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Abstract

We revisit the incompatibility of anonymity and neutrality in single-
valued social choice. We first analyze the irresoluteness outlook these two
axioms together with Pareto e�ciency impose on social choice rules and
deliver a method to refine irresolute rules without violating anonymity,
neutrality, and e�ciency. Next, we propose a weakening of neutrality
called consequential neutrality that requires resolute social choice rules to
assign each alternative to the same number of profiles. We explore social
choice problems in which consequential neutrality resolves impossibilities
that stem from the fundamental tension between anonymity, neutrality,
and resoluteness.
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1 Introduction

Equal treatment of individuals as well as of alternatives are among the core

principles of democratic decision-making. Equal treatment of individuals is

usually ensured by the anonymity condition, which requires the social choice to

be invariant under renaming individuals. The typical condition to ensure equal

treatment of alternatives, on the other hand, is neutrality, which requires the

social choice to change in compliance with renaming of alternatives.

The logical incompatibility between anonymity and neutrality while ensuring

an untied outcome is among the most well-known results in social choice the-

ory. Moulin (1980, 1991) characterizes the sizes of social choice problems that

admit anonymous and neutral social choice rules (SCRs) that are resolute, i.e.,

that choose a unique alternative at any profile. More precisely, a social choice

problem with n individuals and m alternatives admits an anonymous, neutral,

and resolute SCR if and only if m cannot be written as the sum of some di-

visors of n that exceed 1 (Moulin, 1991). When (Pareto) e�ciency is imposed

together with anonymity and neutrality, this requirement is strengthened to “n

not having a prime divisor less than or equal to m” (Moulin, 1980).1

How severe is this tension between anonymity and neutrality? Campbell and

Kelly (2015) show the rarity of cases where anonymous, neutral, and resolute

SCRs exist: when the number of individuals is divisible by at least two distinct

primes, only a finite number of social choice problems admit anonymous, neutral,

and resolute SCRs. Also, when the number of alternatives exceeds the smallest

prime dividing the number of individuals, a resolute SCR is anonymous and

neutral only if it chooses alternatives that are in the bottom half of preferences

of all individuals. Adding e�ciency to anonymity and neutrality restricts the

sizes of social choice problems that admit anonymous, neutral, and resolute

SCRs even further.

Do these results leave any hope for guaranteeing equal treatment of voters

and alternatives for untied collective choice? We reject pessimism by identifying

a weakening of neutrality which allows a vast range of possibilities while pan-

1Zwicker (2016) delivers an introduction to the theory of voting where major results re-
garding anonymity and neutrality are included.
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dering to a very significant aspect of equal treatment of alternatives. This new

condition that we call consequential neutrality requires that all alternatives are

chosen at the same number of preference profiles.

For example, with an odd number of individuals, fixing two alternatives x

and y and two individuals i and j, one can define the resolute SCR that picks

the best alternative of individual i when a majority of individuals prefer x to

y and otherwise, picks the best alternative of individual j. This SCR presents

a procedure that depends on the names of the alternatives, hence failing neu-

trality. On the other hand, being consequentially neutral, it ensures that every

alternative is chosen at the same number of preference profiles, thus putting

forward an ex-ante fairness property that is more outcome-oriented compared

to the classical neutrality approach that entails a more procedure-oriented equal

treatment of alternatives.

Recent research on anonymous and neutral social choice mostly focus on

rules that assign orderings (instead of alternatives) to preference profiles. Bub-

boloni and Gori (2014) and Doğan and Giritligil (2015) characterize the sizes of

social choice problems for which anonymous and neutral rules that are resolute,

i.e., that assign strict social welfare orderings to profiles, exist. Building on the

algebraic approach in Bubboloni and Gori (2014), Bubboloni and Gori (2015)

propose a weakening of neutrality by assuming that alternatives are divided into

sub-classes and requiring equal treatment of alternatives within each sub-class,

while alternatives in di↵erent sub-classes may be di↵erently treated. They pro-

vide necessary and su�cient conditions for the existence of (reversal) symmetric

majority rules that satisfy this weakening of neutrality together with a weaker

version of anonymity.2 Bubboloni and Gori (2016) adopt the aforementioned

versions of anonymity and neutrality together with e�ciency and characterize

when rules that assign orderings to profiles admit a resolute refinement that

preserves these properties. Their characterization identifies the necessary and

su�cient arithmetical conditions on the sizes of sub-committees and sub-classes.
2They propose a weaker version of anonymity in a similar way by assuming that individuals

are divided into sub-committees and requiring that, within each sub-committee, individuals
have equal influence on the collective decision, while people in di↵erent sub-committees may
enjoy di↵erent levels of influence.

3



King and Powers (2018), on the other hand, dispense with neutrality altogether

and identify a characterization of rules that satisfy anonymity, monotonicity,

and cancellation, in the case of two alternatives.

We start by analyzing the structure of irresoluteness imposed by anonymity,

neutrality, and e�ciency, a previously overlooked matter. We generalize the

characterization of Moulin (1980) by completely describing the sizes of unavoid-

able ties under these conditions (Theorem 2). This generalization paves the way

to identifying a method to refine SCRs that are “more irresolute than necessary,”

while anonymity, e�ciency, and neutrality are preserved (Theorem 3).

We then turn to our analysis of consequential neutrality for resolute SCRs.

We start with counting the number of resolute SCRs that are neutral and those

that are consequentially neutral (CN) as a function of the size of the social

choice problem (Theorem 4). An analytical comparison of these two numbers

seems beyond reach, so we take a computational approach where we compute

the numbers of resolute SCRs in each class for a small set of values of the size

of the social choice problem. These numerical exercises that we report on show

strong tendencies in the comparison of the numbers of CN and neutral SCRs,

hence we conjecture that the class of resolute SCRs that are CN is considerably

larger than those that are neutral.

