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Abstract. Relational Concept Analysis (RCA) was designed as an ex-
tension of Formal Concept Analysis (FCA) to multi-relational datasets,
such as the ones drawn from Linked Open Data (LOD) by the type-wise
grouping of the resource into data tables. RCA has been successfully
applied to practical problems of AI such as knowledge elicitation, knowl-
edge discovery from data and knowledge structuring. A crucial question,
yet to be answered in a rigorous manner, is to what extent RCA is a true
extension of FCA, i.e. reveals concepts that are beyond the reach of core
FCA even using a suitable encoding of the original data. We show here
that the extension is e�ective: RCA retrieves all concepts found by FCA
as well as many further ones.

Keywords: Multi-relational Data · Formal Concept Analysis · RDF
· Propositionalization.

1 Introduction

FCA provides the mathematical framework for several Knowledge Discovery in
Databases (KDD) tasks whenever the data is purely, or at least predominantly,
of categorical nature. Indeed, FCA-based association discovery and conceptual
clustering have been applied to knowledge base structuring, ontology learning,
anomaly detection, observation classification, etc. Most real datasets, though,
stray from being purely categorical. FCA thus provides a set of scaling operators
to deal with numerical and otherwise ordered scales. In AI, the majority of
interesting data, such as those compatible with the LOD format, have relational
structure. They can be represented either as graphs (for instance, named graphs
in RDF) or as sets of relational tables. Approaches have been designed for the
former, emphasizing the intra-data object links, e.g. logical FCA [7] and pattern

structures [8], for graph datasets. For the latter, the focus is on inter-object links,
e.g. in datasets structured as a unique RDF graph. In this second trend, more
akin to power-context families [15] and Graph-FCA [6], we focus on the particular
approach of relational concept analysis (RCA). It has already been successfully
applied to a wide range of practical problems such as hydroecology [4], industrial
decision making [12] or biology [1,13]. Rather than in a global graph, RCA shapes
the data as a set of ◊-tables, complying to the Entity-Relationship framework [2].
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Part of the tables have the classical objects ◊ properties format (entity types,
FCA contexts) while the remainder represent objects ◊ objects relations.

A natural question is whether RCA does extend the reach of FCA, knowing
that for single datasets, whatever the level of complexity of the object descrip-
tions (sequences, trees, graphs), the results of an FCA-based processing on those
descriptions can be brought down to FCA on a context made of suitably-chosen
derived attributes. The question is all the more important as prior studies seem
to imply it does not [3] (though, for a reduced version of RCA). We make the
case here for RCA as a true extension of FCA, in the sense that due to its
multi-relational input and fixed point computation, it detects concepts that are
out of reach for FCA while, in turn, retrieving all concepts that FCA is able to
reveal. To that end, we chose some plausible re-encodings of a simple relational
context family (RCF), the hypothesis being that with more complex datasets,
the phenomenon only amplifies.

The remainder of the paper is as follows: Section 2 provides background on
RCA while Section 3 presents our FCA-vs-RCA comparison. Next, Section 4
discusses the comparison outcome and Section 5 concludes.

2 Background

Formal concept analysis [14] is a mathematical method for eliciting the con-
ceptual structure of “object ◊ attribute” datasets. Data are gathered within a
(formal) context, a triple K = (O, A, I) where O is a set of objects, A is a set of
attributes and I ™ O ◊ A is the context incidence relation, where (o, a) œ I, also
written oIa, means that the object o bears the attribute a. A context induces
two derivation operators: one mapping objects to attributes, and the reciprocal.
The object derivation Õ maps a subset X of objects to the set of attributes shared
by all members of X, Õ : ˝(O) ≠æ ˝(A) with Õ : X ‘æ {a œ A | oIa ’o œ X}.
The dual attribute derivation, also denoted by Õ, works the other way around,
Õ : ˝(A) ≠æ ˝(O) with Õ : Y ‘æ {o œ O | oIa ’a œ Y }. Inside a context K, a
(formal) concept is a pair (X, Y ) ™ O ◊ A such that X Õ = Y and Y Õ = X. The
sets X and Y are called extent and intent of the concept (X, Y ), respectively.

