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Collège de France, 4 place Jussieu, F-75005 Paris, France and
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Relativistic corrections of order α2 to the g-factor of H+
2 are calculated with a high accuracy of

9 significant digits for a wide range of rovibrational states. The precision of previous calculations
[R. A. Hegstrom, Phys. Rev. A 19, 17 (1979)] is improved by about 5 orders of magnitude by
performing nonadiabatic variational calculations and by including recoil corrections. These results
allow for non-destructive identification of the internal state through measurement of spin-flip tran-
sition frequencies, which is a crucial requirement for proposed spectroscopy experiments on H+

2

and its antimatter counterpart H̄−
2 in Penning traps [E. G. Myers, Phys. Rev. A 98, 010101(R)

(2018)]. Further, they pave the way towards precision calculations of the g-factor through calcula-
tion of higher-order QED corrections and hence to an alternative precision route to obtaining the
proton-electron mass ratio.

I. INTRODUCTION

Spectroscopic measurements of the antihydrogen molecular ion H̄−2 , compared with its normal matter counterpart,
have been recently proposed as a new avenue towards improved tests of the CPT symmetry [1]. This perspective
relies on the possibility to store a single H̄−2 or H+

2 ion in a Penning trap and identify its ro-vibrational state in a non-
destructive way. The envisaged experiments use similar methods to those developed for high-precision measurements
of bound-electron g-factors (see e.g. [2]). They would be performed in a double Penning trap consisting of a “precision
trap” with a highly uniform magnetic field, where spectroscopic measurements are carried out, and an “analysis trap”
with an inhomogeneous magnetic field allowing the positron or electron spin state to be determined via the so-called
continuous Stern-Gerlach technique. The ion’s internal state can then be determined using the fact that the spin-
flip frequencies depend in a resolvable and calculable way on the ro-vibrational and hyperfine state. This detection
technique requires knowledge of a large number of Zeeman transition frequencies in a ∼ 5 Tesla magnetic field, at a
precision level of ∼ 10−6−10−7. Since the dominant contribution to the Zeeman shift stems from the interaction of the
magnetic field with the positron/electron spin (through the term g s·B), this implies that the bound positron/electron
g factors should be determined theoretically with similar precision for an extensive range of rovibrational levels.

Beyond its importance for nondestructive internal state detection, the g-factor itself could be measured with high
precision from the ratio of the cyclotron and spin-flip frequencies [2]. As discussed in [1], measuring this frequency
ratio in H̄−2 and H+

2 provides a way to compare m(e−)/m(p) with m(e+)/m(p̄) at a competitive precision level, under
the assumptions that charges and g-factors have opposite signs in matter and antimatter. Further, if the theoretical
g-factor of H+

2 is calculated with sufficiently high accuracy, the comparison between theory and experiment would
lead to a stringent test of bound-state QED or to an independent determination of m(e−)/m(p).

The theoretical g-factors of hydrogen molecular ions have been calculated by Hegstrom [3]. In that work, the
author derived an effective Hamiltonian describing leading-order relativistic (α2) and radiative (α3) corrections in
the nonrecoil limit, and performed numerical calculations of the α2-order correction in the adiabatic approximation,
for 43 rovibrational levels of H+

2 . The theoretical uncertainty of the g-factor was estimated to about 10−7 due to
uncalculated α3-order corrections. It is worth noting that the g-factor of H+

2 has so far been measured in only one
experiment [4] for a mixture of three (unresolved) vibrational levels, with a relative uncertainty of 0.9 ppm. The
experimental result was found to be in good agreement with the theoretical predictions of [3].

