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Abstract—Immersive environments such as Virtual Reality
(VR) are now a main area of interactive digital entertainment.
The challenge to design personalized interactive VR systems
is specifically to guide and adapt to the user’s attention. Un-
derstanding the connection between the visual content and the
human attentional process is therefore key. In this article, we
investigate this connection by first proposing a new head motion
predictor named HeMoG. HeMoG is a white-box model built
on physics of rotational motion and gravitation. Second, we
compare HeMoG with existing reference Deep Learning models.
We show that HeMoG can achieve similar or better performance
and provides insights on the inner workings of these black-box
models. Third, we study HeMoG parameters in terms of video
categories and prediction horizons to gain knowledge on the
connection between visual saliency and the head motion process.

I. INTRODUCTION

Immersive environments for entertainment or training are
gaining traction, in particular Virtual Reality (VR) for ap-
plications related to, e.g., gaming, museums, journalism, or
rehabilitation. Designing VR experiences that are both inter-
active, comfortable and engaging is key to create immersive
personalized environments. The challenge is to identify, adapt
to and guide the attentional trajectory of the user. Visual
attention is already considered in a number of such systems,
be it for guidance in cinematic VR with 360◦ videos [1], [2],
[3] or 3D-interactive environments [4], or to enable efficient
VR streaming by predicting where the user is going to look
at and send in high-quality only the attended Field of View
(FoV) to save data rate [5], [6].

Understanding the connection between the audio-visual con-
tent and the human attentional process is therefore key for the
design of immersive and personalized environments. Focusing
only on the visual aspect, visual attention is a set of cognitive
operations that allow us to filter the relevant locations in our
visual field [7]. This mechanism also guides the movement
of our head and eyes to center the selected location in our

fovea, that is the area of the retina with the highest amount of
photoreceptors and therefore allows sharp central vision [8].

Recently, VR in the form of 360◦ videos has been con-
sidered to study how people explore 360◦ environments with
3 degrees of freedom. The work of [9] collects user data to
analyze and identify a few insights of human exploration in
360◦ videos (e.g., user congruence, the existence of an initial
exploratory phase for ca. 18 sec. before a user focuses). Other
works such as [10] aim at extracting the saliency maps, i.e.,
2D-distributions of visual attention over a viewing period [11],
from the content. To dynamically predict the head motion over
a certain time prediction horizon, several Deep Learning (DL)
models have been proposed, such as [12], [13] or [14].

These models, often referred to as “black-boxes”, however
do not provide any insight on the dependence of the head
motion on the visual content. In this article, we address 2
research questions:
Q1: To which extent can we investigate the inner workings of
these DL models with a white-box model?
Q2: What knowledge can we obtain from a white-box model
regarding the connection between saliency information and
head motion?

We make 3 contributions:
• [Sec. III] We design a new white-box model to predict
head motion from the past motion and the 360◦ content. This
model is built on the assumption that the head motion can
be described by gravitational physics laws driven by virtual
masses created by the content. This model is named HeMoG
(Head Motion with Gravitational laws of attention).
• [Sec. IV] We evaluate the performance of HeMoG in
comparison with reference DL models to predict head motion
from the exact same inputs. When the prediction is made from
past motion only (i.e., without content information), we show
that HeMoG and the reference DL models achieve comparable
performance. We interpret this as the DL model learning the
curvature and friction dynamics of head motion that HeMoG
is explicitly built on (1st answer to Q1). When HeMoG is fed



with saliency information, HeMoG can achieve comparable
or better performance than the reference DL model TRACK
(taken from [14]). We interpret this as the state-of-the-art DL
models performing a similar type of fusion as HeMoG, which
enables to benefit from both input modalities, past positions
and visual content (2nd answer to Q1). We discuss in which
case the representation learning of the DL models is key in
Sec. VI.
• [Sec. V] In order to answer Q2, we take a closer look
to the optimal hyper-parameters for HeMoG w.r.t. (i) the
semantic category of the 360◦ video and (ii) the prediction
horizon. On videos where the saliency maps render attractive
areas (videos of categories Static Focus, Moving Focus and
Rides), the optimal weight assigned in the motion equation
to the content masses is higher than that when the video
does not feature specific attractive areas (videos of category
Exploration). Furthermore, analyzing the evolution of the
saliency weight over the prediction horizon of 5 sec., we
identify that the head motion momentum is most important
first, and the content information starts being relevant after 3
sec. only.