FCA extracts conceptual abstractions on objects by factoring out shared at-
tributes. Relational concept analysis [10] extends it by factoring in relational
information, as available in multi-relational datasets [5]. RCA admits multiple
sorts of objects in its input format, each organized as a separate context, plus
a set of binary relations between contexts. The input data structure, called re-

lational context family (RCF), is thus a pair (K, R) where K = {Ki}i=1,...,n

is a set of distinct contexts Ki = (Oi, Ai, Ii) and R = {rk}k=1,...,m a set
of binary relations rk ™ Oi ◊ Oj where the contexts Ki and Kj are the do-
main and range contexts of rk, respectively. Relational tables are also processed
in their own way, as explained below. A cross in the table of relation r for
(domain_objecti, range_objectj), can be understood as the first order logic
term r(domain_objecti, range_objectj) being true.
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RCA distills the shared relational information (i.e., inter-object links) using
propositionalization [9]: It integrates new attributes into an extended version
of the initial context, say Kd = (Od, Ad, Id), to further refine the conceptual
structure of the underlying object set. To increase shareability, rather than the
individual objects from the target (range) context, say Kt, the new attributes
refer to abstractions on them. In its most basic version, RCA exploits the natural
conceptual structure provided by the concepts of each context. Indeed, two links
of relation r : d ≠æ t departing from o1 and o2 from Od and referring to
two distinct objects ō1 and ō2 from Ot, respectively, are distinct information.
However, replacing ō1 and ō2 with a common abstraction, say {ō1, ō2}Õ, makes the
new information shareable. Relational scaling follows a well-known schema from
description logics: Given a relation r, for each concept ct from the range context
of r, it produces, for Ad, an attribute q r : cr where q is an operator chosen
before-hand from a set Q. RCA admits, among others, standard description
logics restrictions (Q = {÷, ’, ’÷, . . .}), which behold their respective semantics
(see [10] for details and example 1 for illustration).

Example 1. Assume a RCF made of contexts on people and cars, and an owner-
ship relation, or pos(sesses), which are given in Tables 1, 3 and 2, respectively.
The cars lattice is shown in Figure 1. Now, an ÷-scaling of the relation pos using
that lattice will add, for each car concept c, a new attribute ÷pos : c to the
person context, e.g. ÷pos : cars_4 and ÷pos : cars_3 that can be rewritten as
÷pos : (cp) and ÷pos : (el, pw), respectively, using intents as IDs.

KP

Senior
A

dult
M

ale
Fem

ale
I.T

.
Sport

Fa ◊ ◊
La ◊ ◊ ◊
Sh ◊ ◊
Tr ◊ ◊ ◊ ◊

Table 1: Person Context

pos tw t3 zo f5
Fa ◊
La ◊ ◊
Sh ◊ ◊
Tr

Table 2: Relation pos

KC el pw cp ch

tw ◊ ◊
t3 ◊ ◊
zo ◊ ◊
f5 ◊ ◊

Table 3: Car Context
Fig. 1: Car Lattice

A scaling step results in the related contexts being extended, which, in turn,
may lead to the emergence of new concepts. Thus, as the set of available ab-
stractions increases, a scaling step with the di�erential set of concepts would
produce further relational attributes and the whole process would go on cycling.
The resulting iterative context refinement necessarily ends at a fixed point [10],
i.e. a set of lattices whose concepts refer to each other via relational attributes.
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3 What can RCA do for AI (that FCA can’t) ?

Below, we examine two encoding strategies that bring a multi-relational dataset
to a mono-relational one, i.e. aggregate several contexts into a single data table,
so that they can be fed to classical FCA.

3.1 Encoding multiple contexts into a single one

Assume a simple RCF made of two contexts and a relation (see Figure 2). We
use this simple case for our reasoning, knowing that in more complex cases, i.e.
three or more contexts and several relations, it can be extended appropriately.
Moreover, while there could be a wide range of concrete encoding disciplines [11],
the principle behind them admits only two basic cases, i.e. entity-centric and
relation-centric. In our FCA/RCA perspective this boils down to which sort of
RCF element, i.e. context or relation, is put center-stage.

O1

A1

I1 O1

O2

r O2

A2

I2

Fig. 2: Fictitious RCF

OÛÙ

A1 A2

Fig. 3: Semi-join

O1

A1 fl(A2)

Fig. 4: Aggregation

The first encoding principle we examine below emphasizes the object-to-
object relation as a primary construct and pivotal element of the encoding.
Its member pairs become first-class objects which carry the attributes of both
contexts incident to the relation. Technically speaking, the method is akin to
the (semi-)join operation of relational algebra. The overall encoding schema is
illustrated in Figure 3 whereas Section 3.2 proposes a formal definition thereof.
It also provides a detailed comparison of the results from applying RCA to the
RCF from Figure 2 with those of FCA on the semi-join of the two initial contexts.