Thereafter, we discuss the possibility of refining anonymous, e�cient, and

neutral SCRs by replacing neutrality with consequential neutrality and deliver

a possibility result under certain conditions (Theorem 5). We also identify

some cases where these conditions are not satisfied but there exist anonymous,

CN, and resolute SCRs (Theorem 6). These positive results do not hold over

all conceivable social choice problems: we point to instances where anonymity,

consequential neutrality, e�ciency, and resoluteness turn out to be incompati-

ble (Theorem 7). These are instances where the incompatibility prevails even

without e�ciency. However, even in those cases, anonymous, CN, and reso-

lute SCRs exist. In fact, we are able to identify a large class of social choice

problems, namely those where the number of alternatives exceeds the number

of individuals, for which anonymity, consequential neutrality, and resoluteness

are compatible (Theorem 9).
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The paper is organized as follows. Section 2 gives basic notation and no-

tions. Section 3 delivers a generalization of the classical result on incompat-

ibility of anonymity, neutrality, and e�ciency with resoluteness and proposes

a refinement method towards resoluteness. Section 4 introduces consequential

neutrality and presents our more permissive results when it replaces neutrality.

Section 5 concludes.

2 Basic notions and notation

Writing N for the set of natural numbers and pickingm,n 2 N� {1}, we conceive
a social choice problem as a set A of alternatives with #A = m and a set

N of individuals with #N = n. We refer to (m,n) as the size of the social

choice problem (A,N). Writing L(X) for the set of linear orders, i.e., complete,

asymmetric, and transitive binary relations on a given set X, let Pi 2 L(A)

denote the preference of i 2 N .3 An n�tuple of such individual preferences

indicates a (preference) profile PN 2 L(A)N . A social choice rule (SCR) is a

mapping f : L(A)N ! A, where A = 2A� {?} is the set of non-empty subsets

of A.

Given any two sets S and T , we write S ✓ T whenever S is a subset of T and

S ⇢ T whenever S is a proper subset of T . We let PN |B denote the restriction

of PN 2 L(A)N to those alternatives in B 2 A so that PN |B 2 L(B)N and

xPiy () xPi|By for all x, y 2 B and i 2 N . Given any two SCRs f1

and f2, we say that f2 refines f1 i↵ f2(PN ) ✓ f1(PN ) 8PN 2 L(A)N and

f2(P 0
N
) ⇢ f1(P 0

N
) for some P 0

N
2 L(A)N . An SCR f is resolute whenever

#f(PN ) = 1 8PN 2 L(A)N . For a resolute SCR f , we write f(PN ) = x in place

of f(PN ) = {x}.
We now define two equal treatment conditions that are at the core of our

analysis. For any non-empty finite set X, a permutation on X is a bijection

� : X $ X. Let ⌃X be the set of all permutations on X. We write, by a

slight abuse of notation, �(PN ) = (P�(i))i2N for the profile obtained from PN 2
L(A)N by a permutation � 2 ⌃N . An SCR is anonymous i↵ f(PN ) = f(�(PN ))

3So, given any distinct x, y 2 A and Pi 2 L(A), precisely one of xPiy and yPix holds.
Moreover, xPiy and yPiz implies xPiz for all x, y, z 2 A and Pi 2 L(A). Finally, xPix does
not hold for any x 2 A.
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8PN 2 L(A)N 8� 2 ⌃N . Again, by an abuse of notation, we write �(Pi) for the

preference obtained from Pi 2 L(A) by a permutation � 2 ⌃A on A, i.e., x Pi

y () �(x) �(Pi) �(y) 8x, y 2 A.

Moreover, we set �(PN ) = (�(Pi))i2N 8PN 2 L(A)N . An SCR is neutral i↵

f(�(PN )) = �(f(PN )) 8PN 2 L(A)N , 8x 2 A, and 8� 2 ⌃A.

We close the section by noting that an SCR f is e�cient i↵ given any

PN 2 L(A)N and any x 2 f(PN ), @y 2 A\{x} with y Pi x 8i 2 N .

3 Anonymous, neutral, and e�cient social choice

Given k, l 2 N, we write k | l whenever k divides l, i.e.,
l

k
2 N, and k - l

otherwise. Let D(n) = {k 2 N : k | n} be the set of divisors of n 2 N and

D⇤(n) = {k is a prime : k | n} [ {1} be the set consisting of prime divisors of n

as well as 1. Thus, D⇤(n) ✓ D(n) for all n 2 N. For any m,n 2 N, the set of

divisors of n that do not exceed m is denoted Dm(n) = {d 2 D(n) : d  m}
and similarly D⇤

m
(n) = {d 2 D⇤(n) : d  m}. Again, D⇤

m
(n) ✓ Dm(n) for all

m,n 2 N. Imposing D⇤
m
(n) = {1} is shown by Moulin (1980) to be a necessary

and su�cient condition for the size of a social choice problem to admit an

anonymous, neutral, e�cient, and resolute SCR.

Theorem 1 (Moulin (1980)). A social choice problem (A,N) with size (m,n)

admits an anonymous, e�cient, neutral, and resolute SCR f if and only if

D⇤
m
(n) = {1}.

The condition D⇤
m
(n) = {1} in Theorem 1 can be replaced by Dm(n) = {1}.4

We will refer to Dm(n) = {1} as Condition µ(m,n).5

Theorem 1 gives a complete picture of the sizes of social choice problems

where irresoluteness is inevitable but is silent about the structure of irresolute-
4Having already noted D⇤

m(n) ✓ Dm(n), we now remark that D⇤
m(n) = {1} =) Dm(n) =

{1} for all m,n 2 N. To prove this by contradiction, we first let k 2 Dm(n)\{1}. Thus, we
have k 2 D(n) and k  m. Due to the fundamental theorem of arithmetic, k has a prime
divisor k⇤, which divides n as well, hence k⇤ 2 D⇤

m(n), implying D⇤
m(n) 6= {1}.

