Jean-Philippe Karr 
  

)]. Further, they pave the way towards precision calculations of the g-factor through calculation of higher-order QED corrections and hence to an alternative precision route to obtaining the proton-electron mass ratio.

I. INTRODUCTION

Spectroscopic measurements of the antihydrogen molecular ion H-2 , compared with its normal matter counterpart, have been recently proposed as a new avenue towards improved tests of the CP T symmetry [START_REF] Myers | CP T tests with the antihydrogen molecular ion[END_REF]. This perspective relies on the possibility to store a single H-2 or H + 2 ion in a Penning trap and identify its ro-vibrational state in a nondestructive way. The envisaged experiments use similar methods to those developed for high-precision measurements of bound-electron g-factors (see e.g. [START_REF] Sturm | High-precision measurement of the atomic mass of the electron[END_REF]). They would be performed in a double Penning trap consisting of a "precision trap" with a highly uniform magnetic field, where spectroscopic measurements are carried out, and an "analysis trap" with an inhomogeneous magnetic field allowing the positron or electron spin state to be determined via the so-called continuous Stern-Gerlach technique. The ion's internal state can then be determined using the fact that the spinflip frequencies depend in a resolvable and calculable way on the ro-vibrational and hyperfine state. This detection technique requires knowledge of a large number of Zeeman transition frequencies in a ∼ 5 Tesla magnetic field, at a precision level of ∼ 10 -6 -10 -7 . Since the dominant contribution to the Zeeman shift stems from the interaction of the magnetic field with the positron/electron spin (through the term g s•B), this implies that the bound positron/electron g factors should be determined theoretically with similar precision for an extensive range of rovibrational levels.

Beyond its importance for nondestructive internal state detection, the g-factor itself could be measured with high precision from the ratio of the cyclotron and spin-flip frequencies [START_REF] Sturm | High-precision measurement of the atomic mass of the electron[END_REF]. As discussed in [START_REF] Myers | CP T tests with the antihydrogen molecular ion[END_REF], measuring this frequency ratio in H-2 and H + 2 provides a way to compare m(e -)/m(p) with m(e + )/m(p) at a competitive precision level, under the assumptions that charges and g-factors have opposite signs in matter and antimatter. Further, if the theoretical g-factor of H + 2 is calculated with sufficiently high accuracy, the comparison between theory and experiment would lead to a stringent test of bound-state QED or to an independent determination of m(e -)/m(p).

The theoretical g-factors of hydrogen molecular ions have been calculated by Hegstrom [START_REF] Hegstrom | g factors and related magnetic properties of molecules. Formulation of theory and calculations for H + 2 , HD + , and D + 2[END_REF]. In that work, the author derived an effective Hamiltonian describing leading-order relativistic (α 2 ) and radiative (α 3 ) corrections in the nonrecoil limit, and performed numerical calculations of the α 2 -order correction in the adiabatic approximation, for 43 rovibrational levels of H + 2 . The theoretical uncertainty of the g-factor was estimated to about 10 -7 due to uncalculated α 3 -order corrections. It is worth noting that the g-factor of H + 2 has so far been measured in only one experiment [START_REF] Loch | Measurement of the electronic g factor of H + 2[END_REF] for a mixture of three (unresolved) vibrational levels, with a relative uncertainty of 0.9 ppm. The experimental result was found to be in good agreement with the theoretical predictions of [START_REF] Hegstrom | g factors and related magnetic properties of molecules. Formulation of theory and calculations for H + 2 , HD + , and D + 2[END_REF].

