Nash equilibrium of the CCG. 2. For each i ∈ H and k ∈ J i , V i,k ∼ Ellip(µ i,k , Σ i,k , Ψ i,k ), where Σ i,k is a positive definite matrix.

3. For each i ∈ H and k ∈ J i , suppose CDF F i,k (•) has (r i,k + 1)-decreasing density with a threshold t * i,k , where r i,k is defined by (9) and t * i,k refers to Definition 2.4.

Then, there exists a Nash equilibrium of the CCG for any α ∈ (α * 1 , 1] × ... × (α * n , 1], where α * i , i ∈ H, is defined by [START_REF] Henrion | Convexity of chance constraints with dependent random variables: the use of copulae[END_REF].

Proof. Let α ∈ (α * 1 , 1] × ... × (α * n , 1]. Under Assumption 1, the payoff function p i (x i , x -i ) is a concave function of x i , for every x -i ∈ S -i , and a continuous function of x. It follows from Lemma 3.1 that the feasible strategy set S i αi ,

i ∈ H, is a convex set for all α i ∈ (α * i , 1]. For each i ∈ H, S i αi is a compact set.

Then, the existence of a Nash equilibrium of the CCG follows from Theorem 4 of [START_REF] Fan | Applications of a theorem concerning sets with convex sections[END_REF].

Conclusion

In this paper, we studied an n-player non-cooperative CCG where the strategy sets of each player is given by joint chance constraint with dependent random constraint vectors which follow elliptically symmetric distributions. We propose a new reformulation of the joint chance constraints based on the family of Archimedean copulas. We assume that 1-dimensional spherical distribution function in the reformulation has r-decreasing densities for some values of r.

This condition is satisfied by a list of prominent 1-dimensional spherical distributions. Under mild conditions on the payoff functions, we show that there exists a Nash equilibrium of the CCG.

Since, F i,k (•) is a non-decreasing function, from [START_REF] Rüschendorf | Sklar's theorem, and distributional transform[END_REF] we have

D i,k -(µ i,k ) T x i > r i,k + 1 r i,k -1 λ -1 2 i,k,min ||µ i,k || (x i ) T Σ i,k x i . (23) 
Therefore, Si α i ⊂ k∈I (i) Ω i,k . For each k ∈ I (i) , Ω i,k is a convex set which implies that Conv( Si α i ) ⊂ k∈I i Ω i,k . We prove the second part of Lemma 3.3 by considering two cases as below:

Case 1: Let k / ∈ I (i) , then µ i,k = 0. From the definition of α * * i , we have α i > 1 2 . From Lemma 3.2, D i,k > 0. In this case, the proof follows directly from Lemma 3 of [START_REF] Cheng | Second-order cone programming approach for elliptically distributed joint probabilistic constraints with dependent rows[END_REF].

Case 2: Let k ∈ I i . It follows from Lemma 2 of [START_REF] Cheng | Second-order cone programming approach for elliptically distributed joint probabilistic constraints with dependent rows[END_REF] that the function

f i,k (x i ) = (x i ) T Σ i,k x i D i,k -(µ i,k ) T x i r i,k
.

Definition 2 . 3

 23 An n-dimensional random vector U follows an elliptical distribution with location parameter µ, positive definite scale matrix Σ and characteristic generator Ψ , i.e., U ∼ Ellip(µ, Σ, Ψ ), if we have the following representation U d = µ + AX, where X follows a spherical distribution with a characteristic generator Ψ , A ∈ R n×n such that AA T = Σ and µ ∈ R n ; d = implies that the both sides have the same distribution.

Definition 2 . 5

 25 The cumulative distribution function (CDF) F : R → [0, 1]

Remark 3 . 1 (

 31 The 4-monotonicity of ψ follows from Proposition 2.3 that 4-monotonicity condition holds if

Theorem 3 . 1

 31 Consider an n-player CCG defined in Section 2.1, where 1. Assumptions 1, 2 hold.

Table 2

 2 Different types of strictly Archimedean copulas.

	Type of copula	Parameter θ	Generator ψ θ (t)

  is a concave function over Seg(z 1 , z 2 ). It follows from Lemma 3.4 that ψ(y i,k ψ i (α i )) is a convex function of y i,k . Because z 1 , z 2 ∈ Siαi and from Proposition 3.1, Si αi and (7) are equivalent, then there exists vectors (y 1 i,k ) k∈J i and (y 2 i,k ) k∈J i such that z 1 , (y 1 i,k ) k∈J i and z 2 , (y 2 i,k ) k∈J i are feasible points of[START_REF] Fan | Applications of a theorem concerning sets with convex sections[END_REF]. Using the fact that (F i,k • g i,k )(•) is a concave function and ψ

	(-1) i	(•) is a convex func-
	tion, we can say that the convex combination of points z 1 , (y 1 i,k ) k∈J i and
	z 2 , (y 2 i,k	
		(-1)
		i
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Appendices

Appendix A: Proof of Lemma 3.2 Let x i ∈ Si α i . By applying Proposition 2.2 on (6), we get

Since, F i,k is the CDF of an 1-dimensional real-valued random variable which is symmetric at

Appendix B: Proof of Lemma 3.3

Let k ∈ I (i) and x i ∈ Si α i . By applying Proposition 2.2 on (6), we get

From the definition of α * * i given in [START_REF] Ji | Risk-budgeting multi-portfolio optimization with portfolio and marginal risk constraints[END_REF], we have is defined and a convex function on k∈I (i) Ω i,k . Therefore, for any y, z ∈ Q i,k and λ ∈ [0, 1],

we have

Note that g i,k 24), we can write

Hence, g i,k is defined and

Appendix C: Proof of Lemma 3.4

The second-order differentiation of U (y i,k ) is given by

) is a convex function of y i,k on (0, 1]. The convexity of U on [0, 1] follows from the continuity of U at 0.