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Abstract

In this work, we analytically characterize the acoustic properties of a one-port

nonlinear acoustic sample loaded on a waveguide. The classical reflection coeffi-

cient is extended as a scattering matrix relating the incident wave fundamental

and harmonics amplitudes to the backward wave fundamental and harmonics

amplitudes. Assuming that the acoustic load is defined as a nonlinear differen-

tial equation relating the acoustic pressure and the associated volume velocity,

the scattering matrix is obtained by combining the harmonic balance method

and the polyharmonic distortion approach. Theoretical and numerical aspects

are considered. The proposed method is exemplified on two acoustic nonlinear

absorbers.

Keywords: Scattering matrix, Nonlinear impedance, Polyharmonic distortion

model, One-port nonlinear acoustic system, High Sound Level, Low Frequency

1. Introduction

The reduction of noise and vibration at low frequencies is still nowadays

a main issue in many fields of engineering. In order to overpass this issue, a

new concept of absorbers including nonlinear phenomena has been developed

in the past decade. This type of absorbers is based on the principle of the5

“Targeted Energy Transfer” (TET) also named “energy pumping” [1]. TET

is an irreversible transfer of the vibrational energy from an input subsystem
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to a nonlinear attachment (the absorber) called Nonlinear Energy Sink (NES).

TET permits to reduce undesirable large vibration amplitudes of structures or

acoustic modes.10

The basic NES generally consists of a lightmass, an essentially nonlinear

spring and a viscous linear damper. In the field of structural vibration, a wide

variety of NES designs with different types of stiffnesses (cubic [2], polynomial

[3], non-polynomial [4], non-smooth nonlinearities [5]...) have been proposed.

In the acoustic field, it was demonstrated that a NES can be achieved by using15

a vibroacoustic coupling between the acoustic field (the primary system) and

a geometrically nonlinear thin clamped structure (the NES). In [6, 7], the thin

baffled structure consists of a simple thin circular latex (visco-elastic) membrane

whereas in [8] a loudspeaker used as a suspended piston is considered. In both

cases, the thin baffled structure has to be part of the frontier of the closed20

acoustic domain (to be controlled). In [9], an hybrid electro-acoustic nonlinear

membrane absorber working as a nonlinear energy sink is described. This NES

is made of two elements: a membrane with a nonlinear dynamics described in

[6, 7], and an active system based on a loudspeaker which controls the pressure

applied to the rear face of the membrane. Finally in [10], it is shown that a25

Helmholtz resonator with a nonlinear behavior can be used as a NES to extract

energy from one acoustical mode.

The experimental characterization of nonlinear devices remains a difficult

task. Model-based or black box approaches can both be considered more gener-

ally as processes that characterize a device by a model and a set of parameters.30

For any device there is a balance to find between the model accuracy and the

number of parameters, and the best balance depends on the application. This

is why we are interested in refining and comparing characterization methods of

nonlinear devices.

We have been developing a setup for the characterization of nonlinear acous-35

tic absorbers as a one-port nonlinear acoustical system. A one-port nonlinear

acoustical system is basically a system where there is a surface (the port) where

acoustical interactions take place. In linear cases, the response can be given in
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terms of impedance or absorption coefficient. A review about linear impedance

measurements can be found in Ref. [11]. For nonlinear systems this approach40

is not suitable because the properties often change with the level of excitation,

and can give rise to distortion (generation of harmonics). In the progress toward

more accurate representations, we started with linearized characterizations (e.g.

measurement of apparent reflection coefficients) used next for the identification

of nonlinear resonance parameters[12].45

In this paper, we advance one step forward. We use the extension of the

concept of reflection coefficient toward multidimensional characterization thanks

to the polyharmonic distortion approach.[13, 14] The main idea is to characterize

the ability of a nonlinear element to generate harmonics, which can be treated

in a second step as a source term in linear systems coupled to a nonlinear50

element. Instead of a single reflection coefficient, we use a pair of scattering

matrices describing the interactions between harmonics. The principle of energy

transfer between harmonics is a well-known approach for the characterization

of nonlinear systems [15] but to the best of our knowledge it has not been

generalized with scattering matrices.55

Our results hold for systems which dynamics is described by differential

equations in time domain.

The paper is organized as follows. The first part describes the class of

systems under study: one-port nonlinear acoustical systems. In the second

part we establish analytically the diffusion matrix which characterizes how the60

acoustical system sends back an incident tonal acoustic wave, in the form of

a superposition of harmonics. The analytic formulation is derived from the

combination of the harmonic balance method and the polyharmonic distortion

method which permits a fully analytic calculation of the scattering matrices. In

the third part we apply our results on two examples of nonlinear devices, and we65

check the consistency of the results with a direct approach based on numerical

time integration of the equations of motion.
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2. System under study

In this paper, all quantities in the frequency domain, unless otherwise stated,

will be considered assuming a e+j2πft temporal dependence.70

DUTwaveguidesource

p=p++p-
p+

p-

x0
DUT modelwaveguidesource

p=p++p-

p+

p-
u

x0

Figure 1: Schematic representation of the system under study: (a) DUT connected to a

cylindrical waveguide, (b) equivalent DUT model connected to a cylindrical waveguide.