5This condition is equivalent to asking the greatest common divisor of m! and n to be 1,
as mentioned by Doğan and Giritligil (2015), who reconsider the problem through a group
theoretic approach. Interestingly, as Doğan and Giritligil (2015) as well as Bubboloni and
Gori (2014) show, gcd(m!, n) = 1 turns out to be necessary and su�cient for the existence of
anonymous and neutral social welfare functions (i.e., functions which assign to every prefer-
ence profile a strict ranking of alternatives).
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ness in such cases. To analyze this, we define Kf = {#f(PN ) : PN 2 L(A)N}
as the irresoluteness outlook of SCR f . So for any natural number k  m, we

have k 2 Kf if and only if there exists a profile to which f assigns a set of k

alternatives.6

Theorem 2. Take any social choice problem (A,N) with size (m,n).

i . An SCR f is anonymous, e�cient, and neutral only if Kf ◆ Dm(n).

ii . There exists an anonymous, e�cient, and neutral SCR f with Kf =

Dm(n).

Proof.

i. Take d 2 Dm(n). As d 2 D(n), there exists t 2 N such that n = dt. Take

any set of alternatives {x1, . . . , xd} ✓ A and the partition {S1, . . . , Sd} of N

with S1 = {1, . . . , t}, S2 = {t+ 1, . . . , 2t}, S3 = {2t+ 1, . . . , 3t}, and so on. Let

X = A\{x1, . . . , xd}. Note that X may be empty. Now construct a profile PN

as depicted below:

S1 S2 S3 · · · Sd

x1 x2 x3 · · · xd

. . . · · · x1

. . . · · · .

. . . · · · .

. . xd · · · xd�3

. xd x1 · · · xd�2

xd x1 x2 · · · xd�1

X X X · · · X

As f is e�cient, f(PN ) ✓ {x1, . . . , xd}. Note that when d = 1, this implies

#f(PN ) = 1, hence 1 2 Kf . Now let d > 1. Consider the permutation � of A

such that

�(xi) = xi+1 8i 2 {1, . . . , d� 1},

�(xd) = x1, and

�(x̄) = x̄ 8x̄ 2 X.

6Note that the irresoluteness outlook of an SCR f does not specify to how many profiles
f assigns k alternatives when k 2 Kf .
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Next, let �0 2 ⌃N be such that �0(i) = i � t for all i 2 {t + 1, . . . , dt = n}
and �0(i) = (d� 1)t+ i for all i 2 {1, . . . , t}. Note that �(PN ) = (�0)�1(PN ).

Since f(PN ) is a nonempty subset of A, there exists xi 2 f(PN ) for some

i 2 {1, . . . ,m}. By neutrality, xi 2 f(PN ) implies �(xi) 2 f(�(PN )). By

anonymity, xi 2 f(PN ) implies xi 2 f(�(PN )). This is only possible when

f(PN ) = {x1, . . . , xd}, as xi 2 f(PN ) implies both xi 2 f(�(PN )) and xi+1 2
f(�(PN )) for all i 2 {1, . . . , d� 1} and xd 2 f(PN ) implies both xd 2 f(�(PN ))

and x1 2 f(�(PN )). Hence, #f(�(PN )) = d, thus d 2 Kf .

ii. Let ⌧(x, PN ) = # {i 2 N : xPiy 8y 2 A\{x}} denote the number of in-

dividuals that rank x on top of their preferences in the profile PN . Define the

plurality rule ⌥ : L(A)N ! A so that

⌥(PN ) = {x 2 A : ⌧(x, PN ) � ⌧(y, PN ) 8y 2 A}.

We now define the iterative plurality rule � :
S

B2A L(B)N ! A such that

�(PN ) ✓ B for all PN 2 L(B)N and B 2 A, which selects the plurality winners

after successive restriction of profiles to plurality winners.7 Let ⌥i+1(PN ) =

⌥(PN |⌥i(PN )) for all i � 1 and ⌥1(PN ) = ⌥(PN ). Define

�(PN ) = ⌥k(PN ),

where k is the minimal integer that satisfies ⌥k(PN ) = ⌥k+1(PN ). Such an

integer always exists given the finiteness of A. It is easily checked that � is

anonymous, e�cient, and neutral. We will show that K� = Dm(n) for all

n,m 2 N. By definition, for any x, y 2 A and any PN 2 L(A)N , x, y 2 �(PN )

implies ⌧(x, PN |⌥k(PN )) = ⌧(y, PN |⌥k(PN )) = t for some t 2 N. Furthermore, for

any z /2 �(PN ), ⌧(z, PN |⌥k(PN )) = 0. Thus, we have (#�(PN ))t = n, implying

K� ✓ D(n). As #�(PN )  m, in fact, K� ✓ Dm(n). Given part i of the

theorem, we have K� = Dm(n).

Theorem 2 generalizes Theorem 1, which now comes as a corollary; when

Condition µ(m,n) fails, by Theorem 2.i , every anonymous, e�cient, and neutral

SCR has #f(PN ) > 1 for some PN 2 L(A)N and when Condition µ(m,n) is

7Note that the iterative plurality rule presents a generalization of our concept of an SCR
in the sense that it is defined on the domain of preference profiles over every B 2 A.
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satisfied, the iterative plurality rule � ensures the existence of an anonymous,

e�cient, and neutral f with #f(PN ) = 1 for all PN 2 L(A)N .8

As a matter of fact, Theorem 2 establishes that the irresoluteness outlookK�

of the iterative plurality rule is the best that an anonymous, e�cient, and neutral

SCR can achieve. To be sure, this does not mean that � cannot be refined while

preserving anonymity, neutrality, and e�ciency. But surely, any anonymous,

e�cient, and neutral refinement of � will have the same irresoluteness outlook

as � itself. Moreover, as we formally state in the next theorem, any anonymous,

e�cient, and neutral SCR whose irresoluteness outlook is a proper superset

of K� can be refined while anonymity, neutrality, and e�ciency are preserved.

Before, we define, for any SCR f : L(A)N ! A, the composite rule �f :

L(A)N ! A by �f(PN ) = �(PN |f(PN )) 8PN 2 L(A)N .

Theorem 3. Given a social choice problem (A,N), an anonymous, e�cient,

and neutral SCR f with Kf � K� admits the anonymous, e�cient, and neutral

refinement �f : L(A)N ! A with K�f = K�.