The present work pursues a double aim. Firstly, in order to enable state identification of (anti-)hydrogen molecular ions in Penning trap experiments, it is important to extend g-factor calculations to a wider range of rovibrational states, covering all possible states the ions may be found in. H + 2 ions are conveniently produced by electron-impact ionization of H 2 , which creates ions predominantly in v = 0 -12, L = 0 -4 [START_REF] Busch | Photodissociation of H + 2 and D + 2 : Experiment[END_REF] or may be produced in a selected rovibrational state using resonance-enhanced multi-photon ionization (REMPI) [START_REF] O'halloran | Photoionization dynamics of H2C 1 Πu: Vibrational and rotational branching ratios[END_REF][START_REF] Schmidt | Trapping, Cooling, and Photodissociation Analysis of State-Selected H + 2 Ions Produced by (3 + 1) Multiphoton Ionization[END_REF]. Formation of H-2 ions through the reaction H+ + p → H-2 + e + , leading to production in v = 0 -8, L = 0 -27, has been proposed in [START_REF] Myers | CP T tests with the antihydrogen molecular ion[END_REF]. Assuming these production schemes, and taking into account the possible use of the Stark quenching induced by the ion's motion in the trap's magnetic field to accelerate vibrational decay [START_REF] Karr | Stark quenching of rovibrational states of H + 2 due to motion in a magnetic field[END_REF], 201 rovibrational levels (out of 481 bound levels in total [START_REF] Korobov | Ro-vibrational states of H + 2 . Variational calculations[END_REF]) have been identified as the most experimentally relevant. Other mechanisms to produce H-2 , using collisions between laser-excited H atoms, have been explored in [START_REF] Zammit | Laser-driven production of the antihydrogen molecular ion[END_REF], but resulting ro-vibrational distributions were not discussed in that work.

The second aim is to provide complete and accurate calculations of the α 2 -order relativistic correction, that may serve as a reliable basis for future high-precision calculations of the g-factor through inclusion of higher-order corrections. To this end, we improve the calculations of Ref. [START_REF] Hegstrom | g factors and related magnetic properties of molecules. Formulation of theory and calculations for H + 2 , HD + , and D + 2[END_REF] by performing extensive nonadiabatic (three-body) calculations, and by including recoil corrections, which had been neglected in [START_REF] Hegstrom | g factors and related magnetic properties of molecules. Formulation of theory and calculations for H + 2 , HD + , and D + 2[END_REF]. This allows us to compute the α 2 correction with an (absolute) numerical uncertainty of about 10 -13 .

II. THEORY

In this section, we write the theoretical expressions of corrections to the g-factor in the general case of a one-electron diatomic molecule. We thus consider a three-body system made of two nuclei, with masses m 1 , m 2 and charges Z 1 e, Z 2 e, and one electron (mass m 3 ≡ m e , charge -e). Particle positions are denoted by R 1 , R 2 , R 3 ≡ R e , and we use the internal coordinates r 1 = R e -R 1 , r 2 = R e -R 2 , and r 12 = R 1 -R 2 = r 2 -r 1 . The nuclear and electronic momenta are denoted by P 1 , P 2 and p e , respectively.

The α 2 -order relativistic correction to the g-factor including recoil terms can be described in an effective Hamiltonian approach [START_REF] Hegstrom | g factors and related magnetic properties of molecules. Formulation of theory and calculations for H + 2 , HD + , and D + 2[END_REF][START_REF] Grotch | Hydrogenic Atoms in a Magnetic Field[END_REF][START_REF] Hegstrom | Nuclear-Mass and Anomalous-Moment Corrections to the Hamiltonian for an Atom in a Constant External Magnetic Field[END_REF][START_REF] Eides | Gyromagnetic Ratios of Bound Particles[END_REF][START_REF] Pachucki | Long-wavelength quantum electrodynamics[END_REF][START_REF] Pachucki | Nuclear mass correction to the magnetic interaction of atomic systems[END_REF][START_REF] Eides | Universal Binding and Recoil Corrections to Bound State g Factors in Hydrogenlike Ions[END_REF]. The first contribution at this order to the interaction of the electron spin s e with an external magnetic field B is

H 1 = -g e e 2m e (s e •B) p 2 e 2m 2 e , (1) 
where g e is the free electron's g-factor. A second term comes from the electronic spin-orbit Hamiltonian H so in the external field, which can be written in the center-of-mass frame as

H so = g e -1 2m 2 e Z 1 r 3 1 (r 1 ×π e ) + Z 2 r 3 2 (r 2 ×π e ) •s e - g e 2m e Z 1 m 1 r 3 1 (r 1 ×Π 1 ) + Z 2 m 2 r 3 2 (r 2 ×Π 2 ) •s e , (2) 
where [START_REF] Hegstrom | g factors and related magnetic properties of molecules. Formulation of theory and calculations for H + 2 , HD + , and D + 2[END_REF] 

π e = p e + eA(r eC ) -e m e M (Z 1 A(r 1C ) + Z 2 A(r 2C ) -A(r eC )) , Π 1 = P 1 -Z 1 eA(r 1C ) -e m 1 M (Z 1 A(r 1C ) + Z 2 A(r 2C ) -A(r eC )) , (3) 
Π 2 = P 2 -Z 2 eA(r 2C ) -e m 2 M (Z 1 A(r 1C ) + Z 2 A(r 2C ) -A(r eC )) , A(r) = 1 2
B×r.