Our system, see Fig. 1(a), consists of a Device Under Test (DUT) connected

to one side of a wave-guide and submitted to an acoustic field resulting from

a source located at the opposite side of the wave guide. The waveguide is a

cylindrical duct of cross-section S. In this work, the acoustic source and the

propagation in the waveguide, considered as planed waves (one-dimensional),75

are assumed linear. The acoustic pressure at x = 0, i.e the acoustic pressure in

front of the DUT inside the waveguide, can be written as

p(t) = p+(t) + p−(t) (1)

where p+ (respectively p−) denotes the incoming (respectively backward) acous-

tic wave with respect the DUT. When the DUT is linear (Helmholtz absorber

case for example), it can be characterized in the frequency domain by the re-80

flection coefficient function defined as

R(f) =
P−(f)

P+(f)
(2)
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where P+ (respectively P−) denotes the Fourier transform of p+ (respectively

p−).

From now on, we assume that the DUT that we will consider in this paper

can be modelled (see Fig. 1(b)) as85

mlü(t) + clu̇(t) + klu(t) + gnl(u(t), u̇(t)) = Sep(t) (3)

where u denotes the equivalent transversal displacement of the outer surface of

the DUT and the dot represents time differentiation. The first three parameters

ml, cl and kl characterize the linear part of the DUT (Helmholtz absorber case

for example) and the nonlinear function gnl with respect to u(t) and u̇(t) the

nonlinear part. Se denotes the effective cross-section of the DUT (Se can be90

smaller than S the cross-section of the waveguide). Note that only the acoustic

pressure in front on the membrane inside the waveguide is used in Eq. (3) and

the acoustic pressure outside the waveguide is neglected.

Following the assumption on the acoustic propagation, the outer surface of

the DUT can be related to the incoming and backward acoustic pressures, and95

to the associated volume velocity q as

u̇(t) =
1

ρaca
(p+(t)− p−(t)) (4)

q(t) = Seu̇(t) (5)

where ρa is the density of air and ca the sound velocity in air.

Considering only the linear part of Eq. (3) and substituting Eqs. (1), (4)

and (5) into the resulting Eq. (3) written in the frequency domain, we get the

reflection coefficient of the underlying linear oscillator, acting here like a tuned100

mass damper :

R(f) =

j(2πf)ml + cl +
kl

j(2πf)
− ρacaSe

j(2πf)ml + cl +
kl

j(2πf)
+ ρacaSe

. (6)
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3. Scattering matrix representation in a nonlinear DUT

To deepen the description of the acoustic load when nonlinearities are present,

the linear impedance model has to be extended to take into account nonlinear

energy transfers between harmonics.105

3.1. Principle

From now on we assume that the acoustic source generates an excitation

at only the excitation frequency f (the fundamental frequency) and we are

interested in the associated periodic responses with period T = 1/f .

The resulting acoustic pressure in front of the DUT and the associated in-110

coming and backward pressures can be written as a Fourier series in complex

exponential form truncated to order H as

p(t) =

H∑
k=−H

Pk(f)ej2πkft, (7)

p+(t) =

H∑
k=−H

P+
k (f)ej2πkft and p−(t) =

H∑
k=−H

P−k (f)ej2πkft (8)

where Pk(f), P+
k (f) and P−k (f) denote the Fourier coefficients of order k also

named kth harmonics satisfying P−k(f) = Pk(f), P+
−k(f) = P+

k (f) and P−−k(f) =115

P−k (f) where (.) denotes complex conjugate. The harmonic terms have to be

taken into account due to the nonlinear behavior of the DUT. We have chosen

to indicate the frequency dependency of the Fourier coefficients using the funda-

mental frequency f . However, it is important to recall that, the kth harmonics

are related to the frequency kf , as indicated by the exponential terms.120

The scattering matrix can be viewed as an extension of the reflection coef-

ficient concept. It characterizes the relationship between the harmonic terms

(P+
k (f), 0 ≤ k ≤ H) of the incoming acoustic pressure and the harmonic terms

(P−k (f), 0 ≤ k ≤ H) of the backward acoustic pressure as

P−k (f) =

H∑
n=0

Skn(f)P+
n (f) for k = 0, 1, · · · , H (9)
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or in matrix from125

P−(f) = S(f)P+(f) (10)

where

P+(f) = (P+
0 (f), P+

1 (f), · · · , P+
H (f))T , (11)

P−(f) = (P−0 (f), P−1 (f), · · · , P−H (f))T (12)

and S(f) = (Skn(f))0≤k≤H,0≤n≤H denotes the scattering matrix at the fre-

quency f . The component Skn(f) represents the transfer of energy from the

harmonic term, P+
n (f), of the incoming acoustic pressure (at the frequency

nf) to the harmonic term, P−k (f), of the backward acoustic pressure (at the130

frequency kf).