Proof. Take any social choice problem (A,N) and any anonymous, e�cient, and

neutral f with Kf � K�. By definition of �f , we have �f(PN ) ✓ f(PN ) for all

PN 2 L(A)N . Take any P 0
N

2 L(A)N . First, let #f(P 0
N
) 2 K�. AsK� = Dm(n)

by Theorem 2, we have #f(P 0
N
) 2 Dm(n) which implies #�f(P 0

N
) 2 K� as

well. Now, let #f(P 0
N
) 2 Kf \ K�. As #�f(P 0

N
) 2 D(n) by definition of

�, we cannot have �f(P 0
N
) = f(P 0

N
). Thus, �f(P 0

N
) ⇢ f(P 0

N
). Furthermore,

as #�f(P 0
N
)  m, we have #�f(P 0

N
) 2 Dm(n) = K�. Noting that �f is

anonymous, e�cient, and neutral concludes the proof.

As an instance of Theorem 3, consider the social choice problemA = {x, y, z},
N = {1, 2}, and PN 2 L(A)N with xP1yP1z and zP2yP2x. For the Borda

rule �, which chooses the alternatives that have the minimal sum of ranks

over individuals, we have �(PN ) = {x, y, z}, thus 3 2 K� , while one can

check that K� = {1, 2}, and, indeed, the composite rule ��, which gives

��(PN ) = {x, z} ⇢ �(PN ), refines � and is anonymous, e�cient, and neutral.

8Part (ii) of Theorem 2 can be proven with rules other than the iterative plurality rule,
such as Coombs rule, as in Moulin (1983) p. 24. We are thankful to a referee for pointing out
this fact.
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Theorem 3 points to the possibility of shrinking the irresoluteness outlook of

an anonymous, e�cient, and neutral SCR f down to K� by composing f with

�, while �f preserves all three properties. However, this does not mean that �f

can refine f at every PN 2 L(A)N with f(PN ) � �(PN ). To see this, let m = 5

and n = 6, and consider the following profile PN .

P1 P2 P3 P4 P5 P6

x x t r y y
y y z z x x
z z x y r z
r t y x z t
t r r t t r

We have �(PN ) = {x, y} and '(PN ) = {x, y, z}, where ' denotes the fallback

bargaining rule.9 However, the composite rule �' does not refine ' at this

profile, i.e., �'(PN ) = {x, y, z}.

4 Consequential neutrality

Let Wf (S) = {PN 2 L(A)N : f(PN ) = S} for any S 2 A be the set of profiles

to which an SCR f assigns S. We write Wf (x) in place of Wf ({x}) in case

of singletons. Define an SCR f : L(A)N ! A to be consequentially neutral

(CN) i↵ #Wf (S) = #Wf (S0) for all S, S0 2 A with #S = #S0. Thus, when

f is resolute, CN requires that any two alternatives are assigned to the same

number of profiles.

Proposition 1. An SCR f is neutral only if f is CN .

Proof. Take any neutral SCR f . Let S, S0 ✓ A be such that S = {x1, . . . , xh}
and S0 = {x0

1, . . . , x
0
h
} for some h 2 {1, . . . ,m}. Take any PN 2 Wf (S). Thus,

we have f(PN ) = S. Take any � : A $ A such that �(xi) = x0
i
for all

i 2 {1, . . . , h}. By neutrality, PN 2 Wf (S) implies f(�(PN )) = S0, or �(PN ) 2
9Define, for any PN 2 L(A)N , ↵(PN , x, k) = #{i 2 N : #{y 2 A\{x} : xPiy} � k}, which

gives the number of individuals that rank x higher than at least k alternatives. Now, define
the fallback bargaining rule ' : L(A)N ! A so that, 8x 2 A, x 2 '(PN ) i↵

max
k2{0,...,m�1}

{k 2 N : ↵(PN , x, k) = n} � max
k2{0,...,m�1}

{k 2 N : ↵(PN , y, k) = n}

for all y 2 A\{x}.
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Wf (S0). Thus, we have #Wf (S)  #Wf (S0). As #Wf (S0)  #Wf (S) holds

as well, the proof is completed.

Now, we focus on resolute SCRs. Given m,n 2 N\{1} with #A = m

and N = {1, . . . , n}, we write FCN
m,n

for the set of resolute SCRs that are CN;

FNEUTRAL
m,n

for the set of resolute and neutral SCRs; and FRESOLUTE
m,n

for the

set of resolute SCRs.

We know from Proposition 1 that FNEUTRAL
m,n

✓ FCN
m,n

for all m,n 2 N\{1}.
The inclusion is indeed strict. To see this, fix a profile P̄N 2 L(A)N . Take

the permutation � 2 ⌃A such that �(x1) = x2, �(x2) = x1, and if m � 3,

let �(xj) = xj for all j 2 {3, . . . ,m}. Take any partition P = {P1, . . . ,Pm}
of L(A)N such that #Pi = #Pj for all i, j 2 {1, . . . ,m} and P̄N ,�(P̄N ) 2 P1.

Define f : L(A)N ! A such that f(PN ) = xi for all PN 2 Pi and i 2 {1, . . . ,m}.
By construction, #{PN 2 L(A)N : f(PN ) = xi} = #{PN 2 L(A)N : f(PN ) =

xj} for all i, j 2 {1, . . . ,m}, hence f is CN. However, it fails neutrality as

f(P̄N ) = x1 = f(�(P̄N )).

This raises the following two issues: How large is FCN
m,n

compared to FNEUTRAL
m,n

and which interesting resolute SCRs, if any, does it contain? We address the

first question through a counting approach.10

Theorem 4. The following equalities hold.

i. #FRESOLUTE
m,n

= m(m!n)
.

ii. #FNEUTRAL
m,n

= m(m!n�1)
.

iii. #FCN
m,n

= (m!n)!m!
(m!n�1(m�1)!)!m .