The present work pursues a double aim. Firstly, in order to enable state identification of (anti-)hydrogen molecular
ions in Penning trap experiments, it is important to extend g-factor calculations to a wider range of rovibrational
states, covering all possible states the ions may be found in. H+

2 ions are conveniently produced by electron-impact
ionization of H2, which creates ions predominantly in v = 0 − 12, L = 0 − 4 [5] or may be produced in a selected
rovibrational state using resonance-enhanced multi-photon ionization (REMPI) [6, 7]. Formation of H̄−2 ions through
the reaction H̄+ + p̄→ H̄−2 + e+, leading to production in v = 0− 8, L = 0− 27, has been proposed in [1]. Assuming
these production schemes, and taking into account the possible use of the Stark quenching induced by the ion’s motion
in the trap’s magnetic field to accelerate vibrational decay [8], 201 rovibrational levels (out of 481 bound levels in
total [9]) have been identified as the most experimentally relevant. Other mechanisms to produce H̄−2 , using collisions
between laser-excited H̄ atoms, have been explored in [10], but resulting ro-vibrational distributions were not discussed
in that work.
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The second aim is to provide complete and accurate calculations of the α2-order relativistic correction, that may
serve as a reliable basis for future high-precision calculations of the g-factor through inclusion of higher-order cor-
rections. To this end, we improve the calculations of Ref. [3] by performing extensive nonadiabatic (three-body)
calculations, and by including recoil corrections, which had been neglected in [3]. This allows us to compute the α2

correction with an (absolute) numerical uncertainty of about 10−13.

II. THEORY

In this section, we write the theoretical expressions of corrections to the g-factor in the general case of a one-electron
diatomic molecule. We thus consider a three-body system made of two nuclei, with masses m1, m2 and charges Z1e,
Z2e, and one electron (mass m3 ≡ me, charge −e). Particle positions are denoted by R1, R2, R3 ≡ Re, and we use
the internal coordinates r1 = Re −R1, r2 = Re −R2, and r12 = R1 −R2 = r2 − r1. The nuclear and electronic
momenta are denoted by P1,P2 and pe, respectively.

The α2-order relativistic correction to the g-factor including recoil terms can be described in an effective Hamiltonian
approach [3, 11–16]. The first contribution at this order to the interaction of the electron spin se with an external
magnetic field B is

H1 = −ge
e

2me
(se ·B)

p2
e

2m2
e

, (1)

where ge is the free electron’s g-factor. A second term comes from the electronic spin-orbit Hamiltonian Hso in the
external field, which can be written in the center-of-mass frame as

Hso =
ge − 1

2m2
e

(
Z1

r3
1

(r1×πe) +
Z2

r3
2

(r2×πe)
)
·se −

ge
2me

(
Z1

m1r3
1

(r1×Π1) +
Z2

m2r3
2

(r2×Π2)

)
·se , (2)

where [3]

πe = pe + eA(reC)− eme

M
(Z1A(r1C) + Z2A(r2C)−A(reC)) ,

Π1 = P1 − Z1eA(r1C)− em1

M
(Z1A(r1C) + Z2A(r2C)−A(reC)) , (3)

Π2 = P2 − Z2eA(r2C)− em2

M
(Z1A(r1C) + Z2A(r2C)−A(reC)) ,

A(r) =
1

2
B×r.

Here, M = m1 +m2 +me, and reC , r1C , r2C are the positions of the electron and nuclei with respect to the center of
mass, which are given by

r1C =
−(m2 +me)r1 +m2r2

M
,

r2C =
m1r1 − (m1 +me)r2

M
, (4)

reC =
m1r1 +m2r2

M
.

As shown in [3], the expressions of the momenta in Eq. (3) result from careful separation of the center-of-mass motion,
following a procedure that was first proposed in [11, 12] in atomic systems. The latter results have been confirmed
using the NRQED approach [14–16]. In the present work, we improve the treatment of Ref. [3] by keeping all recoil
terms in Eqs. (2-4). The full contribution from Hso to the g-factor is then given by the following effective Hamiltonian
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(taking ge = 2 in order to retain only the α2-order contribution):

H2 =
e

2me
σijsieB

j , (5)

σij =
1

2me

{
c1

(
r2
1δ
ij − ri1r

j
1

r3
1

)
+ c2

(
r2
2δ
ij − ri2r

j
2

r3
2

)
+ c

(1)
12

(
r1 ·r2δij − ri1r

j
2

r3
1

)
+ c

(2)
12

(
r1 ·r2δij − ri1r

j
2

r3
2

)}
,

c1 =
1

M2

(
(M −me)m1Z1 +m1meZ1Z2 −

(2M +m1)(m2 +me)meZ
2
1

m1

)
,

c2 =
1

M2

(
(M −me)m2Z2 +m2meZ1Z2 −

(2M +m2)(m1 +me)meZ
2
2

m2

)
,

c
(1)
12 =

1

M2

(
(M −me)m2Z1 − (m1 +me)meZ1Z2 +

(2M +m1)m2meZ
2
1

m1

)
,

c
(2)
12 =

1

M2

(
(M −me)m1Z2 − (m2 +me)meZ1Z2 +

(2M +m2)m1meZ
2
2

m2

)
.