A bit closer to the RCA propositionalization spirit, a second encoding princi-
ple emphasizes the context as a main construct and driver of the encoding: The
domain context of the relation is extended with some additional attributes that
translate the relation while following a technique akin to relational scaling. The
main di�erence here is that the context is the one-shot context extension. The
procedure whose details are discussed in Section 3.3, is schematically illustrated
in Figure 4. Moreover, the asymmetric encoding of the relation and the one-
shot extension amount to processing the range context as if it were aggregated
into the domain one. Therefore, we termed the overall encoding principle the
aggregation and the resulting context the aggregated one.

Finally, please notice that in the detailed investigation of each case (see be-
low), our reasoning follows three steps: 1) We pick an arbitrary formal concept
from the FCA output, 2) we show the RCA output comprises a concept with the
same objects, and 3) we establish the link between the intents of both concepts.
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3.2 Semi-join in single relation RCF

We consider here the concurrent case where the FCA is applied on a context
encoding the semi-join of this RCF, as presented in Figure 3. This encoding
consists in creating the objects of OÛÙ as the object pairs (o1, o2) where o1 œ
O1 fi {‹}, o2 œ O2 fi {‹}, according to the RCF modeling of O1, O2 Figure 2.
The ‹ object is a fictitious empty object with no attributes used to complete
the semi-join. There are three cases to define the elements of OÛÙ:

– If o1 œ O1, o2 œ O2, then (o1, o2) œ OÛÙ if and only if (o1, o2) œ r
– If o1 = ‹, o2 œ O2, then (o1, o2) œ OÛÙ if and only if r≠1(o2) = ÿ, i.e. if there

is no x œ O1 such that (x, o2) œ r
– If o1 œ O1, o2 = ‹, then (o1, o2) œ OÛÙ if and only if r(o1) = ÿ, i.e. if there

is no x œ O2 such that (o1, x) œ r

Example 2. As an illustration of the above modeling, assume an RCF made of
contexts for people (Table 1) and for cars (Table 3) plus an ownership relation
(possession, Table 2). In the first context, Farley, Lane, Shana, and Trudy are
described by being senior or adult, male or female, working in IT, and practicing
a lot of sports. Cars –Twingo, Tesla 3, Zoe, and Fiat 500– can be electrical,
powerful, compact or (not exclusive) cheap. The corresponding semi-join context
is presented in Table 4.

KÛÙ

Senior
A

dult
M

ale
Fem

ale
I.T

.
Sport

el pw cp ch

(Fa,tw) ◊ ◊ ◊ ◊
(La,t3) ◊ ◊ ◊ ◊ ◊
(La,f5) ◊ ◊ ◊ ◊ ◊
(Sh,tw) ◊ ◊ ◊ ◊
(Sh,f5) ◊ ◊ ◊ ◊
(Tr,‹) ◊ ◊ ◊ ◊
(‹,zo) ◊ ◊

Table 4: Semi-join context of Example 2 RCF

To avoid ambiguity, we consider the derivations in the K1 and K2 contexts
always denoted xÕ, while the derivation in the join context is denoted xÒ (and
the double derivation xÒÒ).

We are first interested in describing a formal concept of the joined context.
Let X ™ OÛÙ be a set of objects. So, for all (o1, o2) œ X we have o1 œ O1 fi {‹}
and o2 œ O2 fi {‹}. Thus, by definition, C = (XÒÒ, XÒ) is a formal concept.
Let us now take the projections on the first and second elements of the pairs of
XÒÒ, i.e. fi1 = {o1 | ÷o2, (o1, o2) œ XÒÒ} and fi2 = {o2 | ÷o1, (o1, o2) œ XÒÒ}.
We start by defining XÒÒ in terms of these projections.
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Lemma 1 We have XÒÒ = (fi1 ◊ fi2) fl OÛÙ

Proof. Let (u, v) œ XÒÒ. By definition XÒÒ ™ OÛÙ, so (u, v) œ OÛÙ. Moreover,
by construction u œ fi1 and v œ fi2 so (u, v) œ fi1 ◊ fi2. Thus, XÒÒ ™ (fi1 ◊ fi2) fl
OÛÙ.

Let (u, v) œ (fi1 ◊ fi2) fl OÛÙ. Since (u, v) œ (fi1 ◊ fi2), it exists ũ and ṽ s.t.
(u, ũ) œ XÒÒ and (ṽ, v) œ XÒÒ. But, by construction {(u, ũ), (ṽ, v)}Ò ™ uÕ fi vÕ.
And, since (u, v) œ OÛÙ we can write (u, v)Ò = uÕ fi vÕ. Thus, by derivation
property we have XÒÒÒ ™ {(u, ũ), (ṽ, v)}Ò, by transitivity XÒÒÒ ™ (u, v)Ò.
Thus, by deriving this expression we obtain (u, v)ÒÒ ™ XÒÒÒÒ. Finally, as
(u, v) œ (u, v)ÒÒ and XÒÒÒÒ = XÒÒ we have (u, v) œ XÒÒ. ÙÛ

We first study the particular cases containing the object ‹ by starting with
the case where this element appears in both projections.