When the DUT is linear, it is easy to show that S(f) is a diagonal matrix

satisfying

Skk(f) = R(kf) for k = 0, 1, · · · , H (13)

where R denotes the reflection coefficient of the DUT as defined in Eq. (2). Note

that as expected S does not depend on the involved energy level.135

When the DUT is nonlinear, obviously S(f) will be non diagonal and will

depend on the involved energy level.

3.2. Theoretical approach

Our objective is to develop a method to build analytically the scattering

matrix. The method is developed from the dynamic model of the DUT (Eq. 3)140

and combines harmonic balance method [16] to solve Eq. (3) and polyharmonic

distortion modeling [13] to obtain the scattering matrix.

3.2.1. Harmonic balance method

The Harmonic Balance Method (HBM) is one of the most interesting meth-

ods to obtain the periodic solutions of the non-linear dynamical systems as145

Eq. (3). We represent the harmonic excitation p(t) and the DUT response u(t)
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as a Fourier series described up to the Hth term as

p(t) =

H∑
k=−H

Pk(f)ej2πkft (14)

u(t) =

H∑
k=−H

Uk(f)ej2πkft (15)

where P−k(f) = Pk(f) and U−k(f) = Uk(f).

Substituting Eqs. (14) and (15) into Eq. (3) and balancing the terms of same150

frequency up to the Hth term, one obtains a nonlinear algebraic system in C of

H + 1 equations which can be written as

˜̃R(f,U(f),P(f)) = Z(f)U(f) + Gnl(U(f))− SeP(f) = 0 (16)

where

U(f) = (U0(f), U1(f), · · · , UH(f))T ∈ CH+1, (17)

P(f) = (P0(f), P1(f), · · · , PH(f))T ∈ CH+1, (18)

Z(f) is a diagonal matrix which diagonal elements are

(kl, kl − (2πf)2ml + j(2πf)cl, · · · , kl − (2πkf)2ml + j(2πkf)cl, · · · ) (19)

for k = 1, · · · , H and155

Gnl(U(f)) = (Gnl0(U(f)), Gnl1(U(f)), · · · , GnlH (U(f)))T (20)

is the vector of nonlinear effects defined as

gnl(u(t), u̇(t)) =

H∑
k=−H

Gnlk(U(f))ej2πkft. (21)

where Gnlk(U(f)) denotes the kth harmonics of the time function gnl(u(t), u̇(t)).

If gnl is a polynomial in both u and u̇, the coefficients Gnlk(U(f)) can

be obtained exactly using a recursive method at least for low-order polyno-

mials. When gnl is more complicated or a non-polynomial function, Alternating160

8



Frequency-Time approach has to be used [16]. This case will not be consid-

ered here. It results that in this paper, ˜̃R is polynomial with respect to the

components of U(f).

It is easy to realize that for a tonal (single frequency) excitation, the non-

linear function generates a system response distributed over several harmonics.165

Depending on the choices of nonlinear function, excitation frequency and cut-off

order, the response can display higher harmonics (also called superharmonics),

lower harmonics (subharmonics) or both [1].

Introducing the velocity term v(t) = u̇(t) as a new variable, Eq. (16) can be

rewritten with respect to the Fourier coefficients, Vk(f) for k = 1, · · · , H (V0 is170

always equal to zero), of v(t) defined by

Uk(f) =
Vk(f)

jk(2πf)
(22)

and the zero-order harmonic U0 of u(t) as

R̃(f,VV(f),P(f)) = ˜̃R(f,Λ(f)VV(f),P(f)) = 0 (23)

where

VV(f) = (U0, V1(f), V2(f), · · · , VH(f))T ∈ CH+1 (24)

and Λ(f) is a diagonal matrix which diagonal elements are(
1,

1

j2πf
,

1

j2π2f
, · · · , 1

j2πHf

)
. (25)

Note that the first component of the vector VV(f) is defined as the zero-order175

harmonic of u(t) and other components to the non-zero-order harmonic of v(t).

Finally considering (1) and (4) written in frequency domain, the Fourier

coefficients of p(t) are related to the coefficients of p+(t) and p−(t) as

Pk(f) = P+
k (f) + P−k (f) for k = 0, 1, · · · , H (26)

and the Fourier coefficients of v(t) are related to the coefficients of p+(t) and

p−(t) as180

Vk(f) = 1
ρaca

(P+
k (f)− P−k (f)) for k = 1, 2, · · · , H (27)
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with the complementary property

P−0 (f) = P+
0 (f). (28)

The relation (28) means that the incoming and backward acoustic pressure

waves have equal zero-order harmonic coefficient which are equal the half values

of the zero-order harmonic coefficient of p(t). It comes from the hypothesis that

the mean velocity is null, i.e. that there is no flow in the system.185

Substituting Eqs. (26), (27) and (28) into Eq. (23), one obtains a new

nonlinear algebraic system in C of H + 1 equations as

R(f,P+(f),PP−(f)) = R̃(f,
1

ρaca
(P+(f)−P−(f))+U0(f),P+(f)+P−(f)) = 0

(29)

where P+(f) and P−(f) are defined by Eqs. (11) and (12) and

PP−(f) = (U0(f), P−1 (f), P−2 (f), · · · , P−H (f))T ∈ CH+1 (30)