The repository containing the code to use HeMoG and to
reproduce the results in this paper is available at https://gitlab.
com/miguelfromeror/hemog.

II. RELATED WORK

Several DL models have been proposed to predict head or
gaze motion in 360◦ videos:

Xu et al. in [13] designed a Deep Reinforcement Learning
model to predict head motion. Their deep neural network
receives the viewer’s FoV as a 42 × 42 input image, and
must decide to which direction and with which magnitude the
viewer’s head will move. Features obtained from convolutional
layers processing each 360◦ frame cropped to the FoV are
then fed into an LSTM to extract direction and magnitude.
The prediction horizon is only one frame, i.e., 30ms.

In [12], Xu et al. predict the gaze positions over the next
second in 360◦ videos based on the gaze coordinates in the
past second and the video content. The time series of past
head coordinates is processed by a doubly-stacked LSTMs. For
the video information, spatial and temporal saliency maps are
first concatenated with the RGB image, then fed to Inception-
ResNet-V2 to obtain the “saliency features”. The prediction
horizon is 1 second long.

Nguyen et al. in [10], Li et al. in [15] and Fan et al. in
[16] proposed a similar approach. They introduced LSTM-
based networks fed with the concatenation of the head position
encoded as a mask and the visual features extracted from
pre-trained saliency extractor networks. The doubly-stacked
LSTMs outputs the probability that each tile is viewed in the
future trajectories.

Recently, [14] made a critical study of existing DL models,
showing systematic weaknesses by comparing their perfor-
mance with simple and stronger baselines. They also proposed
a new DL model, named TRACK, that establishes state-of-
the-art performance on several datasets. We therefore consider

TRACK as the DL model our proposed HeMoG model must
be compared with.

All these DL models are black-box models whose, to the
best of our knowledge, explanability has not been studied.
Explainability and interpretability of DL models decisions and
predictions is a wide and highly active research area (see, e.g.,
[17]). In this work, our goal is not only to understand what
type of inductive bias is exploited by existing DL models, but
rather to design a white-box model that we can leverage both
to gain insight on what the DL model learns, and unveil the
connection between visual content and head motion.

In [18] Chen et al. proposed Sparkle, a model tailored
to predict the exploration patterns of individual users in a
360◦ video. This model was evaluated against models based
on Logistic Regression and the models from [10] and [16],
which were found in [14] to be outperformed by baselines
not modeling motion at all. Owing to the tiled equirectangular
projection of the video frames considered in Sparkle, the pre-
diction algorithm has to deal with the issues of the periodicity
at the horizontal borders and the motion is limited at the poles
in the vertical borders. In our model (HeMoG) this is solved by
keeping the spherical nature of the data and using quaternions
to represent the rotational velocity and acceleration. Another
consideration in Sparkle is that the viewing information of
other users is available for all the videos and there is a model
learned per user. To avoid the systematical collection of user
data [19], we considered in our problem modeling that the
users’ statistics for the specific video are not known at test
time, furthermore, in HeMoG the parameters are not adjusted
per user but the same parameters are shared across several
users.

Finally, for regular 2D videos, [20] recently proposed a
gravitational model to generate human-plausible visual scan-
paths. We take inspiration from this model to design HeMoG,
which, contrary to [20], is built on a 3D-rotational motion
description with specific terms related to head/neck fatigue.

III. HEMOG: A MODEL OF HEAD MOTION IN 360◦ VIDEOS

In this section we present a new model of head motion in
360◦ videos named Head Motion with Gravitational laws of
attention (HeMoG). We formulate the shift in human attention
as the analogous mechanics of a ball rotating around a fixed
origin. As shown in Fig. 1, the red ball represents the center of
the FoV of a user exploring a virtual environment. All elements
in a visual scene compete as attractors for the human attention
process. This concept of attraction can be effectively described
by means of gravitational models, where each location in
the scene is associated with a virtual mass that is capable
of attracting attention. The ball in this analogy rotates at a
fixed length, the distance is normalized to a length of one for
appropriate application of orthodromic distance through the
arccos of vector dot product method.