Proposition 1 If ‹ œ fi1 and ‹ œ fi2 then XÒ = ÿ and XÒÒ = OÛÙ

Proof. Suppose ‹ œ fi1 and ‹ œ fi2 then by definition of ‹ we have XÒ flA1 = ÿ
and XÒ fl A2 = ÿ and therefore XÒ = ÿ. By definition of the derivation we have
ÿÒ = OÛÙ therefore XÒÒ = OÛÙ.The second assertion holds by symmetry. ÙÛ

In the case described by the lemma 1, it is immediate to show that we can
construct (XÒÒ, XÒ). We show that the same is true when only one of the
components fi1 or fi2 contains ‹ by first describing XÒ then XÒÒ in the lemmas
2 and 3.

Lemma 2 If ‹ œ fi1 and ‹ ”œ fi2, XÒ = fiÕ
2. If ‹ œ fi2 and ‹ ”œ fi1, XÒ = fiÕ

1.

Proof. Let us suppose ‹ œ fi1 and ‹ ”œ fi2. We have a œ XÒ i� XÒÒ ™ aÒ. Yet,
since ‹ œ fi1 we have construction XÒ flA1 = ÿ. thus, we have a œ A2.therefore,
we have a œ XÒ i� for all (o1, o2) œ XÒÒ o2 carries the attribute a, i.e. a œ fiÕ

2.
Since we have a œ XÒ i� a œ fiÕ

2, we have XÒ = fiÕ
2. We show the second

assertion symmetrically. ÙÛ

Lemma 3 If ‹ œ fi1 and ‹ ”œ fi2, XÒÒ = (O1 fi {‹} ◊ fi2) fl OÛÙ. If ‹ œ fi2 and

‹ ”œ fi1, XÒÒ = (fi1 ◊ O2 fi {‹}) fl OÛÙ.

Proof. Let us suppose ‹ œ fi1 and ‹ ”œ fi2. Let v œ fi2. Any pair (u, v) œ OÛÙ

verifies fiÕ
2 ™ (u, v)Ò. Since, by the lemma 2, we have XÒ = fiÕ

2, we can write
XÒ ™ (u, v)Ò and thus, by derivation (u, v)ÒÒ ™ XÒÒ. Finally, for any u œ
O1 fi {‹}, we have (u, v) œ XÒÒ donc XÒÒ = (O1 fi {‹} ◊ fi2) fl OÛÙ. We show
the second assertion symmetrically. ÙÛ

The lemmas 2 and 3 allow us to determine that in cases where only one of
the projections contains ‹ we can write a formal concept of KÛÙ only with the
other projection. Let us now study a formal concept based on this projection
determined by RCA.
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Lemma 4 If ‹ œ fi1 and ‹ ”œ fi2, there exists a concept C2 = (fi2, fiÕ
2) on K2.

If ‹ œ fi2 and ‹ ”œ fi1, there exists a concept C1 = (fi1, fiÕ
1) on K1.

Proof. Let us suppose ‹ œ fi1 and ‹ ”œ fi2. Since fi2 ™ O2, (fiÕÕ
2 , fiÕ

2) is a concept
son K2. It is therefore su�cient to show that fiÕÕ

2 = fi2, or more simply fiÕÕ
2 ™ fi2.

Let o œ fiÕÕ
2 . By construction at least one couple (ō, o) œ OÛÙ and oÕ ™ (ō, o)Ò.

Now, we have o œ fiÕÕ
2 so by derivation, fiÕ

2 ™ oÕ. Moreover, by the lemma 2, we
have XÒ = fiÕ

2. Thus, XÒ ™ (ō, o)Ò so by derivation, (ō, o) œ XÒÒ. Finally, by
definition of the projections o œ fi2. The second assertion holds by symmetry. ÙÛ

The following proposition gathers the previous lemmas. It emphasizes that,
in the case where only one of the two projections contains ‹, any concept of
KÛÙ can be expressed with the other projection. Moreover, there exists a con-
cept generated by RCA, of the same intent and whose extent corresponds to a
projection of the extent of the concept generated by FCA.