U0(f) = (U0(f), 0, · · · , 0)T ∈ CH+1. (31)

Note that the first component of the vector PP−(f) is defined as the zero-order

harmonic of u(t) and other components to the non-zero-order harmonic of p−(t).190

System (29) is a family of implicit functions which characterize the DUT

by correlating the harmonic (or spectral) components, P+
k (f), of the incoming

acoustic pressure with the components P−k (f) of the backward acoustic pressure

and the zero-order harmonic of u(t). The scattering matrix definition, Eq. (10),

appears as a ”linear” approximation of the system (29) considered as a relation-195

ship between P+(f) and PP−(f). The linearization step will be considered in

the next section.

3.2.2. Polyharmonic distortion modeling

In this section the frequency dependency will be omitted.

There exist different techniques of linearization. The most used in the con-200

text of nonlinear dynamical system is based on a minimization procedure related

to the difference between the nonlinear system and the linear one. However, this
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class of methods needs an averaging operator to define a well posed problem.

For example, in the context of experimentation, the averaging operator is built

from a family of measured points characterizing the resulting linearization pro-205

cedure as a global approximation. In this work we focus on a local approach as

described in [13], named PolyHarmonic Distortion (PHD) modeling, relying on

Taylor expansion.

The PHD modeling is based on two assumptions: (i) the system is a time-

invariant system and (ii) the fundamental component P+
1 of the incoming acous-210

tic pressure p+(t) is dominant (i.e |P+
k | << |P

+
1 | for all k > 1).

From assumption (i), if (P+,PP−) satisfies Eq. (29) then it is easy to show

that the couple (P+

mod
,PP−mod), defined by

P+

mod
= (P+

0 , |P
+
1 |, P

+
2 Θ−21 , · · · , P+

HΘ−H1 )T , (32)

PP−mod = (U0, P
−
1 Θ−11 , P−2 Θ−21 , · · · , P−HΘ−H1 )T (33)

where Θ1 is chosen as

Θ1 = ejϕ1 with P+
1 = |P+

1 |ejϕ1 , (34)

satisfies also Eq. (29) i.e215

R(P+

mod
,PP−mod) = 0. (35)

Introducing the vector P0
+ as

P0
+ = (0, |P+

1 |, 0, · · · , 0)T (36)

which only depends on the modulus of the fundamental component of P+, P+

mod

can be written as

P+

mod
= P0

+ + P̃+, (37)

where

P̃+ = (P+
0 , 0, P

+
2 Θ−21 , · · · , P+

HΘ−H1 )T . (38)

Now from assumption (ii), we have220

‖ P̃+ ‖<<‖ P0
+ ‖ (39)
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suggesting that PP−mod can be approximated performing a first-order Taylor

expansion around P0
+ solving

R(P0
+,PP0

−) = 0. (40)

with respect to PP0
−. These properties will be used later on.

The first step is to re-write the nonlinear algebraic system (35) with respect

to real variables as225

G(|P+
1 |,X,Y) = 0 (41)

where G is a (2H + 1)-dimensional vector function (different from Gnl), G =

(Re(R), Im(R))T with Re(.) (respectively Im(.)) denotes real (respectively imag-

inary) part, X ∈ R2(H−1)+1 with

X = (P+
0 ,Re(P+

2 Θ−21 ), · · · ,Re(P+
HΘ−H1 ), Im(P+

2 Θ−21 ), · · · , Im(P+
HΘ−H1 ))T

(42)

and Y ∈ R2H+1 with

Y = (U0,Re(P−1 Θ−11 ), · · · ,Re(P−HΘ−H1 ), Im(P−1 Θ−11 ), · · · , Im(P−HΘ−H1 ))T .

(43)

The vector X does not depend on the fundamental component P+
1 of p+(t) but230

of course the function G depends directly on the modulus of P+
1 .

It is easy to verify that solving Eq. (40) with respect to PP0
− is equivalent

to solve

G(|P+
1 |, 0,Y) = 0 (44)

with respect to Y.

Following the implicit function theorem, Eq. (41) can be converted to235

Y = F(|P+
1 |,X) (45)

where F is a (2H + 1)-dimensional vector function of the real variables X with

Jacobian matrix,

JF(X) = (
∂Fi
∂Xj

(X))1≤i≤2H+1,1≤j≤2(H−1)+1, (46)
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given by

JF(X) = JY
G(X,F(|P+

1 |,X))−1JX
G(X,F(|P+

1 |,X)) (47)

where JX
G (respectively JY

G) denotes the Jacobian matrix of G with respect to

X (respectively Y).240

Applying the Taylor expansion of order 1 to the function F around the null

vector X = 0, Eq. (45) reduce to

F(|P+
1 |,X)) ≈ F(|P+

1 |,0) + JF(0)X (48)

which can be used to approximate Y.