The last contribution comes from the second-order energy shift induced by the orbital Zeeman term HZ and the
spin-orbit coupling term:

∆Eso−Z = 2〈ψ0|HsoQ(E0 −H0)−1QHZ |ψ0〉 , (6)

HZ =

(
e

2me
LeC −

Z1e

2m1
L1C −

Z2e

2m2
L2C

)
·B

Here, H0 is the nonrelativistic (Schrödinger) Hamiltonian of the three-body system, ψ0 the wave function for the
rovibrational state under consideration, E0 the corresponding nonrelativistic energy level, and Q is a projection
operator on a subspace orthogonal to ψ0. LeC ,L1C ,L2C are the angular momenta of the electron and nuclei about
the center of mass. Again, in our calculations we take into account all the recoil terms in Hso and HZ .

Corrections to the electronic g-factor can be deduced from Eqs. (1), (5) and (6). The H1 term [Eq. (1)] induces a
correction for a rovibrational state (v, L),

∆g1(v, L)

ge
= −〈v, L|p

2
e|v, L〉

2me
. (7)

The other terms, H2 [Eq. (5] and ∆Eso−Z [Eq. (6)] are anisotropic. This is linked to the departure from spherical
symmetry in a molecule, which led Hegstrom to introduce a g tensor in Ref. [3]. Alternatively, the results can be
expressed in terms of a g-factor similarly to the atomic case, the difference being that in a molecule, the g-factor
acquires a dependence on the magnetic quantum number M .

The term H2 may be decomposed into irreducible tensor components as follows:

H2 = σ(0) (se ·B) + σ(2) · (se ⊗B)
(2)
, (8)

σ(0) =
1

2me

2

3

(
c1
r1

+
c2
r2

+
c
(1)
12 r1 ·r2
r3
1

+
c
(2)
12 r1 ·r2
r3
2

)
, (9)

σ(2) =
1

2me

1

3

(
c1Q

(2)
11

r3
1

+
c2Q

(2)
22

r2
+
c
(1)
12 Q

(2)
12

r3
1

+
c
(2)
12 Q

(2)
12

r3
2

)
, (10)

where Q
(2)
ab (a, b = 1, 2) is the tensor having the Cartesian components

Q
(2)ij
ab = ra ·rbδij − 3riar

j
b . (11)

The second-order term ∆Eso−Z can also be decomposed into irreducible tensor components following the Appendix
B of [17]. One obtains

∆Eso−Z =
〈vL‖T(0)‖vL〉√

2L+ 1
〈se ·B〉+

〈vL‖T(2)‖vL〉
〈L‖ (L⊗ L)

(2) ‖L〉

〈
(L⊗ L)

(2) · (se ⊗B)
(2)
〉
, (12)
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where the orbital reduced matrix elements are given by [17]

Ts =
〈vL‖T(0)‖vL〉√

2L+ 1
=

1

3
(a− + a0 + a+) , (13)

Tt =
〈vL‖T(2)‖vL〉√

2L+ 1
=

√
L(L+ 1)(2L− 1)(2L+ 3)

3

(
− a−
L(2L− 1)

+
a0

L(L+ 1)
− a+

(L+ 1)(2L+ 3)

)
. (14)