Proposition 2 Let C = (XÒÒ, XÒ). If ‹ œ fi1 and ‹ ”œ fi2, C = ((O1 fi {‹} ◊
fi2) fl OÛÙ, fiÕ

2) and there exists a corresponding concept C2 = (fi2, fiÕ
2) on K2.

If ‹ œ fi2 and ‹ ”œ fi1, C = ((fi1 ◊ O2 fi {‹}) fl OÛÙ, fiÕ
1) and there exists a

corresponding concept C1 = (fi1, fiÕ
1) on K1.

Proof. Follows from the lemmas 2, 3 and 4. ÙÛ

There remains a specific case, described by the lemma 5, to complete the
exhaustive description of a formal concept on the join table.

Lemma 5 For any X ™ O1 ◊ O2 we have XÒ = fiÕ
1 fi fiÕ

2 and XÒÒ = {(o1, o2) |
fiÕ

1 ™ oÕ
1 · fiÕ

2 ™ oÕ
2}

Proof. Let us show XÒ = fiÕ
1 fi fiÕ

2 by double inclusion.

(i) XÒ ™ fiÕ
1 fi fiÕ

2.
The RCF modeling assures us that A1 fl A2 = ÿ. Thus, an attribute a œ XÒ

is either in A1 or in A2. If a œ XÒ fl A1, it must be shared by all the elements
of fi1; and so a is in fiÕ

1. Similarly, if a is in XÒ fl A2, a œ fiÕ
2. We deduce that

XÒ ™ fiÕ
1 fi fiÕ

2.

(ii) fiÕ
1 fi fiÕ

2 ™ XÒ.
On the other hand, if an attribute a is in fiÕ

1, then any pair of XÒÒ has a first
component that carries the attribute a. Since this property is true for any pair
of XÒÒ and X ™ XÒÒ, then any pair of X carries the attribute a. Therefore,
we have a œ XÒ. In the same way, we show that if a œ fiÕ

2, then a œ XÒ. thus,
we have fiÕ

1 ™ XÒ and fiÕ
2 ™ XÒ. We can therefore a�rm that fiÕ

1 fi fiÕ
2 ™ XÒ.

Finally, by (i) and (ii) we have XÒ = fiÕ
1 fi fiÕ

2. As XÒÒ describes exactly the
set of couples (o1, o2) having the attributes of fiÕ

1 fi fiÕ
2, by construction of the

join table we have fiÕ
1 ™ oÕ

1 and fiÕ
2 ™ oÕ

2. ÙÛ
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The cases described by the lemmas 1 and 2 allow for the immediate selection
of concepts from the RCA process corresponding in terms of extent to a concept
in the join table. The proposition 3 relies on the lemma 5 to state the main result
of this subsection, dealing with non-degenerate cases (without ‹ element).

Proposition 3 Let X ™ O1◊O2. There exists by RCA on K1 a concept (X1, Y1)
such that X1 = fi1 and fiÕ

1 ™ Y1 and there exists on K2 a concept (X2, Y2) such

that X2 = fi2 and fiÕ
2 ™ Y2.

Proof. As fiÕ
1 ™ A1 and fiÕ

2 ™ A2, C1 = (fiÕÕ
1 , fiÕ

1) and C2 = (fiÕÕ
2 , fiÕ

2) are formal
concepts on their respective contexts computed at step 0 of RCA.

Let us consider the contexts K1 and K2 after graduation by the operator
÷ on the relations r and r≠1. We then have the attributes ÷r : C2 in K1 and
÷r≠1 : C1 in K2. We define the sets of attributes Y1 = fiÕ

1 fi {÷r : C2} and
Y2 = fiÕ

2 fi {÷r≠1 : C1} as well as the concepts C3 = (Y Õ
1 , Y ÕÕ

1 ) and C4 = (Y Õ
2 , Y ÕÕ

2 )
(it is possible that C1 = C3 or C2 = C4). We have Y Õ

1 = fiÕÕ
1 fl {÷r : C2}Õ, let us

show that Y Õ
1 = fi1 by double inclusion.

Let o œ fi1, we have o œ fiÕÕ
1 . Moreover, by construction, any pair of (o, ō) œ

XÒÒ verifies (o, ō) œ r with ō œ fi2 and, by hypothesis, ō ”= ‹. Thus, since
fi2 ™ fiÕÕ

2 , o carries the attribute ÷r : C2. Thus, we have fi1 ™ Y Õ
1 .