Here, M = m 1 + m 2 + m e , and r eC , r 1C , r 2C are the positions of the electron and nuclei with respect to the center of mass, which are given by

r 1C = -(m 2 + m e )r 1 + m 2 r 2 M , r 2C = m 1 r 1 -(m 1 + m e )r 2 M , (4) 
r eC = m 1 r 1 + m 2 r 2 M .
As shown in [START_REF] Hegstrom | g factors and related magnetic properties of molecules. Formulation of theory and calculations for H + 2 , HD + , and D + 2[END_REF], the expressions of the momenta in Eq. ( 3) result from careful separation of the center-of-mass motion, following a procedure that was first proposed in [START_REF] Grotch | Hydrogenic Atoms in a Magnetic Field[END_REF][START_REF] Hegstrom | Nuclear-Mass and Anomalous-Moment Corrections to the Hamiltonian for an Atom in a Constant External Magnetic Field[END_REF] in atomic systems. The latter results have been confirmed using the NRQED approach [START_REF] Pachucki | Long-wavelength quantum electrodynamics[END_REF][START_REF] Pachucki | Nuclear mass correction to the magnetic interaction of atomic systems[END_REF][START_REF] Eides | Universal Binding and Recoil Corrections to Bound State g Factors in Hydrogenlike Ions[END_REF]. In the present work, we improve the treatment of Ref. [START_REF] Hegstrom | g factors and related magnetic properties of molecules. Formulation of theory and calculations for H + 2 , HD + , and D + 2[END_REF] by keeping all recoil terms in Eqs. [START_REF] Sturm | High-precision measurement of the atomic mass of the electron[END_REF][START_REF] Hegstrom | g factors and related magnetic properties of molecules. Formulation of theory and calculations for H + 2 , HD + , and D + 2[END_REF][START_REF] Loch | Measurement of the electronic g factor of H + 2[END_REF]. The full contribution from H so to the g-factor is then given by the following effective Hamiltonian (taking g e = 2 in order to retain only the α 2 -order contribution):

H 2 = e 2m e σ ij s i e B j , (5) 
σ ij = 1 2m e c 1 r 2 1 δ ij -r i 1 r j 1 r 3 1 + c 2 r 2 2 δ ij -r i 2 r j 2 r 3 2 + c (1) 12 r 1 •r 2 δ ij -r i 1 r j 2 r 3 1 + c (2) 12 r 1 •r 2 δ ij -r i 1 r j 2 r 3 2 , c 1 = 1 M 2 (M -m e )m 1 Z 1 + m 1 m e Z 1 Z 2 - (2M + m 1 )(m 2 + m e )m e Z 2 1 m 1 , c 2 = 1 M 2 (M -m e )m 2 Z 2 + m 2 m e Z 1 Z 2 - (2M + m 2 )(m 1 + m e )m e Z 2 2 m 2 , c (1) 12 
= 1 M 2 (M -m e )m 2 Z 1 -(m 1 + m e )m e Z 1 Z 2 + (2M + m 1 )m 2 m e Z 2 1 m 1 , c (2) 
12 = 1 M 2 (M -m e )m 1 Z 2 -(m 2 + m e )m e Z 1 Z 2 + (2M + m 2 )m 1 m e Z 2 2 m 2 .
The last contribution comes from the second-order energy shift induced by the orbital Zeeman term H Z and the spin-orbit coupling term:

∆E so-Z = 2 ψ 0 |H so Q(E 0 -H 0 ) -1 QH Z |ψ 0 , (6) 
H Z = e 2m e L eC - Z 1 e 2m 1 L 1C - Z 2 e 2m 2 L 2C •B
Here, H 0 is the nonrelativistic (Schrödinger) Hamiltonian of the three-body system, ψ 0 the wave function for the rovibrational state under consideration, E 0 the corresponding nonrelativistic energy level, and Q is a projection operator on a subspace orthogonal to ψ 0 . L eC , L 1C , L 2C are the angular momenta of the electron and nuclei about the center of mass. Again, in our calculations we take into account all the recoil terms in H so and H Z .