Here, a−, a0, and a+ are the contributions to the second-order perturbation term from intermediate states of angular
momentum L− 1, L, and L+ 1, respectively:

a− = − 1

2L+ 1

∑
n 6=0

〈vL‖O(1)
Z ‖vnL− 1〉〈vnL− 1‖O(1)

so ‖vL〉
E0 − En

, (15)

a0 =
1

2L+ 1

∑
n 6=0

〈vL‖O(1)
Z ‖vnL〉〈vnL‖O

(1)
so ‖vL〉

E0 − En
, (16)

a+ = − 1

2L+ 1

∑
n 6=0

〈vL‖O(1)
Z ‖vnL+ 1〉〈vnL+ 1‖O(1)

so ‖vL〉
E0 − En

, (17)

with

O
(1)
Z =

e

me
LeC −

Z1e

m1
L1C −

Z2e

m2
L2C , (18)

O(1)
so =

1

2m2
e

(
Z1

r3
1

(r1×pe) +
Z2

r3
2

(r2×pe)

)
− 1

me

(
Z1

m1r3
1

(r1×P1) +
Z2

m2r3
2

(r2×P2)

)
. (19)

Finally, the g-factor including the complete α2-order relativistic correction is given by

g(v, L,M) = gs(v, L) +
3M2 − L(L+ 1)√

L(L+ 1)(2L− 1)(2L+ 3)
gt(v, L), (20)

where the scalar part of the g-factor is

gs(v, L)

ge
= 1− 〈vL|p

2
e|vL〉

2m2
e

+ σs + Ts , (21)

and the tensor part is

gt(v, L)

ge
= σt + Tt , (22)

with the definitions:

σs =
〈vL‖σ(0)‖vL〉√

2L+ 1
, σt =

〈vL‖σ(2)‖vL〉√
2L+ 1

. (23)

The expressions (21-22) are correct to order α2. The approximation ge ' 2 has been used in the last two terms of
Eq. (21) (which comes to neglecting terms of order (α/π)(σs + Ts)), and in Eq. (22).

Now, we can relate the above expressions to those given in Ref. [3]. In that work, the g tensor is defined by writing
the interaction of the electron spin with the magnetic field in the form

Heff =
e

2me

∑
i,j

gijs
i
eB

j , (24)

and the components g⊥ = gxx = gyy and g‖ = gzz are calculated with the z axis taken to be along the internuclear axis
(let us recall that all calculations were done in the Born-Oppenheimer approximation). The g-factor of a (v, L,M)
state can be obtained from these quantities through the relationship [18]

g(v, L,M) =
2

3
g⊥ +

1

3
g‖ +

2

3

3M2 − L(L+ 1)

(2L− 1)(2L+ 3)

(
g⊥ − g‖

)
. (25)
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Comparing Eqs. (25) and (20) one gets

gs =
2

3
g⊥ +

1

3
g‖, (26)

gt =
2

3

√
L(L+ 1)

(2L− 1)(2L+ 3)

(
g⊥ − g‖

)
. (27)

III. NUMERICAL RESULTS

In order to calculate the scalar [Eq. (21)] and tensor [Eq. (22)] corrections to the g-factor, the three-body Schrödinger
equation is solved using a variational expansion of the wavefunction involving exponentials of interparticle distances [8,
9, 19]:

Ψ
(vL)
0 (R, r1) =

∑
l1+l2=L

Y l1l2LM (R̂, r̂1)Gl1l2(R, r1, r2),

Y l1l2LM (R̂, r̂1) = Rl1rl21

{
Yl1(R̂)⊗ Yl2(r̂1)

}
LM

,

Gl1l2(R, r1, r2) =

N/2∑
n=1

{
Cn Re

[
e−αnR−βnr1−γnr2

]
+Dn Im

[
e−αnR−βnr1−γnr2

]}
.

(28)

where R is the internuclear vector, and r1, r2 the electron’s position with respect to both nuclei. The complex
exponents αn, βn and γn are generated pseudorandomly in several intervals. The interval bounds as well as the
number of basis functions Ni,l1 in each interval i and angular momentum subset {l1, l2} (keeping the total basis
length N constant), have been optimized for a few tens of rovibrational states. This was sufficient to have good
convergence for all the states considered in this work, because the wave functions (and therefore the optimal values
of the parameters) evolve only slowly with the rotational quantum number.