Let o œ Y Õ
1 . We have fiÕ

1 fi {÷r : C2} ™ oÕ. Since {÷r : C2} ™ oÕ, there exists
ō œ fiÕÕ

2 such that (o, ō) œ r and thus (o, ō) œ OÛÙ. Moreover, since ō œ fiÕÕ
2 , we have

fiÕ
2 ™ ōÕ. Since fiÕ

2 ™ ōÕ, fiÕ
1 ™ oÕ and that by the lemma 5 we have XÒ = fiÕ

1 fi fiÕ
2,

we can a�rm XÒ ™ (o, ō)Ò. Finally (o, ō)ÒÒ ™ XÒÒ and by definition of fi1,
on a o œ fi1 (In a completely analogous way, we show fi2 = Y Õ

2).
Finally, we have shown the existence of C3 = (Y Õ

1 , Y ÕÕ
1 ) such that Y Õ

1 = fi1 and
fi1 ™ Y ÕÕ

1 as well as of C4 = (Y Õ
2 , Y ÕÕ

2 ) such that Y Õ
2 = fi2 and fi2 ™ Y ÕÕ

2 . ÙÛ

In conclusion, the propositions 1, 2 and 3 show that for any concept C =
(XÒÒ, XÒ) we find on K1 a concept (X1, Y1) such that X1 = fi1 and fiÕ

1 ™ Y1
and there exists on K2 a concept (X2, Y2) such that X2 = fi2 and fiÕ

2 ™ Y2. It
is to note that if ‹ œ fi1 (respectively fi2) we have fi1 = {x | ÷y, (x, y) œ OÛÙ}
(respectively fi2 = {x | ÷x, (x, y) œ OÛÙ}). Example 3 illustrates these properties.

Example 3. Let us consider the relational family as well as the semi-join context
defined in the Example 2.

On the joined context, we find the concept C = ({(La, t3), (La, f5)}, {Adult,
Female, IT, pw}). Here, fi1 = {La} and fi2 = {t3, f5}. We check that there exists
on KP a concept (fi1, fiÕ

1), namely the concept C1 = ({La}, {Adult, Female,
IT}), and on KC a concept (fi2, fiÕ

2), the concept C2 = ({t3, f5}, {pw}). After an
iteration, RCA extends these concepts’ intents to {Adult, Female, IT, ÷pos : C2}
and {pw, ÷pos≠1 : C1}, respectively.

3.3 Aggregation operation in mono-relational case
Assume again the RCF in Figure 2 and let us consider FCA is applied on the
context schematically visualized in Figure 4. Intuitively, this amounts to extend-
ing the domain context of the relation by appending some new attributes. These
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are derived from the range context attributes by a technique akin to relational
scaling, i.e. one basically simulating a one-shot RCA-like context refinement.

Formally speaking, we design the context Kl = (Ol, Al, Il) where Ol =
O1, Al = A1fifl(A2), and fl(A2) are the attributes resulting from the application
of the scaling operator fl to the attribute concept of a œ A2. We will denote such
an attribute flr : a to avoid confusion with RCA’s own relational attributes. No-
tice that A1 fl fl(A2) = ÿ holds. Next, we introduce Constraint(fl, r, op, (X, Y )),
a predicate verifying whether op and (X, Y ), from the domain and the range of r,
respectively, jointly comply to the semantic of fl. Thus, Constraint(’, r, op, (X, Y ))
is true i� r(op) ™ X. The predicate is a compact expression of the incidence Il:

– if ap œ A1 then (op, ap) œ Il i� (op, ap) œ I1,
– if ap œ fl(A2) then (op, ap) œ Il i� Constraint(fl, r, op, (aÕ

p, aÕÕ
p)) is true.

Example 4 illustrates the ’÷ case (reasoning with other operators is similar).
For the O2 perspective, it is enough to swap K1 and K2 and replace r by r≠1.

Example 4. Consider again the RCF in Example 2. We aggregate the family via
’÷: For an o œ OP and a œ AC s.t. ’÷pos : a œ fl(AC) it holds (o, ’÷pos : a) œ I
i� 1) ÷oC œ OC s.t. (o, oC) œ pos and 2) ’oC œ OC , (o, oC) œ pos entails ov œ aÕ

(there is at least one image of o by pos and all such images carry a. Table 5
depicts the resulting aggregated context Kl.