The fundamental equation of rotational motion is:

L̇ = τ , (1)

https://gitlab.com/miguelfromeror/hemog
https://gitlab.com/miguelfromeror/hemog
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Fig. 1: Gravitational model of the head position of a person
exploring a VR scene. The center of the FoV a(t) is modeled
as a ball attached to a stick of fixed length that rotates with
an angular velocity ω and with torque τ .

where:
• L is the angular momentum, expressed as L = Iω, with
ω the angular velocity and I the moment of inertia. For a
ball attached to a fixed point (red dot in Fig. 1), I can be
expressed as the product of the ball’s mass m with the norm
of the ball’s position vector |a(t)|. There is not such a valid
analogy in our modeling of the center of focus, and we shall
keep I as a parameter in the mathematical formulation that
follows.
• τ represents the torque applied to the system. This torque
results from various forces, as described below.
We therefore have τ = d(Iω)

dt = İω + Iω̇. Having constrained
the attention on the unit sphere, the norm of a(t) does not
change over time, resulting in İ = 0. Therefore we obtain

Iω̇ = τ . (2)

Modeling of τ : The torque is the turning effectiveness of a
force. To model head rotation, we assume that two types of
forces are at play:
• forces that drive the head focus to salient areas of the 360◦

content. Every 360◦ frame therefore generates a field of force

E(a) =

∫
r∈Υ

F(r,a)dr, (3)

where Υ is the set of points in the sphere. Given the virtual
mass µ(r, t) of every point r at time t, the force exerted at the
current focus point a(t) is assumed to decrease radially as:

F(r,a) = γ(t)
1

||r− a||2
µ(r, t)(r− a) . (4)

The parameter γ(t) weights the importance of the attraction
force over time. We set

γ(t) = 1− e(−βt),

with parameter β to be a model parameter. This models the
growing importance of the content over the prediction horizon:
the motion continuity should be most important for short-
term prediction, while the content diverts attention after a few
seconds. The model input µ(r, t) for every pair (r, t) can be set
in different ways. Three cases are considered in this article. In
Sec. IV-B, µ(r, t) is set to 0. In Sec. IV-C, µ(r, t) is set to the
so called ground-truth saliency map salgt(r, t). In Sec. IV-D,

µ(r, t) is set to the element-wise product so(r, t)
⊙
of(r, t),

with so(r, t) being a 0-1 pixel map of bounding boxes (1
inside, 0 outside) of detected objects, and of(r, t) the optical
flow at this pixel.
• a torque modeled as −λω, corresponding to a force of
friction modeling the energy dissipation when a user continues
on their momentum, equivalently the fatigue or the principle
of least effort in which humans tend to return static.
Computation of a(t): The final motion equation is therefore:

Iω̇ =

(∫
r∈Υ

a× F(r,a)dr

)
− λω , (5)

where the first term in the right-hand-side is the torque associ-
ated with the field of force, × denoting the vector product. In
the implementation, we drop I as parameters γ(t) and λ in the
right-hand-side can compensate for it. The evolution of a(t)
is computed with quaternion rotations at each time instant:

a = q ⊗ ax ⊗ q−1, (6)

where ax is a constant unit vector, and ⊗ is the quaternion
multiplication. As a consequence, considering the second order
derivatives of the quaternion q:

q̈ = q̇ ⊗ q−1 ⊗ q̇ +
1

2
ω̇ ⊗ q. (7)

We can describe the dynamics of the system, by introducing
the auxiliary variable z(t) = d

dt (ax), with the system of first
order differential equations:

a(t) = q(t)⊗ ax ⊗ q−1(t)

q̇(t) = z(t)

ż(t) = q̇(t)⊗ q−1(t)⊗ q̇(t) + 1
2 ω̇ ⊗ q(t),

(8)

subject to the boundary conditions a(t0) = a0, ax = (1, 0, 0)
and z(t0) = z0. If we pose y = (q, z), then system (8) can be
compactly re-written in the canonical form:

ẏ = Φ(y, µ, γ, λ), (9)

that can be solved numerically by classic methods like Euler’s
and Runge-Kutta’s. In this system of equations there are three
parameters that are key in defining the head motion process:
• λ : models the fatigue of the user or the tendency to return
to rest.
• γ(t, β) : models the strength of the forces from the visual
input at each time-step.
• µ : the virtual masses generated from the visual input.