Proof.

i. This is straightforward, as we noted before that #L(A)N = m!n.

ii. We say that P 0
N

is a renaming (for alternatives) of PN i↵ there exists

� 2 ⌃A such that P 0
N

= �(PN ). We write PN⇢P 0
N

when P 0
N

is a renaming

of PN . Noting that ⇢ ✓ L(A)N ⇥ L(A)N is an equivalence relation, we write

10Perry and Powers (2008) propose a method to count, in the case of two alternatives, the
number of aggregation rules that satisfy anonymity and neutrality. Bubboloni and Gori (2016)
give a method to perform these counts for any number of alternatives.
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E for the partition of L(A)N provided by ⇢. Note that each profile PN admits

m! renamings and that #L(A)N = m!n. Thus, E admits m!n�1 equivalence

classes, each of which contains m! profiles. We write E = {Ei}i2{1,...,m!n�1} with

#Ei = m! for all i 2 {1, . . . ,m!n�1}.
Take any Et 2 E and pick any PN 2 Et. Let f(PN ) = x for some x 2 A.

Neutrality, together with the definition of Et, determines f(P 0
N
) for all P 0

N
2

Et \ {PN}. As there are m alternatives that can be assigned to PN by f , there

are m neutral and resolute ways an SCR can be defined for the profiles in Et. As

t 2 {1, . . . ,m!n�1}, there are m(m!n�1) neutral and resolute SCRs altogether.

iii. First observe that, given any two natural numbers p and q, there are
(pq)!
q!p ways to partition a set of cardinality pq into p sets, each with cardinality q.

Hence, there are (m!n)!
(m!n�1(m�1)!)!m ways to partition L(A)N with cardinality m!n

into m sets, each with cardinality m!n/m = m!n�1(m � 1)!. For each of these

ways, m! distinct resolute SCRs can be defined. As a result, (m!n)!
(m!n�1(m�1)!)!mm!

resolute SCRs that satisfy consequential neutrality can be constructed.

From Theorem 4, one can compute
#FNEUTRAL

m,n

#FRESOLUTE
m,n

= m(�1+ 1
m! )m!n . As 1

m! < 1

for all m > 1, this ratio approaches to 0 as m ! 1 or n ! 1. Thus, we con-

clude that the ratio of the number of neutral and resolute SCRs to the number of

all resolute SCRs is negligible in the limit. Although we do not have analytical

solutions for the comparisons regarding consequential neutrality, we obtained

some numerical observations through computations for small values of m and n

that are provided in Appendix A. These indicate that both
#FCN

m,n

#FRESOLUTE
m,n

and

#FNEUTRAL

m,n

#FCN
m,n

converge to 0, as m or n increases. Thus, although consequen-

tial neutrality and neutrality are both hard to satisfy, neutrality seems to be

considerably more demanding compared to consequential neutrality.11

Now we address whether FCN
m,n

\FNEUTRAL
m,n

contains interesting SCRs and

the answer is a�rmative, at least for certain sizes of the social choice problem.

We say that (m,n) satisfies Condition �(m,n) i↵ m |
�
m

k

�
for all k 2 Dm(n).

11We are providing computational results for only some small values of m and n because
as m and n increase, these values grow dramatically. As diminution in the ratios are also
fast, these values appear to be su�cient for this conclusion. Since the aim of this counting
exercise is to assess the comparison of numbers of functions that satisfy the two versions of
neutrality, we leave out other axioms (such as anonymity and e�ciency), although it certainly
is an interesting question.
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This condition ensures the existence of anonymous, CN, e�cient, and resolute

SCRs, as shown in Theorem 5 below.

Theorem 5. Let (A,N) be a social choice problem with size (m,n) where Con-

dition �(m,n) is satisfied. Every anonymous, e�cient, irresolute, and neutral

SCR f admits a resolute refinement which is anonymous, CN, and e�cient.

Proof. Fix m,n 2 N as such, let A = {x1, . . . , xm}, and take any anonymous,

e�cient, and neutral f : L(A)N ! A. Clearly, #�f(PN ) 2 Dm(n) for all

PN 2 L(A)N due to Theorems 2 and 3. Next, observe that m - n, as otherwise
we would have m 2 Dm(n), while m -

�
m

m

�
= 1. Thus, there does not exist a

profile PN with �f(PN ) = A. For any k 2 Dm(n)\{1}, denote with Ak the

subsets of A with precisely k elements, that is, Ak = {S ✓ A : #S = k}. Thus,
we have #Ak =

�
m

k

�
= m

⇣�
m�1
k�1

�
/k
⌘
. Condition �(m,n) ensures that

�
m�1
k�1

�
/k

(= t from now on) is a natural number. We want to show that each xi 2 A

can be assigned to t distinct sets of cardinality k that contains xi. This will

su�ce to prove the theorem, given Proposition 1, as the number of profiles these

k�sets are assigned to under a neutral SCR are equal. To do that, we introduce

the following iterative approach.

First, define � : A $ A such that �(xi) = xi+1 for all i 2 {1, . . . ,m � 1}
and �(xm) = x1. Next, let �Ak

denote the lexicographic order of the k�sets in

Ak according to the order x1 � · · · � xm. Thus, for instance, {x1, . . . , xk} �Ak

{x1, . . . , xk�1, xk+1} �Ak
S for all S 2 Ak\{{x1, . . . , xk}, {x1, . . . , xk�1, xk+1}}.

Step 1.

- Take the first set in Ak according to �Ak
, i.e., {x1, . . . , xk}, and de-

note this set with Ak,1. Now, denote with �r(Ak,1), the r�time applica-

tion of permutation �, with a slight abuse of notation. Thus, for instance,

�1(Ak,1) = {x2, . . . , xk+1}. Denote with Ak,1 the set comprising of Ak,1 to-

gether with m�1 other k�sets in Ak that are constructed from Ak,1 by applying

� iteratively m� 1 times. Thus, Ak,1 = {Ak,1,�1(Ak,1), . . . ,�m�1(Ak,1)}.

Step 2.
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- Take the first set in Ak \ Ak,1 according to �Ak
and denote this set with

Ak,2. ConstructAk,2 as in Step 1 so thatAk,2 = {Ak,2,�1(Ak,2), . . . ,�m�1(Ak,2)}.

Step j for j 2 {3, . . . , t} if t > 2.