The expectation values of p2
e, σ

(0), and σ(2) [Eqs. (9-10)] are obtained with 9-10 digits of accuracy, using basis
lengths N between 2000 and 5600, depending on the operator and on the rovibrational state. The second-order terms
Ts and Tt [Eqs. (13-14)] are more challenging to calculate with high accuracy. However, they are still simpler than the
singular second-order terms discussed in [17]. The basis set used for intermediate states includes “regular” subsets
where the interval bounds for the exponents αn, βn, γn are the same as those used for to obtain the zero-order

wavefunction Ψ
(vL)
0 . In contradistinction with the singular terms evaluated in [17], it is not strictly necessary to

add “singular” subsets containing higher exponents, but we found that the inclusion of two additional subsets with
exponents βn, γn up to 10 improves the convergence. Overall, a 9-digit accuracy is achieved for all rovibrational states
using intermediate basis sets of length N ′ ∼ 4000− 12000.

Detailed numerical results for gs and gt are shown in Table I and compared with those of [3] for 38 rovibrational
states. Differences with respect to Hegstrom’s values amount to a few 10−8, or a few 10−3 in relative value, which
is consistent with the order of magnitude of nonadiabatic and recoil corrections. Complete results for the 201 states
identified as the most experimentally relevant are given in Tables II and III. All digits are converged, so that the
uncertainty of the α2-order relativistic correction to the g-factor is smaller than 10−13.

IV. CONCLUSION

The complete relativistic corrections of order α2 to the g-factor have been calculated with high accuracy for a
wide range of rovibrational states. For the time being, the accuracy gain is not relevant for experiments since the
theoretical uncertainty due to uncalculated α3-order radiative corrections is about 0.1 ppm [3]. However, these results
are a first step towards high-precision calculation of the g-factor; in this perspective, it was important to show that
the numerically challenging second-order contribution induced by the Zeeman and spin-orbit Hamiltonians can be
evaluated with high precision, so that they do not represent a serious limitation regarding the achievable accuracy
level.

These results may now be readily used to calculate spin-flip transition frequencies in the magnetic field of a Penning
trap. Precise knowledge of these frequencies is required for nondestructive identification of the molecule’s internal
state in future experiments with H+

2 and H̄−2 [1]. To achieve this, one should diagonalize the Hamiltonian HZ +Hhfs,
where HZ and Hhfs are respectively the Zeeman and hyperfine structure Hamiltonians. The Zeeman effect has been
studied in [20], and the hyperfine structure has been investigated in detail in [17, 21, 22]. Using the results of those
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v L 〈p2
e〉 σs Ts