Kl
Senior
A

dult
M

ale
Fem

ale
I.T

.
Sport
’÷

pos
:
el

’÷
pos

:
pw

’÷
pos

:
cp

’÷
pos

:
ch

Fa ◊ ◊ ◊ ◊
La ◊ ◊ ◊ ◊
Sh ◊ ◊ ◊
Tr ◊ ◊ ◊ ◊

Table 5: Kl for Example 4

Kl

Senior
A

dult
M

ale
Fem

ale
I.T

.
Sport
÷
pos

:
el

÷
pos

:
pw

÷
pos

:
cp

÷
pos

:
ch

Fa ◊ ◊ ◊ ◊
La ◊ ◊ ◊ ◊ ◊ ◊
Sh ◊ ◊ ◊ ◊ ◊
Tr ◊ ◊ ◊ ◊

Table 6: Kl for Example 6

To define a formal concept on the aggregated table, we first identify the
component of the intent on the part fl(A2). Again, we denote the derivations in
K1 and K2 by Õ, and in the aggregated context by Ò.

Definition 1. The relational deviation of X ™ Ol, denoted ”(X), is the set of

its attributes from fl(A2), i.e. ”(X) = XÒ fl fl(A2).

Proposition 4 Given a X ™ Ol, ”(X) = floœX{flr : a | Constraint(fl, r, o, (aÕ, aÕÕ))}.

Proof. Let o œ X. By construction, for any flr : a œ fl(A2), holds flr : a œ oÒ

i� Constraint(fl, r, o, (aÕ, aÕÕ)). Thus oÒ fl fl(A2) = {flr : a | Constraint(fl, r, o,
(aÕ, aÕÕ))}. As X Õ =

u
oœX oÕ, we have X Õ fl fl(A2) =

u
oœX oÒ fl fl(A2), hence

”(X) = floœX{flr : a | Constraint(fl, r, o, (aÕ, aÕÕ))}. ÙÛ
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A formal concept on the aggregated context is then characterized by:

Proposition 5 Let X ™ Ol, then the concept C = (XÒÒ, XÒ) of the aggre-

gated context satisfies XÒ = X Õ fi ”(X) and XÒÒ = X ÕÕ fl {o | ”(X) ™ oÒ}.

Proof. By definition, we have Al = A1 fi fl(A2) and A1 fl fl(A2) = ÿ. Thus we
can write XÒ = (XÒ fl A1) fi (XÒ fl fl(A2)), that is XÒ = X Õ fi ”(X).

By deriving XÒ, we determine that XÒÒ = {o | o œ O1 · X Õ ™ oÒ · ”(X) ™
oÒ}. Now, as X Õ ™ A1, we have X Õ ™ oÒ i� X Õ ™ oÒ fl A1, that is X Õ ™ oÕ.
Finally, XÒÒ = X ÕÕ fl {o | ”(X) ™ oÒ}. ÙÛ

Now, let us assume we have the result of RCA using the same relational
scaling with fl along r on the simple RCF in Figure 2. Let X be the extent of
a concept from Kl. The set ”(X) is well-defined, hence we can denote its i-th
member by flr : a”,i (where a”,i œ A2). As every concept C”(X),i = (aÕ

”,i, aÕÕ
”,i) is

well defined on K2, in RCA, K1 will be refined with all the attributes flr : C”(X),i

at the first relational scaling step. Let Y” = X Õ fiiœ1..|”(X)| flr : C”(X),i, we claim
that C = (XÒÒ, XÒ) and C” = (Y Õ

” , Y ÕÕ
” ) have the same extent:

Proposition 6 Y Õ
” = XÒÒ

.

Proof. Y Õ
” ™ XÒÒ: Let o œ Y Õ

” . First, o carries all the attributes of X Õ, thus
X Õ ™ oÒ. Moreover, for each attribute flr : a”,i œ ”(X) a concept Ci = (aÕ

”,i, aÕÕ
”,i)

exists such that o carries the attribute flr : Ci (for which Constraint(fl, r, o, Ci)
is true). Since a”,i is in the intent of Ci, we can verify that flr : a”,i œ oÒ. Since for
all i, we have flr : a”,i œ oÒ, then we have ”(X) ™ oÒ. Finally, since ”(X) ™ oÒ

and X Õ ™ oÒ, we have XÒ ™ oÒ. By derivation, we have oÒÒ ™ XÒÒ. Finally,
Y Õ

” ™ XÒÒ. ÙÛ
Y Õ

” ´ XÒÒ: The 1st relational scaling step will necessarily produce flr :
(aÕ

”,i, aÕÕ
”,i) for each flr : a”,i œ ”(X). Let o œ XÒÒ, then o carries all the attributes

of X Õ. Moreover, after the scaling step, o gets incident to each attribute flr : a”,i œ
”(X) (Constraint(fl, r, o, (aÕ

”,i, aÕÕ
”,i)) is necessarily satisfied). Thus, we have Y” ™

oÕ and therefore oÕÕ ™ Y Õ
” . Finally, since o œ oÕÕ we conclude that XÒÒ ™ Y Õ

” . ÙÛ

Proposition 6 states that for any concept from the aggregated context, an
RCA concept with the same extent exists. Definition 2 introduces the notion of
relational weakening (illustrated by Example 5) to enable the mapping between
both intents. The latter is given by proposition 7.