- Take the first set in Ak \
S

j�1
c=1 Ak,c according to �Ak

and denote this set

with Ak,j . Construct Ak,j as in Step 1.

The proof concludes by constructing an SCR g that refines �f such that for

all PN 2 L(A)N , k 2 Dm(n) \ {1}, and j 2 {1, . . . , t},

• �f(PN ) = Ak,j =) g(PN ) = x1 and

• �f(PN ) = �r(Ak,j) =) g(PN ) = xr+1 8r 2 {1, . . . ,m� 1}.

We need to make sure that the following hold.

(i) x1 2 Ak,j for all j 2 {1, . . . , t}.

(ii) xr+1 2 �r(Ak,j) for all j 2 {1, . . . , t} and for all r 2 {1, . . . ,m� 1}.

(iii) {Ak,j}j2{1,...,t} is a partition of Ak.

(i): First, note that x1 2 Ak,1. Next, observe that #{S 2 Ak,1 : x1 2 S} = k

as #Ak,1 = k, x1 2 Ak,1, and for each xj 2 Ak,1 \ {x1}, there exists a unique

r 2 {1, . . . ,m � 1} such that �r(xj) = x1. Thus, in fact, for all j 2 {2, . . . , t},
S

j�1
c=1 Ak,c contains (j � 1)k sets that contain x1 and there remain (t� j + 1)k

sets in Ak \
S

j�1
c=1 Ak,c that contain x1.12 As for each j 2 {2, . . . , t}, the first

set in Ak \
S

j�1
c=1 Ak,c according to �Ak

is chosen to be Ak,j , x1 2 Ak,j for all

j 2 {1, . . . , t} is established.

(ii): As x1 2 Ak,j for all j 2 {1, . . . , t} and �r(x1) = xr+1, it is straight-

forward to note that xr+1 2 �r(Ak,j) for all j 2 {1, . . . , t} and for all r 2
{1, . . . ,m� 1}.

(iii): First, note that #Ak,i = m for all i 2 {1, . . . , t}. We need to show

that Ak,i \ Ak,j = ; for any i, j 2 {1, . . . , t}. This follows from the statement

(i) as Ak,j 2 Ak \
S

j�1
c=1 Ak,c for all j 2 {1, . . . , t}. To see that, suppose for a

contradiction that there exists S 2 Ak,i \ Ak,j for some i, j 2 {1, . . . , t} with

12This holds for any xi 2 A.
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j > i. We must have S = �ri(Ak,i) = �rj (Ak,j) for some ri, rj 2 {1, . . . ,m�1}.
Note that ri 6= rj as Ak,i 6= Ak,j . In case ri > rj , we have �ri�rj (Ak,i) = Ak,j

and in case ri < rj , we have �ri+m�rj (Ak,i) = Ak,j , both contradicting that

Ak,j 2 Ak \
S

j�1
c=1 Ak,c.13

We let g(PN ) = �f(PN ) for all PN 2 L(A)N with #�f(PN ) = 1. g is a

resolute refinement of f . Naturally, g is anonymous as f is. Furthermore, by

construction of the iterative process above, g is also CN. Finally, as f is e�cient,

g is e�cient as well.

To see how the refinement in Theorem 5 can be constructed, consider the

following example with A = {x1, . . . , x7} and n = 5. Take any f that is anony-

mous, e�cient, and neutral. We have D7(5) = {1, 5}, so we focus on k = 5

for the iterative process. We have
�7
5

�
= 21 and t = 3, that is, there are 21

distinct sets with 5 alternatives and all profiles that result in 5 alternatives

under �f should be assigned to each of the 7 alternatives so that each will be

chosen within 3 di↵erent sets. So in Step 1, we set A5,1 = {x1, x2, x3, x4, x5}
and construct A5,1. In Step 2, we set A5,2 = {x1, x2, x3, x4, x6} which follows

{x1, x2, x3, x4, x5} in the lexicographic order �A5 and construct A5,2. In Step 3,

final step, we cannot set the next set according to �A5 , i.e., {x1, x2, x3, x4, x7},
as A5,3 because it already appears in A5,1 as �6(A5,1) = {x1, x2, x3, x4, x7}.
However, we can set {x1, x2, x3, x5, x6} as A5,3, which follows {x1, x2, x3, x4, x7}
in the lexicographic order �A5 and construct A5,3 to complete the iterative pro-

cess as depicted in the Table 1.

The refinement g is constructed so that for all PN 2 L(A)N and for all

j 2 {1, 2, 3}
(i) �f(PN ) 2 A5,j implies g(PN ) = x1 and

(ii) �f(PN ) 2 �r(A5,j) implies g(PN ) = xr+1 for all r 2 {1, . . . , 6}.
Note that Condition �(m,n) ensures the existence of anonymous, CN, e�-

cient, and resolute SCRs by asking m |
�
m

k

�
to hold for every k 2 Dm(n). On

the other hand, as it follows from the proof of Theorem 5, a weaker version of

Condition �(m,n) that asks m |
�
m

k

�
to hold for some k 2 Dm(n), although

13Note that �r+m(xi) = �r(xi) for all r 2 N and i 2 {1, . . . ,m}.
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j = 1 j = 2 j = 3
A5,j {x1, x2, x3, x4, x5} {x1, x2, x3, x4, x6} {x1, x2, x3, x5, x6}

�(A5,j) {x2, x3, x4, x5, x6} {x2, x3, x4, x5, x7} {x2, x3, x4, x6, x7}
�2(A5,j) {x3, x4, x5, x6, x7} {x3, x4, x5, x6, x1} {x3, x4, x5, x7, x1}
�3(A5,j) {x4, x5, x6, x7, x1} {x4, x5, x6, x7, x2} {x4, x5, x6, x1, x2}
�4(A5,j) {x5, x6, x7, x1, x2} {x5, x6, x7, x1, x3} {x5, x6, x7, x2, x3}
�5(A5,j) {x6, x7, x1, x2, x3} {x6, x7, x1, x2, x4} {x6, x7, x1, x3, x4}
�6(A5,j) {x7, x1, x2, x3, x4} {x7, x1, x2, x3, x5} {x7, x1, x2, x4, x5}

A5,1 A5,2 A5,3

Table 1: Iterative process for constructing the partitioning {A5,j}j2{1,...,t} of

A5, where t =
�7
5

�
/7 = 3.

does not ensure resoluteness, allows the existence of anonymous and e�cient

refinements that satisfy CN. We state this formally in the following remark and

leave out its proof as it follows from the proof of Theorem 5. Let us say that

(m,n) satisfies Condition �0(m,n) i↵ m |
�
m

k

�
for some k 2 Dm(n).