Corrections to the electronic g-factor can be deduced from Eqs. ( 1), ( 5) and [START_REF] O'halloran | Photoionization dynamics of H2C 1 Πu: Vibrational and rotational branching ratios[END_REF]. The H 1 term [Eq. ( 1)] induces a correction for a rovibrational state (v, L),

∆g 1 (v, L) g e = - v, L|p 2 e |v, L 2m e . (7) 
The other terms, H 2 [Eq. [START_REF] Busch | Photodissociation of H + 2 and D + 2 : Experiment[END_REF] and ∆E so-Z [Eq. ( 6)] are anisotropic. This is linked to the departure from spherical symmetry in a molecule, which led Hegstrom to introduce a g tensor in Ref. [START_REF] Hegstrom | g factors and related magnetic properties of molecules. Formulation of theory and calculations for H + 2 , HD + , and D + 2[END_REF]. Alternatively, the results can be expressed in terms of a g-factor similarly to the atomic case, the difference being that in a molecule, the g-factor acquires a dependence on the magnetic quantum number M .

The term H 2 may be decomposed into irreducible tensor components as follows:

H 2 = σ (0) (s e •B) + σ (2) • (s e ⊗ B) (2) , (8) 
σ (0) = 1 2m e 2 3 c 1 r 1 + c 2 r 2 + c (1) 12 r 1 •r 2 r 3 1 + c (2) 12 r 1 •r 2 r 3 2 , (9) 
σ (2) = 1 2m e 1 3 c 1 Q (2) 11 r 3 1 + c 2 Q (2) 22 r 2 + c (1) 12 Q 
(2) 12

r 3 1 + c (2) 12 Q 
(2) 12

r 3 2 , ( 10 
)
where

Q (2)
ab (a, b = 1, 2) is the tensor having the Cartesian components

Q (2)ij ab = r a •r b δ ij -3r i a r j b . (11) 
The second-order term ∆E so-Z can also be decomposed into irreducible tensor components following the Appendix B of [START_REF] Korobov | Hyperfine structure in the H + 2 and HD + molecular ions at order mα 6[END_REF]. One obtains

∆E so-Z = vL T (0) vL √ 2L + 1 s e •B + vL T (2) vL L (L ⊗ L) (2) L (L ⊗ L) (2) • (s e ⊗ B) (2) , (12) 
where the orbital reduced matrix elements are given by [START_REF] Korobov | Hyperfine structure in the H + 2 and HD + molecular ions at order mα 6[END_REF] T

s = vL T (0) vL √ 2L + 1 = 1 3 (a -+ a 0 + a + ) , (13) 
T t = vL T (2) vL √ 2L + 1 = L(L + 1)(2L -1)(2L + 3) 3 - a - L(2L -1) + a 0 L(L + 1) - a + (L + 1)(2L + 3) . (14) 
Here, a -, a 0 , and a + are the contributions to the second-order perturbation term from intermediate states of angular momentum L -1, L, and L + 1, respectively:

a -= - 1 2L + 1 n =0 vL O (1) Z v n L -1 v n L -1 O (1) so vL E 0 -E n , (15) 
a 0 = 1 2L + 1 n =0 vL O (1) Z v n L v n L O (1) so vL E 0 -E n , (16) 
a + = - 1 2L + 1 n =0 vL O (1) Z v n L + 1 v n L + 1 O (1) so vL E 0 -E n , (17) 
with

O (1) Z = e m e L eC - Z 1 e m 1 L 1C - Z 2 e m 2 L 2C , (18) 
O (1) so = 1 2m 2 e Z 1 r 3 1 (r 1 ×p e ) + Z 2 r 3 2 (r 2 ×p e ) - 1 m e Z 1 m 1 r 3 1 (r 1 ×P 1 ) + Z 2 m 2 r 3 2 (r 2 ×P 2 ) . (19) 
Finally, the g-factor including the complete α 2 -order relativistic correction is given by

g(v, L, M ) = g s (v, L) + 3M 2 -L(L + 1) L(L + 1)(2L -1)(2L + 3) g t (v, L), (20) 
where the scalar part of the g-factor is

g s (v, L) g e = 1 - vL|p 2 e |vL 2m 2 e + σ s + T s , (21) 
and the tensor part is

g t (v, L) g e = σ t + T t , (22) 
with the definitions:

σ s = vL σ (0) vL √ 2L + 1 , σ t = vL σ (2) vL √ 2L + 1 . (23) 
The expressions [START_REF] Korobov | Hyperfine structure in the hydrogen molecular ion[END_REF][START_REF] Karr | Higher-order corrections to spin-spin scalar interactions in HD + and H + 2[END_REF] are correct to order α 2 . The approximation g e 2 has been used in the last two terms of Eq. ( 21) (which comes to neglecting terms of order (α/π)(σ s + T s )), and in Eq. ( 22). Now, we can relate the above expressions to those given in Ref. [START_REF] Hegstrom | g factors and related magnetic properties of molecules. Formulation of theory and calculations for H + 2 , HD + , and D + 2[END_REF]. In that work, the g tensor is defined by writing the interaction of the electron spin with the magnetic field in the form

H eff = e 2m e i,j g ij s i e B j , (24) 
and the components g ⊥ = g xx = g yy and g = g zz are calculated with the z axis taken to be along the internuclear axis (let us recall that all calculations were done in the Born-Oppenheimer approximation). The g-factor of a (v, L, M ) state can be obtained from these quantities through the relationship [START_REF] Ramsey | Dependence of Magnetic Shielding of Nuclei upon Molecular Orientation[END_REF] g

(v, L, M ) = 2 3 g ⊥ + 1 3 g + 2 3 3M 2 -L(L + 1) (2L -1)(2L + 3) g ⊥ -g . (25) 
Comparing Eqs. ( 25) and ( 20) one gets

g s = 2 3 g ⊥ + 1 3 g , ( 26 
)
g t = 2 3 L(L + 1) (2L -1)(2L + 3) g ⊥ -g . ( 27 
)

III. NUMERICAL RESULTS

In order to calculate the scalar [Eq. ( 21)] and tensor [Eq. ( 22)] corrections to the g-factor, the three-body Schrödinger equation is solved using a variational expansion of the wavefunction involving exponentials of interparticle distances [START_REF] Karr | Stark quenching of rovibrational states of H + 2 due to motion in a magnetic field[END_REF][START_REF] Korobov | Ro-vibrational states of H + 2 . Variational calculations[END_REF][START_REF] Korobov | Coulomb three-body bound-state problem: Variational calculations of nonrelativistic energies[END_REF]:

Ψ (vL) 0 (R, r 1 ) = l1+l2=L Y l1l2 LM ( R, r1 )G l1l2 (R, r 1 , r 2 ), Y l1l2 LM ( R, r1 ) = R l1 r l2 1 Y l1 ( R) ⊗ Y l2 (r 1 ) LM , G l1l2 (R, r 1 , r 2 ) = N/2 n=1 C n Re e -αnR-βnr1-γnr2 + D n Im e -αnR-βnr1-γnr2 . ( 28 
)
where R is the internuclear vector, and r 1 , r 2 the electron's position with respect to both nuclei. The complex exponents α n , β n and γ n are generated pseudorandomly in several intervals. The interval bounds as well as the number of basis functions N i,l1 in each interval i and angular momentum subset {l 1 , l 2 } (keeping the total basis length N constant), have been optimized for a few tens of rovibrational states. This was sufficient to have good convergence for all the states considered in this work, because the wave functions (and therefore the optimal values of the parameters) evolve only slowly with the rotational quantum number. The expectation values of p 2 e , σ (0) , and σ (2) [Eqs. [START_REF] Korobov | Ro-vibrational states of H + 2 . Variational calculations[END_REF][START_REF] Zammit | Laser-driven production of the antihydrogen molecular ion[END_REF]] are obtained with 9-10 digits of accuracy, using basis lengths N between 2000 and 5600, depending on the operator and on the rovibrational state. The second-order terms T s and T t [Eqs. [START_REF] Eides | Gyromagnetic Ratios of Bound Particles[END_REF][START_REF] Pachucki | Long-wavelength quantum electrodynamics[END_REF]] are more challenging to calculate with high accuracy. However, they are still simpler than the singular second-order terms discussed in [START_REF] Korobov | Hyperfine structure in the H + 2 and HD + molecular ions at order mα 6[END_REF]. The basis set used for intermediate states includes "regular" subsets where the interval bounds for the exponents α n , β n , γ n are the same as those used for to obtain the zero-order wavefunction Ψ (vL) 0