Finally the last step consists to rewrite Eq. (48) with respect to the complex

variables P+ and PP− using Eqs. (42) and (43) and the following relations245

Re(P+
k Θ−k1 ) =

1

2
(P+
k Θ−k1 + (P+

k Θ−k1 )) (49)

Im(P+
k Θ−k1 ) =

1

2j
(P+
k Θ−k1 − (P+

k Θ−k1 )). (50)

for k = 1, · · · , H.

After some algebraic manipulations, the zero-order harmonic of u(t) can be

expressed as

U0 =

H∑
n=0

S0n(|P+
1 |,Θ1)P+

n +

H∑
n=0

T0n(|P+
1 |,Θ1)P+

n (51)

where

S00 = JF(0)1,1

S01 =
F1(|P+

1 |, 0)

|P+
1 |

Θn−1
1

S0k =
1

2

(
JF(0)1,k +

1

j
JF(0)1,k+H−1

)
Θ−k1 , for k = 2, · · · , H

T00 = 0

T01 = 0

T0k =
1

2

(
JF(0)1,k −

1

j
JF(0)1,k+H−1

)
Θk

1 , for k = 2, · · · , H

(52)

and the harmonic coefficients of p−(t) can be expressed with respect to the250

harmonic coefficients of p+(t) as

P−k =

H∑
n=0

Sk,n(|P+
1 |,Θ1)P+

n +

H∑
n=0

Tk,n(|P+
1 |,Θ1)P+

n (53)
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or in matrix form

P− = S(|P+
1 |,Θ1)P+ + T(|P+

1 |,Θ1)P+ (54)

where the components of the complex matrices S(|P+
1 |,Θ1) and T(|P+

1 |,Θ1) are

given by

• for n = 0,255

S0,0 = 1

S0,k = 0, for k = 1, · · · , H

T0,k = 0, for k = 0, · · · , H

(55)

• for n = 1, · · · , H,

Sn,0 = (JF(0)n+1,1 + jJF(0)H+n+1,1) Θn
1

Sn,1 =
Fn+1(|P+

1 |, 0) + jFH+n+1(|P+
1 |, 0)

|P+
1 |

Θn−1
1

Sn,k =
1

2
[(JF(0)n+1,k + JF(0)H+n+1,H+k−1)

+ j (JF(0)H+n+1,k − JF(0)n+1,H+k−1)] Θn−k
1 , for k = 2, · · · , H

Tn,0 = 0

Tn,1 = 0

Tn,k =
1

2
[(JF(0)n+1,k − JF(0)H+n+1,H+k−1)

+ j (JF(0)H+n+1,k + JF(0)n+1,H+k−1)] Θn+k
1 , for k = 2, · · · , H.

(56)

Equation (54) can also be expressed as a single matrix relationship

P′− = S′(|P+
1 |,Θ1)P′+ (57)

where

P′
+

(f) = (P+
−H(f), · · · , P+

−1(f), P+
0 (f), P+

1 (f), · · · , P+
H (f))T , (58)

P′−(f) = ((P−−H(f), · · · , P−−1(f), P−0 (f), P−1 (f), · · · , P−H (f))T . (59)

3.2.3. Some properties of S and T

From Eq. (54), the vector P− appears as a sum of two terms, the first one is260

linear with respect to P+ whereas the second one is only R-linear with respect

14



to P+. It is easy to verify that the modulus of the components of the matrices

S and T only depend on the modulus of the fundamental component, P+
1 .

Moreover, the first column of S only depends on the function F. This col-

umn characterizes the transfer of energy from the fundamental component P+
1265

of p+(t) (assuming dominant in this approximation) to all the harmonic com-

ponents of P−. The other columns of S and the matrix T only depend on the

Jacobian matrix JF(0) which corresponds to corrective terms in the first-order

Taylor expansion.

If the DUT is linear (Gnl is zero), it is easy to show from Eq. (29) that270

all the terms Tn,k are equal to zero. Hence, Eq. (54) takes the same form as

Eq. (10). Moreover, the matrix S is diagonal and satisfies the same relation as

Eq. (13).

In the nonlinear case, Eq. (54) generally differs from Eq. (10) except if the

function F as a complex function is holomorphic (i.e. satisfies the Cauchy-275

Rieman condition) at X = 0 which signify that

JF(0)n+1,k = JF(0)H+n+1,H+k−1 (60)

JF(0)n+1,H+k−1 = −JF(0)H+n+1,k (61)

resulting to Tn,k = 0. In the cases where the matrix T differs from the zero

matrix, it will be interesting to evaluate the respective influence of S and T to

reproduce P−.