Remark 1. Let (A,N) be a social choice problem with size (m,n) where Con-

dition �0(m,n) is satisfied. Every anonymous, e�cient, and neutral SCR f

admits a refinement which is anonymous, e�cient, and CN .

How restrictive is Condition �(m,n)? Note that when m is a prime, Condi-

tion �(m,n) is satisfied.14 Thus, anonymous, CN, e�cient, and resolute SCRs

exist when m is prime and does not divide n. Campbell and Kelly (2015) show

that when n has at least two distinct prime factors, there can only be finitely

many values of m for which there are anonymous, neutral, and resolute SCRs.

Our result implies, for instance, that for such n, there are infinitely many values

of m (such as all primes that are greater than n) for which there are anonymous,

CN, and resolute SCRs. Furthermore, these SCRs can be e�cient.

To expand the picture drawn by Theorem 5, we show that Condition �(m,n)

is not necessary for the existence of anonymous, CN, e�cient, and resolute SCRs.

As a matter of fact, the theorem below spans some instances where Condition

�(m,n) fails, e.g., m = 4 and n = 2 (note that 2 2 D4(2) and 4 -
�4
2

�
).

14To see this, note that the numerator in
�
m

k

�
= m·...·(m�k+1)

k! is divisible by m whereas
none of {2, . . . , k} divides m.
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Theorem 6. Any social choice problem (A,N) with m � 4 and n 2 {2, 3}
admits an anonymous, CN, e�cient, and resolute SCR.

Proof. Let m � 4 and N = {1, 2}. For any x, y 2 A, let Txy ⇢ L(A)N denote

the set of profiles where individual 1 ranks x first and individual 2 ranks y first.

Hence {Txy}x 6=y partitions the set of profiles where there is no unanimously top

ranked alternative. Given any x, y 2 A, note that

Tyx = {(Q,P ) 2 L(A)N : (P,Q) 2 Txy},

and hence, #Txy = #Tyx. Now, let A = {x1, . . . , xm} and define for any distinct

i, j 2 {1, . . . ,m},

Dm(i, j) =
�
k, l 2 {1, . . . ,m}\{i, j} : k < l < t 8t 2 {1, . . . ,m}\{i, j, k, l}

 
,

as the doubleton that contains the lowest two indices in A excluding i and j.

Let g : L(A)N ! A be a resolute SCR that assigns to any profile the alternative

that is ranked first by both individuals, if exists. Note that #{PN 2 L(A)N :

xPiz 8z 2 A 8i 2 N} = #{PN 2 L(A)N : yPiz 8z 2 A 8i 2 N} for all x, y 2 A.

Furthermore, for all PN 2 Txixj
with i < j and Dm(i, j) = {k, l}, let g(PN ) = xi

when xkP1xl () xkP2xl and g(PN ) = xj otherwise. Hence, we have #{PN 2
Txixj

: g(PN ) = xi} = #{PN 2 Txixj
: g(PN ) = xj} for all xi, xj 2 A such that

i < j. Furthermore, let g(P,Q) = g(Q,P ) 8(P,Q) 2 L(A)N . By construction,

g is CN and anonymous. Moreover, as g picks an alternative only if it is ranked

first by an individual, it is also e�cient.

Now let N = {1, 2, 3}, hence n = 3. Let T ⇢ L(A)N denote the subset of

profiles where each individual has a distinct alternative as most preferred. That

is, PN 2 T i↵ x1P1y for all y 2 A\{x1}, x2P2y for all y 2 A\{x2}, and x3P3y

for all y 2 A\{x3} implies x1, x2, and x3 are all distinct. Note that under the

plurality rule ⌥, #⌥(PN ) = 1 for all PN 2 L(A)N\T and #⌥(PN ) = 3 for all

PN 2 T .

Let A = {x1, . . . , xm}. For any q, r, t 2 {1, . . . ,m} with q < r < t, let

M({q, r, t}) denote the minimal element in {1, . . . ,m}\{q, r, t}. So for instance,

when m = 5, M({2, 3, 4}) = 1 and M({1, 2, 4}) = 3. Let T{xq,xr,xt} ⇢ T
denote the set of profiles where each of xq, xr, and xt appears on top. We
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now define an SCR h. We let h(PN ) = ⌥(PN ) for all PN 2 L(A)N\T . For

any PN 2 T{xq,xr,xt}, let j 2 N denote the individual such that xqPjxw for all

w 2 {1, . . . ,m} \ {q}. We let h(PN ) = xq if xM({q,r,t})Pjxz for all z 2 {r, t},
h(PN ) = xr if xzPjxM({q,r,t}) for all z 2 {r, t}, and h(PN ) = xt if either

xrPjxM({q,r,t})Pjxt or xtPjxM({q,r,t})Pjxr.

Note that h is resolute by construction and is e�cient as it refines the plu-

rality rule. Moreover, it is anonymous, as h(PN ) = h(P 0
N
) whenever P 0

N
is

anonymously equivalent to PN . Since we have

#{PN 2 T{xq,xr,xt}|xM({q,r,t})Pjxz 8z 2 {r, t}}

= #{PN 2 T{xq,xr,xt}|xzPjxM({q,r,t}) 8z 2 {r, t}}

= #{PN 2 T{xq,xr,xt}|xrPjxM({q,r,t})Pjxt or xtPjxM({t,q,r})Pjxr},

h is also CN.

At this stage, one may be tempted to ask whether one can find an anony-

mous, CN, e�cient, and resolute SCR at any (m,n). The following theorem

advises caution on this.