Definition 2. Let a concept C be produced by RCA and let Yr be the set of

relational attributes of the intent of C. We call relational weakening of C, noted

œ(C), the set œ(C) =
t

flr:(U,V )œYr
{flr : v | v œ V }

Example 5. Assume the contexts of Example 2: Context KC gives rise to the
concepts C1 = ({t3}, {el, pw}), C2 = ({f5}, {pw, cp}), C3 = ({t3, zo}, {el})
and C4 = ({zo, f5}, {cp}). After a scaling with ÷, KP yields the concept C =
({La}, {Adult, Female, I.T., ÷pos : C1, ÷pos : C2, ÷pos : C3, ÷pos : C4, ÷pos :
€}). Then œ(C) = {÷pos : el, ÷pos : pu, ÷pos : cp}.
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Proposition 7 ”(X) ™ œ(C”)

Proof. Let’s denote by Yr the set of relational attributes in the intent of C”. Let
flr : a œ ”(X), then by scaling and construction of C”, it holds flr : (aÕ, aÕÕ) œ Yr

and as a œ aÕÕ, one concludes ”(X) ™ œ(C”). ÙÛ

While we’ve just shown that the extents of C and C” are equal, their intents
might di�er: As proposition 7 states, the intent of the aggregate table concept
is a subset of the weakening of the RCA concept with the same extent (see
Example 6 below). In this sense, we see the RCA concept as more informative.

Example 6. Assume the relational family defined by Example 2 with the ÷ op-
erator. The aggregated context is presented in table 6. Now, after one iteration,
RCA discovers the concept ({Fa}, {Senior, Male, ÷pos : (cp, ch)}) whereas FCA
finds ({Fa}, {Senior, Male, ÷pos : (cp), ÷pos : (nd))}). While ÷pos : (cp, ch) im-
plies ÷pos : (cp) and ÷pos : (ch), the reverse does not hold.

4 Discussion

We’ve shown that for any FCA concept from an encoded context, RCA would
reveal a counterpart concept, or a pair of such, conveying the same semantics
(equal extent). Moreover, the syntactic expression of the RCA concept(s) is
clearer than the FCA one, whatever the encoding. With semi-join, since separate
RCA concepts map to the 1st and 2nd projections of a FCA concept, the clarity
gain is immediate. Indeed, no confusion is ever possible as to which attribute of
the semi-join intent is incident to which object. Moreover, redundancy in FCA
concepts, e.g. shared 1st or 2nd projection, is avoided in RCA.

With aggregation, RCA trivially produces a concept of the same extent, yet
it is more precise: The FCA counterpart is readily obtained by relational weak-
ening. Here, higher-order encoding schemata are conceivable that mimic RCA
iterations by nesting the scaling operators. Yet the maximal depth of these nest-
ings in the resulting (pseudo-)relational attributes must be fixed beforehand.
This is a serous limitation since we know of no simple way to determine the
number of iterations required till the fixed point for a given RCA task, i.e. a
RCF and a vector of scaling operators. This means that, at least in the realistic
cases, RCA will be revealing concepts that FCA –over the aggregated context
with all possible nestings of a depth up till the limit– will miss. A relevant
question here is whether knowing the fixed point contexts in RCA, there is an
equivalent aggregation context that comprises only nested operator attributes
referring exclusively to attribute concepts. This would mean that a static en-
coding, i.e. without the need for explicitly composing RCA concepts popping at
iterations 2+, exists. The cost of constructing such an encoding is, though, a
separate concern.
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5 Conclusion

We tackled here the question of whether RCA brings some e�ective scope ex-
tension to the realm of FCA, given that FCA is at its core. We’ve examined two
complementary principles of encoding a relation into a single augmented context
and compared FCA output on each of the contexts to the output of RCA on the
original RCF. It was shown that in both cases, RCA is able to find counterpart
concepts (same extent) to those found by FCA, while the RCA intents at its 1st
iteration are at least as expressive as the FCA ones.

A more systematic study should allow us to demonstrate similar results in
the more complex cases of multiple relations in the RCF as well as multiple
relations between the same pair of contexts.
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