. In contradistinction with the singular terms evaluated in [START_REF] Korobov | Hyperfine structure in the H + 2 and HD + molecular ions at order mα 6[END_REF], it is not strictly necessary to add "singular" subsets containing higher exponents, but we found that the inclusion of two additional subsets with exponents β n , γ n up to 10 improves the convergence. Overall, a 9-digit accuracy is achieved for all rovibrational states using intermediate basis sets of length N ∼ 4000 -12000.

Detailed numerical results for g s and g t are shown in Table I and compared with those of [START_REF] Hegstrom | g factors and related magnetic properties of molecules. Formulation of theory and calculations for H + 2 , HD + , and D + 2[END_REF] for 38 rovibrational states. Differences with respect to Hegstrom's values amount to a few 10 -8 , or a few 10 -3 in relative value, which is consistent with the order of magnitude of nonadiabatic and recoil corrections. Complete results for the 201 states identified as the most experimentally relevant are given in Tables II andIII. All digits are converged, so that the uncertainty of the α 2 -order relativistic correction to the g-factor is smaller than 10 -13 .

IV. CONCLUSION

The complete relativistic corrections of order α 2 to the g-factor have been calculated with high accuracy for a wide range of rovibrational states. For the time being, the accuracy gain is not relevant for experiments since the theoretical uncertainty due to uncalculated α 3 -order radiative corrections is about 0.1 ppm [START_REF] Hegstrom | g factors and related magnetic properties of molecules. Formulation of theory and calculations for H + 2 , HD + , and D + 2[END_REF]. However, these results are a first step towards high-precision calculation of the g-factor; in this perspective, it was important to show that the numerically challenging second-order contribution induced by the Zeeman and spin-orbit Hamiltonians can be evaluated with high precision, so that they do not represent a serious limitation regarding the achievable accuracy level.
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works, the spin-flip transition frequencies can be obtained with a relative uncertainty of 0.1 ppm, limited by the uncertainty of the g-factor, which is expected to be sufficient for unambiguous identification of the internal state. 
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	1 1 1.158250614 0.192900862 0.014431537 19.7984759 19.803 -0.031894491 0.009149724 0.4933508 0.491
	1 2 1.156294965 0.192575061 0.014452475 19.7626398 19.767 -0.034772716 0.007744201 0.4157136 0.414
	1 3 1.153391076 0.192091290 0.014483546 19.7094287 19.714 -0.039702043 0.007497771 0.3998213 0.398
	1 4 1.149573307 0.191455274 0.014524357 19.6394735 19.644 -0.044359752 0.007420710 0.3922428 0.390
	2 0 1.132170502 0.188557196 0.014689251 19.3216577 19.327 0.000000000 0.000000000 0.0000000 0.000
	2 1 1.131253178 0.188404379 0.014698386 19.3048846 19.310 -0.031058959 0.009318676 0.4586657 0.457
	2 2 1.129429961 0.188100651 0.014716519 19.2715486 19.276 -0.033858126 0.007885496 0.3864088 0.385
	2 3 1.126723309 0.187649753 0.014743382 19.2220626 19.227 -0.038651541 0.007632107 0.3715242 0.370
	2 4 1.123165936 0.187057137 0.014778579 19.1570284 19.162 -0.043176666 0.007550435 0.3643344 0.363
	3 0 1.107303081 0.184415723 0.014889282 18.8694330 18.875 0.000000000 0.000000000 0.0000000 0.000
	3 1 1.106449987 0.184273612 0.014896877 18.8538819 18.859 -0.030170737 0.009444398 0.4246628 0.422
	3 2 1.104754698 0.183991205 0.014911929 18.8229807 18.828 -0.032885813 0.007990107 0.3576827 0.356
	3 3 1								
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