We vary these parameters throughout the paper to explain
the usage of HeMoG to properly model the dynamics of head
motion.

IV. COMPARING DEEP MODELS WITH HEMOG

In this section, we address Q1: To which extent can we
investigate the inner workings of these DL models with a
white-box model? To do so, we compare the performance of
HeMoG with the reference DL models of [14].



A. Experimental Setup

1) Dataset: We selected the publicly available dataset of
[12] to perform our experiments. This dataset consists of 208
omnidirectional videos. The duration of each video ranges
between 15 and 80 seconds long (36s in average), each video
is viewed by at least 31 participants. To perform the parameter
estimation, we randomly selected a subportion of the traces of
166 videos (80%) and 15 users (50%) from the dataset, and
exploited them to estimate the model parameters. Then the
model with the parameters found is tested in the remaining
traces (42 videos and 16 users), there is no overlap between
videos or users in the train and test set. We subsampled all
the videos in the dataset to 5 frames per second. The frames
are resized to a resolution of 952× 476.

Instead of using the equirectangular frame as visual input
where the pixels in the poles are oversampled, the Vogel
method [21] is employed to generate approximately uniformly
distributed points on the sphere, as proposed in [22]. As
illustration of the uniform sampling of the equirectangular
frame using the Vogel method, the sampling of 200 points
is shown in Fig. 2. In our experiments we used a sampling
of 10000 points. Fig. 2 also shows the interaction between
the field of forces µ(r, t), the position of the head a(t), the
angular velocity ω and the torque τ .

Fig. 2: Interaction between the Field of forces of a synthetic
image and the position of the head a(t).

The integration of Eq. 9 that drives the focus of attention
trajectory is based on the odeint function of Python SciPy
library. The function is based on LSODA, which is a gen-
eral purpose software that dynamically determines where the
problem is stiff and chooses the appropriate solution method.

2) Problem definition and metric: We focus on the dy-
namic prediction problem that consists, at each video play-
back time t, in predicting the future user’s head positions
between t and t+H , with H being the prediction horizon. We
set H = 5 sec. to match the settings of [14]. Let T be the video
duration. We define the terms prediction step s, and video
time-stamp t, such that: at every time-stamp t ∈ [0, T ], we run
predictions â(t+s), for all prediction steps s ∈ [0, H]. In what
follows, t therefore identifies with t0 and s with t in Sec. III,
with initial conditions being position a(t) (a0) and current
rotational velocity q̇(t) (z0). We evaluate the predictions
at every step s with the orthodromic distance between the
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Fig. 3: Prediction error of HeMoG with λ = 2.5 (and
β = 0) compared with the deep-position-only baseline. The
performance of HeMoG with other values of λ = 0.5 and
0.05 are shown to illustrate the impact of the parameter.

ground-truth of the future position and the predicted positions.
The orthodromic distance is the shortest distance of two points
measured along the surface of the sphere, and is calculated as
D(a(t+ s), â(t+ s)) = arccos (a(t + s) · â(t + s)), where ·
is the dot product operation.

B. HeMoG models well head motion continuity and attenua-
tion

We first investigate the impact of parameter λ of HeMoG,
which is meant to represent the attenuation of energy when
the user continues on their momentum (modeled as a force of
friction in Sec. III). To do so, we set the visual content weight
γ(s) to 0 by setting β = 0. We compare HeMoG against
the DL model named deep-position-only, introduced in [14],
because it uses only the history of past positions to make the
predictions and it has been shown to outperform all previously
existing DL models over all prediction steps. It is a Sequence-
to-Sequence LSTM framework consisting in an encoder and a
decoder that does not consider any visual input. The encoder
receives the historic window input of past head positions and
generates an internal representation that initializes the decoder
producing the series of predictions.

1) Results: Fig. 3 depicts the results of HeMoG in the test
set with the parameter λ = 2.5 tuned in the train set. We
observe that λ = 2.5 yields performance of HeMoG close to
that of the deep-position-only baseline. Fig. 3 also presents the
results of HeMoG with other values of λ, a lower value of λ
represents lower fatigue (more volatility), while a higher value
of λ represents higher fatigue (motion reduced more quickly).