1−gs/ge 1−gs/ge σt Tt
−gt/ge −gt/ge

(this work) [3] (this work) [3]
0 0 1.188584982 0.197953422 0.014090083 20.3552762 20.359 0.000000000 0.000000000 0.0000000 0.000
0 1 1.187531896 0.197777979 0.014101909 20.3359500 20.340 -0.032682214 0.008941067 0.5286804 0.526
0 2 1.185438336 0.197429194 0.014125424 20.2975286 20.302 -0.035634946 0.007569228 0.4455650 0.444
0 3 1.182329094 0.196911198 0.014160360 20.2404665 20.245 -0.040692364 0.007330723 0.4286492 0.427
0 4 1.178240299 0.196230013 0.014206324 20.1654259 20.169 -0.045474983 0.007258466 0.4206783 0.419
0 6 1.167317949 0.194410381 0.014329191 19.9649660 19.969 -0.053897721 0.007247903 0.4100693 0.408
0 8 1.153136628 0.192047838 0.014488785 19.7046887 19.709 -0.061075213 0.007301354 0.4000008 0.398
0 10 1.136248917 0.189234465 0.014678648 19.3947475 19.399 -0.067289815 0.007384038 0.3887244 0.387
0 12 1.117244006 0.186068437 0.014891527 19.0459880 19.051 -0.072714188 0.007484065 0.3758892 0.374
0 14 1.096705506 0.182647005 0.015119723 18.6691807 18.674 -0.077452803 0.007594643 0.3614692 0.360
0 16 1.075181550 0.179061504 0.015355330 18.2744772 18.280 -0.081569610 0.007710556 0.3455422 0.344
0 18 1.053167409 0.175394464 0.015590341 17.8710960 17.877 -0.085102995 0.007827188 0.3282231 0.327
0 20 1.031098644 0.171718462 0.015816634 17.4672018 17.473 -0.088073738 0.007940156 0.3096381 0.308
0 26 0.968081716 0.161222808 0.016356395 16.3194982 16.326 -0.093621519 0.008212290 0.2474918 0.247
1 0 1.159234438 0.193064762 0.014421001 19.8165041 19.821 0.000000000 0.000000000 0.0000000 0.000
1 1 1.158250614 0.192900862 0.014431537 19.7984759 19.803 -0.031894491 0.009149724 0.4933508 0.491
1 2 1.156294965 0.192575061 0.014452475 19.7626398 19.767 -0.034772716 0.007744201 0.4157136 0.414
1 3 1.153391076 0.192091290 0.014483546 19.7094287 19.714 -0.039702043 0.007497771 0.3998213 0.398
1 4 1.149573307 0.191455274 0.014524357 19.6394735 19.644 -0.044359752 0.007420710 0.3922428 0.390
2 0 1.132170502 0.188557196 0.014689251 19.3216577 19.327 0.000000000 0.000000000 0.0000000 0.000
2 1 1.131253178 0.188404379 0.014698386 19.3048846 19.310 -0.031058959 0.009318676 0.4586657 0.457
2 2 1.129429961 0.188100651 0.014716519 19.2715486 19.276 -0.033858126 0.007885496 0.3864088 0.385
2 3 1.126723309 0.187649753 0.014743382 19.2220626 19.227 -0.038651541 0.007632107 0.3715242 0.370
2 4 1.123165936 0.187057137 0.014778579 19.1570284 19.162 -0.043176666 0.007550435 0.3643344 0.363
3 0 1.107303081 0.184415723 0.014889282 18.8694330 18.875 0.000000000 0.000000000 0.0000000 0.000
3 1 1.106449987 0.184273612 0.014896877 18.8538819 18.859 -0.030170737 0.009444398 0.4246628 0.422
3 2 1.104754698 0.183991205 0.014911929 18.8229807 18.828 -0.032885813 0.007990107 0.3576827 0.356
3 3 1.102238625 0.183572071 0.014934166 18.7771239 18.782 -0.037534640 0.007730789 0.3437892 0.342
3 4 1.098932954 0.183021406 0.014963189 18.7168863 18.722 -0.041918645 0.007644688 0.3369849 0.335
4 0 1.084559830 0.180628298 0.015014469 18.4588976 18.465 0.000000000 0.000000000 0.0000000 0.000
4 1 1.083769176 0.180496594 0.015020357 18.4445458 18.450 -0.029223896 0.009522682 0.3913838 0.389
4 2 1.082198272 0.180234919 0.015031993 18.4160343 18.421 -0.031849229 0.008054448 0.3295705 0.328
4 3 1.079867562 0.179846681 0.015049100 18.3737409 18.379 -0.036343726 0.007790306 0.3166502 0.315
4 4 1.076806815 0.179336839 0.015071268 18.3182157 18.323 -0.040576987 0.007699943 0.3102274 0.309
6 0 1.045243047 0.174081855 0.015007517 17.7610388 17.767 0.000000000 0.000000000 0.0000000 0.000
8 0 1.013989580 0.168879593 0.014587468 17.2282898 17.236 0.000000000 0.000000000 0.0000000 0.000
10 0 0.990865938 0.165032806 0.013643118 16.8677417 16.878 0.000000000 0.000000000 0.0000000 0.000
12 0 0.976285366 0.162610698 0.012022406 16.6948098 16.705 0.000000000 0.000000000 0.0000000 0.000

TABLE I: Relativistic corrections to the g-factor for rovibrational states (v, L) of H+
2 , and comparison with previous calculations.