3.3. Associated numerical procedure280

In practice, a numerical procedure is required to obtain the decomposition

(54). For a given model (3), a given harmonic number H and a given acoustic

pressure p(t) defined by its H+1 harmonic coefficients in a frequency band

[fmin, fmax], the proposed procedure includes the following steps:

• Step 1: Eq. (23) is first re-written in the real domain as285

R̃RI(f,VVRI,PRI) = 0, (62)
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where the real function R̃RI is defined as

R̃RI =
(
R̃1,Re(R̃2), · · · ,Re(R̃H+1), Im(R̃2), · · · , Im(R̃H+1)

)
, (63)

the real vector VVRI as

VVRI = (VV1,Re(VV2), · · · ,Re(VVH+1), Im(VV2), · · · , Im(VVH+1))

(64)

and the real vector PRI as

PRI = (P0,Re(P1), · · · ,Re(PH), Im(P1), · · · , Im(PH)) . (65)

Assuming PRI known, Eq. (62) is solved in the frequency band [fmin, fmax]

using the continuation method briefly described in Appendix A.290

• Step 2: A partition fi of [fmin, fmax] with fi = fmin + i∆f for i =

0, · · · , Nf and ∆f = (fmax − fmin)/Nf is considered. For each frequency

fi,

1. P+(fi) and P−(fi) are computed from Eqs.(1) and (4) written in

Fourier series using the couple solution (VV,P) of Eq. (62) at f = fi.295

2. From P+(fi), Eq. (44) is solved with respect to Y (using the function

FindRoot of c©Mathematica)

and

3. The jacobian matrix of F is obtained from Eq. (47) with X = 0 and

F(|P+
1 |, 0) = Y.300

4. Finally, the matrices S and T are deduced from Eqs.(55) and (56).

4. Application

This section is devoted to illustrating the scattering matrix representation

introduced in Section 3. To this end, two nonlinear absorbers (NES) are con-

sidered.305
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NESwaveguidesource

p=p++p-
p+

p-
u

x0

(1)

Figure 2: Schematic representation of the NES membrane: (1) circular visco-elastic mem-

brane.

4.1. NES membrane

In this first example, a cylindrical pre-stressed clamped nonlinear viscoelastic

membrane with radius Rm, cross-section Sm and thickness hm is considered (see

Fig. 2). The nonlinear behavior results from geometrical nonlinearity when large

displacement of the membrane occur. This acoustic load has been introduced in310

[7] as NES and can be modelled as a simplified model of the membrane motion

formulated as a one DOF nonlinear oscillator

mmü(t) + cmu̇(t) + kmu(t) + k3m(u(t)3 + 2ηu(t)2u̇(t)) =
Sm

2
p(t) (66)

where the dot represents time differentiation and u denotes the transversal dis-

placement of the centre of the membrane. Note that only the acoustic pressure

in front on the membrane inside the waveguide is used in Eq. (66) and the315

acoustic pressure outside the waveguide is neglected .

The numerical values of the parameters used in this study as deduced in

Appendix B are given by mm = 0.000265 kg, cm = 0.0001 N m−1, km =

10.5 N m−1, k3m = 2.646× 106 N m−3, η = 0.00114 and Sm = π0.032 m2.

Taking advantage of the symmetries of the problem, a numerical study has320

been conducted, considering only odd harmonics. The corresponding develop-

ments are not given here.

In this numerical study, we assume that the acoustic pressure p(t) is periodic

as

p(t) = P−1e
−j2πft + P1e

j2πf . (67)
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Figure 3: Numerical simulation of Eq. (66) in time domain (blue dot markers) and using HBM

(Eq (23))with six levels of the fundamental component of p(t): |P1| = 0.01, 0.1, 1, 10, 50 and

100. (displayed in gray level, from bottom to top).

Figure 3 shows the RMS values of the steady-state response v(t) of Eq. (66)325

obtained by HBM using only the first three odd harmonics (harmonics 1, 3 and

5) solving the corresponding nonlinear system (62) as described Section 3.3 (Step

1). The excitation frequency f was chosen from 1 Hz to 100 Hz. Six excitation

levels were used: |P1| = 0.01, 0.1, 1, 10, 50 and 100. corresponding to 53.9 to

133.9 dB. Also plotted are the responses obtained from the nonlinear equations330

of motion (66) using the ordinary differential equations solver NDSolve (with

the choice Automatic for the option Method) available in c©Mathematica. The

excitation frequency f was chosen from 10 Hz to 100 Hz with a frequency step

of 1 Hz. HBM approach gives results in very good agreement, independently

of the excitation level, with the direct solving approach considered here as the335

exact solution. This comparison validates the number of harmonics used in this

numerical study.
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Figure 4: Modulus of the harmonic components of p+(t) (continuous lines) and p−(t) (dashed

lines) obtained from HBM approach six levels of the fundamental component of p(t): |P1| =

0.01, 0.1, 1, 10, 50 and 100. (displayed in gray level from bottom to top).

Figure 4 shows the corresponding harmonic coefficients P+
1 , P+

3 and P+
5

(respectively P−1 , P−3 and P−5 ) of p+(t) (respectively p−(t)) obtained from HBM

as described Section 3.3 (Step 2). We can see that as expected |P+
1 (f)| ≥340

|P−1 (f)| and that the difference increases with the excitation level. Moreover

for k > 1, and due to the fact that the high harmonic Pk(f) of p(t) are equal to

zero, we have P+
k (f) = −P−k (f).