First, it is remarkable that such a white-box model predicts
head motion as well as a DL model. Second, we interpret this
as the DL model deep-position-only learning the curvature
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Fig. 4: Prediction error of HeMoG with λ = 2.5, β = 10−1

and ground-truth saliency (GT-Sal) input, compared with
TRACK. Other values of β = 10−2 and 10−3 are shown to
illustrate the impact of the parameter.

and friction dynamics of head motion that HeMoG is
explicitly built on. This is the first element of answer to
question Q1.

C. HeMoG combines well past motion and accurate content
information

We study whether HeMoG correctly models the fusion
between visual information and history of head positions. To
do so, we keep λ set to 2.5 following the previous results.
To be independent from the imperfection of any saliency
predictor fed with the visual content, we consider here the
ground-truth saliency: it is the heat map (2D-distribution) of
the viewing patterns, obtained at each point in time from the
users’ traces. Here we compare HeMoG with the complete DL
model TRACK from [14]. To compare HeMoG and TRACK
fairly, we specify that TRACK is fed with the same type of
visual content information as HeMoG.

1) Results: Fig. 4 presents the results of HeMoG fed
with ground-truth saliency (named GTSal) with the value of
β = 0.1 found in the train set. With β = 0.1, HeMoG
performs similarly or slightly better than the DL model
TRACK, which was shown to efficiently fuse the multi-modal
inputs [14]. Fig. 4 also presents the results of HeMoG for
lower values of β. The value of β affects the coefficient of
the attraction force γ(s) (the coefficient of the visual input)
through γ(s) = 1−e(−βs). The higher the value of β the faster
the growth of importance of the visual coefficient. Given that
TRACK features a dedicated recurrent neural unit for each
of both input modalities (past position and frame saliency)
and a recurrent neural unit for the fusion of the so-obtained
embeddings, TRACK has the flexibility to learn various ways
of combining both modalities. The fact that HeMoG, with its

fixed fusion scheme shown in Eq. 5 performs as well or
better can be interpreted as TRACK performing a similar
type of fusion as HeMoG, which enables to benefit from both
types of information (the lowest curves in Fig. 4 are lower than
those with the positional modality only in Fig. 3). This is the
second element of answer to Q1.

D. HeMoG behaves as the DL model and lowers the impact
of a noisy saliency estimate

In a non-ideal case where the saliency is not obtained from
the viewing patterns but rather estimated from the content,
we analyze the performance of HeMoG in comparison with
TRACK. The extraction of visual saliency in 360◦ videos has
been studied as an extension of image saliency [10]. However,
additionally to the salient objects that can be found in images
and videos, the motion of objects in the scene becomes an
important cue specifically for videos [23]. For this reason we
considered the moving objects as important cues to extract
saliency from the 360◦ video content. The objects in each FoV
of the scene are detected using YOLOv4 [24], the aggregation
of all detected objects in all FoVs provides a binary map,
shown in Fig. 5(c). To obtain the moving objects map shown in
Fig. 5(d), we perform the element-wise product of the binary
map and the norm of the pixel velocities computed in the
360◦ scene. This moving objects map obtained from the visual
content is named the content-based saliency (CBSal).

(a) Original Frame (b) GT SalMap

(c) Detected Objects (d) CB SalMap

Fig. 5: Saliency map extraction from a frame of video ‘072’.
(a) Original frame. (b) Ground-truth saliency map. (c) De-
tected objects map. (d) Content-based saliency map: moving
objects map.

1) Results: In Fig. 6, we present the results of our model
HeMoG against the DL model TRACK using the same visual
information CBSal as input. First, we observe that both models
increase their error significantly when they use a noisy input
for the visual saliency. Second, contrary to what occurred
with ground-truth saliency, HeMoG performance improves by
reducing the value of β, in other words, by minimizing the im-
pact of the CBSal input. Using a value of β = 10−5, HeMoG
approaches the performance of TRACK. This reinforces the
hypothesis that TRACK and HeMoG perform the same
type of fusion.
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V. IMPACT OF THE VISUAL SALIENCY ON HEAD MOTION

In this section, we address Q2 by analyzing the impact of the
visual saliency on head motion, in terms of the video category
and the time-step in the prediction horizon.