Column 3-5 (resp. 8-9) are the contributions to the scalar (tensor) part of the g-factor (see Eqs. (21) and (22), respectively),
in atomic units. The values of 1 − gs/ge (resp. −gt/ge) obtained in this work and in Ref. [3] are given in columns 6-7 (resp.
10-11); they should be multiplied by 10−6.

works, the spin-flip transition frequencies can be obtained with a relative uncertainty of 0.1 ppm, limited by the
uncertainty of the g-factor, which is expected to be sufficient for unambiguous identification of the internal state.
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9

0
.3

3
3
7
0
1
6

0
.3

0
7
0
5
5
2

0
.2

8
1
0
3
0
5

0
.2

5
5
6
6
5
8

0
.2

3
1
0
0
3
5

0
.2

0
7
0
8
8
4

0
.1

8
3
9
6
5
5

1
1

0
.3

8
2
5
0
7
0

0
.3

5
4
7
9
0
3

0
.3

2
7
6
3
7
3

0
.3

0
1
0
7
9
1

0
.2

7
5
1
5
0
6

0
.2

4
9
8
9
0
7

0
.2

2
5
3
4
1
9

0
.2

0
1
5
4
8
2

1
2

0
.3

7
5
8
8
9
2

0
.3

4
8
2
4
9
0

0
.3

2
1
1
8
0
6

0
.2

9
4
7
1
5
3

0
.2

6
8
8
8
8
2

0
.2

4
3
7
3
8
8

0
.2

1
9
3
0
9
2

0
.1

9
5
6
4
3
3

1
3

0
.3

6
8
8
7
3
8

0
.3

4
1
3
1
5
4

0
.3

1
4
3
3
7
1

0
.2

8
7
9
7
0
4

0
.2

6
2
2
5
0
9

0
.2

3
7
2
1
8
5

0
.2

1
2
9
1
4
8

1
4

0
.3

6
1
4
6
9
2

0
.3

3
3
9
9
8
7

0
.3

0
7
1
1
6
7

0
.2

8
0
8
5
5
1

0
.2

5
5
2
5
0
3

0
.2

3
0
3
4
1
6

0
.2

0
6
1
7
0
9

1
5

0
.3

5
3
6
8
7
3

0
.3

2
6
3
1
1
3

0
.2

9
9
5
3
2
4

0
.2

7
3
3
8
3
1

0
.2

4
7
8
9
9
7

0
.2

2
3
1
2
2
0

1
6

0
.3

4
5
5
4
2
2

0
.3

1
8
2
6
7
5

0
.2

9
1
5
9
8
7

0
.2

6
5
5
6
8
6

0
.2

4
0
2
1
4
1

0
.2

1
5
5
7
4
3

1
7

0
.3

3
7
0
4
8
8

0
.3

0
9
8
8
2
6

0
.2

8
3
3
3
1
1

0
.2

5
7
4
2
7
5

0
.2

3
2
2
0
8
5

0
.2

0
7
7
1
3
1

1
8

0
.3

2
8
2
2
3
1

0
.3

0
1
1
7
2
5

0
.2

7
4
7
4
5
2

0
.2

4
8
9
7
4
7

0
.2

2
3
8
9
8
0

1
9

0
.3

1
9
0
8
0
9

0
.2

9
2
1
5
2
7

0
.2

6
5
8
5
6
3

0
.2

4
0
2
2
5
7

0
.2

1
5
2
9
7
0

2
0

0
.3

0
9
6
3
8
1

0
.2

8
2
8
3
8
9

0
.2

5
6
6
8
0
0

0
.2

3
1
1
9
5
0

2
1

0
.2

9
9
9
1
0
0

0
.2

7
3
2
4
6
3

0
.2

4
7
2
3
0
5

0
.2

2
1
8
9
6
1

2
2

0
.2

8
9
9
1
1
9

0
.2

6
3
3
8
9
1

0
.2

3
7
5
2
1
6

2
3

0
.2

7
9
6
5
7
9

0
.2

5
3
2
8
1
1

0
.2

2
7
5
6
5
9

2
4

0
.2

6
9
1
6
1
7

0
.2

4
2
9
3
5
0

2
5

0
.2

5
8
4
3
5
9

0
.2

3
2
3
6
2
1

2
6

0
.2

4
7
4
9
1
8

2
7

0
.2

3
6
3
3
9
9

TABLE III: Values of −gt/ge for selected rovibrational states of H+
2 . All values should be multiplied by 10−6.