The components of the matrix S are reported Fig. 5. As expected the diag-

onal terms of S decrease whereas the non diagonal terms of S increase with the345

excitation level. Instead, the diagonal term Sn,n represents the ratio of energy

between the nth harmonic of p+(t) and the nth harmonic of p−(t) whereas the

term Sk,n represents the ratio of energy transmitted from the nth harmonic of

p+(t) to the kth harmonic of p−(t). The square of the terms of S is homogeneous

to ratios of power transfers (in W/W) between harmonics.350

For a given excitation level, the behavior of the diagonal terms of S are very

similar and are strongly affected by the nonlinear behavior of the NES when the

excitation level increases. The scaling transformation as described by Eq. (13)

is here masked. It is only visible at low excitation levels.

The first column of S corresponds to the energy transfer of the fundamental355

component P+
1 of p+(t) to the harmonic P−k (for k = 1, 3 and 5) of p−(t). We

deduce that when the level increases the participation of P+
1 to P−1 is reduced
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Figure 5: Modulus of the components of the matrix S obtained with the procedure described

Section 3.3 for six levels of the fundamental component of p(t): |P1| = 0.01, 0.1, 1, 10, 50, and

100 (displayed in gray level from bottom to top).

whereas the participation of P+
1 to P−k for k > 1 is amplified. Moreover the

amplification decreases when the k increase. Note that the frequency band

where these phenomena are visible increases also with the excitation level. The360

same phenomenon can be observed on the second (respectively third) column

of S. These columns correspond to the energy transfer of the 3th (respectively

5th) harmonic of p+(t) to harmonic P−k (for k = 1, 3 and 5) of p−(t) .

The components of the matrix T is reported in Fig. 6. In contrast to S, all

components of T are small and only affected by the nonlinear behavior at low365
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Figure 6: Modulus of the components of the matrix T obtained with the procedure described

Section 3.3 for six levels of the fundamental component of p(t): |P1| = 0.01, 0.1, 1, 10 and 100

(displayed in gray level from bottom to top).

frequencies (< 20 Hz) showing that P+ does not affect significantly P−.

The last point to analyse is the efficiency of Eq. (54) as prediction formula

of P− from P+. Figure 7 compares the modulus of p−1 , p−3 and p−5 obtained

from the HBM approach and using Eq. (54) taking into account only the matrix

S. Only two levels of excitation are considered : the smaller and the higher. In370

both cases, Eq. (54) gives results in good agreement with the HBM approach.

These results confirm that the procedure captures correctly the influence of the

nonlinear elements of the NES membrane. We have also reported on Fig. 7, the
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Figure 7: Modulus of the harmonic components of p−(t) obtained with the HBM (continuous

red lines) and with the polyharmonic distortion decomposition Eq. (54) taking into account

only the matrix S (grey and black dots) and taking into account only the reduced matrix S

(blue dots) for two levels: |P1| = 0.1 and 100.

prediction of P− obtained from Eq. (54) neglecting the matrix T and reducing

S to this first column and to the linear part of the diagonal terms. To be more375

specific, S3,3 and S5,5 were obtained from Eq. (56) using the part of the Jacobian

JF(0) due to the linear part of F. The results show a good agreement with both

the HBM approach and the prediction including all the structure of S.

The membrane NES is a good candidate to an experimental validation of the

theory developed in this article, because its dynamical model is well established.380

4.2. Nonlinear Helmholtz resonator

NHRwaveguidesource

p=p++p-
p+

p-
u

x0

(2)

(1)

Figure 8: Schematic representation of the NHR: (1) tailored neck and (2) cavity.

This second example is dedicated to a Nonlinear Helmholtz Resonator (NHR)

as introduced in [17] and detailed in [18]. The NHR consists (see Fig. 8) in an air

column in the tailored cylindrical neck considered as an incompressible mass and

22



the air inside the cylindrical cavity which is supposed to be compressible. The385

friction due to the air at high velocity in the neck produces damping whereas the

compression of the air in the cavity produces a restoring force. Hence, nonlinear

terms take place in damping and restoring forces.

As shown in [18, 17], the NHR can be modelled as a one DOF nonlinear

oscillator written here with dimensionless variables as390

ü(t) + δu̇(t) + σ|u̇(t)|u̇(t) + u(t)− αu(t)2 + βu(t)3 = sp(t) (68)

with u = S
V0
U and t = ω0t̄ where U is the displacement of the air in the neck, V0

is the volume of the NHR cavity and S is the cross section of the neck, t̄ is the

real time and ω0 is the resonance angular frequency of the NHR in the linear

regime. The quadratic nonlinear damping term is due to the jet phenomenon

and the nonlinear restoring force involves a quadratic term and a cubic term395

originating essentially from the air enclosed in the cavity of a resonator.

The numerical values of the parameters of (68) used in this study are given

by δ = 0.005, σ = 0.05, α = 1.2, β = 1.36 and s = 0.001. These numerical values

are associated to a NHR with a cavity length 0.0215 m and section 0.0066 m2

and with a tailed neck length 0.009 m, external radius 0.002 m and internal400

radius 0.004 m. The resulting natural resonance angular frequency of the NHR

in the linear regime is ω0 = 2π246 rad/s.