A. Visual saliency impacts head motion only for certain video
categories

The videos from the dataset of [12], contain heterogeneous
scenes including music shows, documentaries, sports, movies,
etc. More generally, [25] have identified the following main
video categories for which they could discriminate signifi-
cantly different users’ behaviors: Exploration, Static Focus,
Moving Focus and Rides. In Exploration videos, there is no
specific attraction point and the spatial distribution tends to
be more widespread and hence individual trajectories more
difficult to predict. Static Focus videos are made of a single
or few attraction areas (e.g., a standing person in an empty
room). In Moving Focus videos, the attraction points move
over the sphere. Rides videos are shot with the 360◦ camera
moving. In this case, the attraction point for the user is usually
the camera moving direction to minimize motion sickness.

We categorized each of the videos in the dataset of [12]
into one of the four groups: Exploration, Static Focus, Moving
Focus or Rides. The number of videos belonging to each of
the classes is: 16 videos of Rides, 100 Exploratory videos,
74 Moving Focus and 18 Static Focus videos. In Fig. 7, we
show some of the videos from the dataset with their respective
category.

In Fig. 8, we present the results of HeMoG per video
category, with CBSal and for different values of β. For
Exploration videos, as several objects around the sphere are

Exploratory Static Moving Rides

Fig. 7: Some videos from [12], categorized into Exploratory,
Static (focus), Moving (focus) and Rides
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Fig. 8: Prediction error of HeMoG compared with TRACK
grouped per category. Top-left: Exploratory. Top-right: Rides.
Bottom-left: Moving Focus. Bottom-right: Static Focus.

equally attractive, we expect that there is no much information
about saliency that could be captured in CBSal, and as in Rides
videos the most salient point is around the direction of camera
motion, CBSal cannot capture the relevant information from
these videos. Indeed, CBSal is the product of the optical flow
with the objects bounding boxes, and hence the camera direc-
tion where the optical flow is minimum cannot be highlighted
as salient this way. Fig. 8 confirms that the lowest values of
β are those providing best results for Exploration and Rides
videos. HeMoG therefore reduces the weight of the saliency
information in these cases (as it is also possibly the behavior
of the DL model TRACK given its curve).

For the Moving Focus and Static Focus categories, we
observe that when we increase the value of β, the error in
the long-term decreases, showing the relevance of the saliency
information for longer-term prediction. However, the error in



the short-term increases, which we discuss in the next section.
These results with different optimal values of β per video
category show that the impact of saliency on head motion
is stronger for Static Focus and Moving Focus (and likely
for Rides too) than for the Exploration category.

B. Visual saliency impacts head motion only after 3 seconds

As discussed above, increasing β in Static Focus and Mov-
ing Focus videos lowers the error in the long-term prediction
steps but degrades it in the short-term. This reveals a possibly
not optimal choice of the γ(s) function that controls the
rapidity of importance growth of the saliency information over
s. For now we have set, from Sec. III, γ(s) = 1− e(−βs). We
ran numerical searches and identified that the values of γ(s)
that give the best performance of the gravitational model per
time-step are:

γ(s) =

{
10−5 if 0 < s <= 3

10−1 if 3 < s <= 5,
(10)

from which we draw two conclusions. First, the motion
momentum is more important than the visual content in
the first 2.5 seconds of the prediction horizon, and the visual
content can inform the head motion prediction model
only for horizons longer than 3 seconds. Second, that a
sigmoid-like function γ(s) = C

1+exp (−β(s−S)) with additional
parameters C for the scaling and S to center the transition
from 0 to 1, would be a better fit. This is confirmed in Fig. 9
with the comparison of HeMoG when the parameters are set
properly for the different categories and for each prediction
step s. Let us note that this also shows that the DL model
TRACK is capable to learn and adapt to the different video
categories, while the white-box approach is limited by the
right choices of parameters. However, we show here that
the differential equation model of HeMoG captures the main
dynamics and yields performance similar to the DL models in
average.