Theorem 7. There exists a social choice problem which admits no anonymous,

CN, e�cient, and resolute SCR.

Proof. Let A = {x, y} and N = {1, 2}. We have four possible profiles, PN , P 0
N
,

P 00
N
, P 000

N
as shown below.

P1 P2

x x
y y

P 0
1 P 0

2

y y
x x

P 00
1 P 00

2

x y
y x

P 000
1 P 000

2

y x
x y

E�ciency implies choosing x at PN and y at P 0
N
. Moreover, f(P 00

N
) = f(P 000

N
) by

anonymity. Hence, #{PN 2 L(A)N : f(PN ) = x} 6=#{PN 2 L(A)N : f(PN ) =

y}, a failure of consequential neutrality.

Nevertheless, the social choice problem in the proof of Theorem 7 admits an

anonymous, CN, and resolute SCR.15 This raises the question of how general

15 To see this, consider g : L(A)N ! A such that g(PN ) = g(P 0
N
) = x and g(P 00

N
) =

g(P 000
N

) = y, which is both anonymous and CN while not e�cient.
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is the compatibility between anonymity and consequential neutrality when we

dispense with the e�ciency condition.

Moulin (1991) introduces the following condition that we call  (m,n). Let

D(n)\{1} = {d1, . . . , dK} for some K 2 N.
Condition  (m,n): @(a1, . . . , aK) 2 (N [ {0})K such that

P
K

i=1 aidi = m.

Remark 2. µ(m,n) =)  (m,n) for all n,m � 2.

The following theorem states the cases of incompatibility of anonymity and

neutrality in resolute social choice.

Theorem 8 (Moulin (1991)). There exists an anonymous, neutral, and resolute

SCR if and only if  (m,n) holds.

We are now ready to state and prove our final theorem, which shows that

if m > n, there exist anonymous, CN, and resolute SCRs for any social choice

problem with size (m,n).

Theorem 9. For all social choice problems with n < m, there exists an anony-

mous, CN, and resolute SCR.

Proof. Given any preference profile, we observe k distinct preferences for some

k 2 {1, . . . ,min{m!, n}}. There are
�
m!
k

�
ways to choose k preferences from

L(A). Let P = {p1, . . . , pk} be a set of k distinct preferences. Write V k for the

set of vectors v = (v1, . . . , vk) with vi � 1 for all i 2 {1, . . . , k} and
P

k

i=1 vi = n.

Each v 2 V k, combined with P, induces a set of profiles EP
v

that consists of all

profiles where pi appears vi times for all i 2 {1, . . . , k}. Let EP =
S

v2V k EP
v
.

Three remarks are in order. First, #EP depends on k and not on the preferences

in P. Second, an SCR f that satisfies at any given k 2 {1, . . . ,min{m!, n}} and

P the invariance f(PN ) = f(P 0
N
) for all PN , P 0

N
2 EP is anonymous. Third,

m |
�
m!
k

�
if k < m, which is ensured when n < m. Now, let tk =

�
m!
k

�
/m. Write

A = {x1, . . . , xm} and at each k 2 {1, . . . ,min{m!, n}} assign to every xi tk

distinct sets P = {p1, . . . , pk} and let f(PN ) = xi for all PN 2 EP at every P

assigned to xi for all i 2 {1, . . . ,m}. By the three remarks, f is anonymous,

CN, and resolute.
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5 Conclusion

Using an irresolute SCR, one cannot reach a collective choice without referring

to an additional mechanism that is external to the SCR. Therefore, Theorems 1

and 8 reflect the impossibility of making a collective choice by being confined to

anonymous and neutral (e�cient) SCRs as collective choice procedures. We take

two di↵erent but related approaches to address how severe this impossibility is.

First, we identify the minimal irresoluteness outlook that would arise when

anonymity, e�ciency, and neutrality make ties inevitable. Based on this anal-

ysis, we deliver a method which, while preserving anonymity, e�ciency, and

neutrality, refines SCRs that deliver more ties than necessary.

Next, we introduce consequential neutrality as a weakening of neutrality. As

expected, we obtain results that are more permissive than the (im-)possibilities

announced by Theorems 1 and 8. We identify a large class of social choice prob-

lems where resoluteness becomes possible just because consequential neutrality

replaces neutrality. Nevertheless, when e�ciency is preserved, we know that

this possibility does not hold for every social choice problem.

Dispensing with e�ciency presents a case of interest. We show that anony-

mous, CN, and resolute social choice is possible when m > n. Although this

condition is logically independent of the necessary and su�cient condition of

Theorem 8, it opens the door of resoluteness to a large class of social choice

problems that are doomed to irresoluteness by Theorem 8. Moreover, we are

not able to find any social choice problem where anonymity, consequential neu-

trality, and resoluteness are incompatible. This provokes to ask whether these

three conditions are compatible for any size of the social choice problem, which

we leave as a –combinatorically di�cult– open question.
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A Appendix: Observations on the numbers of

CN, neutral, and resolute SCRs

Tables 1 and 2 below show ratios the observations made in Section 4 are based

on. In both tables, 0 represents numbers smaller than 10�10mn.

#FNEUTRAL

m,n /#FCN

m,n n = 2 n = 3 n = 4
m = 2 0.333333 0.114286 0.00994561
m = 3 3.58965⇥ 10�14 5.73212⇥ 10�85 0
m = 4 0 0 0

Table 2: The ratio of #FNEUTRAL
m,n

/#FCN
m,n

for di↵erent values of (m,n).

#FCN

m,n/#FRESOLUTE

m,n n = 2 n = 3 n = 4 n = 5
m = 2 0.75 0.546875 0.392761 0.2799
m = 3 0.135304 0.0229012 0.0038267 0.000638057
m = 4 0.00175989 0.0000149993 1.27583⇥ 10�7 1.08512⇥ 10�9

m = 5 8.19334⇥ 10�7 5.69061⇥ 10�11 3.95181⇥ 10�15 0
m = 6 8.12216⇥ 10�12 0 0 0

Table 3: The ratio of #FCN
m,n

/#FRESOLUTE
m,n

for di↵erent values of (m,n).
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