VI. DISCUSSION

Comparison of HeMoG with Deep Learning models: The
main difference between both types of models is as follows.
The latter are equipped with representation learning capability
(learning how to extract relevant features from the saliency
map they are fed) and able to modulate the weights assigned
to momentum and saliency features in the fusion depending
on the saliency and motion information (capabilities detailed
in [26]). In comparison, HeMoG is able to properly fuse both
types of information for any video, provided that the saliency
information is the ground-truth. When it is not the ground-truth
anymore (when fed with CB-sal), then the saliency weight β
in the HeMoG model must be adapted to the video category.
Also, we mention that when using other types of saliency
extracted from the content, for example the saliency maps
obtained from PanoSalNet [10], the performance of HeMoG
shown in Fig. 10 is slightly worse than that of TRACK, which
we explained by the lower level of information present in
the estimated saliency map in relation with the user motion.
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Fig. 9: Results averaged over all video categories. HeMoG is
set with γ(s) = 1 − e(−βs) and β = 10−5 for Exploratory
and Rides videos, and γ(s) from Eq. 10 for Moving Focus
and Static Focus videos, compared with TRACK. The curves
of HeMoG and TRACK with GTSal are shown for reference.
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Fig. 10: Prediction error of HeMoG with λ = 2.5, β = 10−5,
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PanoSalNet. The curves of HeMoG and TRACK with GTSal
are shown for reference. Other values of β = 10−3, 10−4 are
shown to illustrate the impact of the parameter.

On focus-type videos, TRACK is able to extract some useful
information (improvement compared with deep-position-only),
while HeMoG is not.

Indeed, the Content-Based saliency obtained from PanoSal-
Net can be noisy, as we show in Fig. 11 with an original frame
of video ‘072’ and its extracted saliency with PanoSalNet, and



the Ground-truth saliency from user statistics on this frame.
While the salient object in the frame is the human, low-level
features like the lights reflected in the floor and high-level
features like the text written in the floor are taken into account
by the saliency extractor, making the resulting saliency map
noisy and more difficult to get motion-relevant information
from.

Fig. 11: Saliency map extraction from a frame of video ‘072’.
(left) Original frame. (center) PanoSalNet saliency map. (c)
Ground-truth saliency map

Generalizing to more comprehensive saliency maps:
While the study of this paper has been restricted to saliency
attractors based on moving objects, we can consider extending
to static objects whose importance can be ranked, meaning
that the trajectory of focus of attention is also subjected to
a gravitational field created by static objects [27], [28]. We
can also study how to improve for the case of Rides scenes
characterized by camera motion. To have more solid estimates
of pixel velocities, methods for camera motion estimation [29]
are already present in the literature and can help in creating
more suitable saliency estimates for the proposed model. The
treatment of such complex scenes is left for future work.

Integration of HeMoG with Gaze-based models: The
motion of eyes is important to determine the exploration
behaviors of people watching 360◦ videos. While eye-tracking
data is outside of the scope of this work, our model HeMoG
could be extended to get both the head and eye movements
from a 360◦ video source. Given the head orientation predicted
by HeMoG, the FoV can be cropped from the 360◦ content.
Then, a model for regular 2D videos as the one proposed in
[20] can be used on this planar FoV section to predict plausible
human gaze scanpaths.

VII. CONCLUSIONS

In this article we have investigated the human head mo-
tion process driven by attention when a user experiences an
immersive 360◦ video. We have first introduced a new com-
putational model named HeMoG, enabling to predict future
head positions from the user’s past positions and the visual
content. HeMoG is built on differential equations obtained
from the physics of rotational motion where the attractive
salient areas in the 360◦ frames are represented as virtual
masses. HeMoG is hence a white-box model and its (time-
varying) parameters control the connection between visual
content and head motion process. The performance of HeMoG
can be comparable with those of DL predictors, which we
interpret as the DL models learning the same type of fusion
as HeMoG: curvature continuity and momentum attenuation
from friction in the short-term, diversion of motion with
saliency attraction in the longer-term. The evolution of best

parameter values in terms of video categories and horizon
reveals that, on videos that are not exploratory, the initial
motion momentum is most important until ca. 3s, after which
the saliency weights more in the motion equation. Future
works include refining the saliency extractor to feed the model
with, and incorporating these findings into an attention-driven
system to produce personalized immersive environments.
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