Like in the previous example, we assume that the acoustic pressure p(t) is

periodic as

p(t) = P−1e
−j2πft + P1e

j2πf . (69)

Figure 9 shows the RMS values of the steady-state response v(t) = u̇(t)405

of Eq. (68) obtained by HBM with H = 3 corresponding to harmonics 0, 1,

2 and 3 solving the nonlinear system (62) as described Section 3.3 (Step 1).

The excitation frequency f was chosen from 0.142 Hz to 0.164 Hz. Six ex-

citation amplitudes were used: |P1| = 0.071, 1.61, 3.15, 4.69, 6.24 and 7.78 Pa

corresponding to 71 to 112 dB. Also plotted are the responses obtained from410

the nonlinear equations of motion (68) using the ordinary differential equations

solver NDSolve (with the choice Automatic for the option Method) available in
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Figure 9: Numerical simulation of Eq. (68) in time domain (blue dot markers) and using HBM

(Eq (23))with six levels of the fundamental component of |P1| = 0.071, 1.61, 3.15, 4.69, 6.24

and 7.78 (displayed in gray level from bottom to top).

c©Mathematica. The excitation frequency f was chosen from 0.155 Hz to 0.164

Hz.HBM approach gives results in very good agreement, independently of the

excitation level, with the direct solving approach considered here as the exact415

solution. This comparison validates the number H = 3 of harmonics used in

this numerical study. These curves reveal the nonlinear softening and hardening

behavior of the HNR in nonlinear regimes.

Figure 10 shows the corresponding harmonic coefficients P+
1 , P+

2 and P+
3

(respectively P−1 , P−2 and P−3 ) of p+(t) (respectively p−(t)) obtained from HBM420

as described Section 3.3 (Step 2). We can see that as expected |P+
1 (f)| ≥

|P−1 (f)| and that the difference increases with the excitation level. Moreover

for k > 1, and due to the fact that the high harmonic Pk(f) of p(t) are equal

to zero, we have P+
k (f) = −P−k (f). It is interesting to note that the nonlinear

softening and hardening behavior is also well visible.425
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Figure 10: Modulus of the harmonic components of p+(t) (continuous lines) and p−(t)

(dashed lines) obtained from HBM approach six levels of the fundamental component of

|P1| = 0.071, 1.61, 3.15, 4.69, 6.24 and 7.78 (displayed in gray level from bottom to top).

The components of the matrix S are reported Fig. 11. Many behaviors

observed in these plots match those of the early example.

More specifically, the diagonal terms of S decrease whereas the non diagonal

terms of S increase with the excitation level. We deduce that when the level

increases the participation of P+
k to P−k is reduced whereas the participation of430

P+
n to P−k for k 6= n is amplified.

For a given excitation level, the behavior of the diagonal terms of S are

very similar and are strongly affected by the nonlinear behavior of the NES

in a narrow frequency band when the excitation level increases. The scaling

transformation as described by Eq. (13) is only visible at low excitation level.435

The components of the matrix T is reported in Fig. 12. In contrast to S,

all components of T are small and only affected by the nonlinear behavior in a

narrow frequency band showing that P+ does not affect significantly P−.

The last point to analyse is the efficiency of Eq. (54) as prediction formula

of P− from P+. Figure 13 compares the modulus of p−1 , p−2 and p−3 obtained440

from the HBM approach and using Eq. (54) taking into account only the matrix

S. Only two levels of excitation are considered, the smaller and the higher. In

both cases, Eq. (54) gives results in good agreement with the HBM approach.

These results confirm that the procedure captures correctly the influence of the

nonlinear elements of the NES.We have also reported on Fig. 7, the prediction445
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Figure 11: Modulus of the components of the matrix S obtained with the procedure described

Section 3.3 for six levels of the fundamental component of p(t): |P1| = 0.01, 0.1, 1, 10, 50, and

100. (displayed in gray level from bottom to top).

of P− obtained from Eq. (54) neglecting the matrix T and reducing S to this

first column and to the linear part of the diagonal terms. To be more specific,

S2,2 and S3,3 were obtained from Eq. (56) using the part of the Jacobian JF(0)

due to the linear part of F. The results show a good agreement with both the

HBM approach and the prediction including all the structure of S.450
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Figure 12: Modulus of the components of the matrix T obtained with the procedure described

Section 3.3 for six levels of the fundamental component of p(t): |P1| = 0.01, 0.1, 1., 10. and

100. (displayed in gray level from bottom to top).

5. Conclusion

In this work we study energy transfer in the one-port nonlinear class of

acoustical systems. Our results apply to nonlinear systems submitted to a tonal

(mostly monochromatic) harmonic excitation.

We establish the formulation of the scattering matrices S and T analytically455

from the dynamical description (in our case as differential equations) of the

nonlinear system and the harmonic balance approximations. The scattering

matrices describe the response of the nonlinear system in terms of the harmonics

27



Figure 13: Modulus of the harmonic components of p−(t) obtained with the HBM (continuous

red lines) and with the polyharmonic distortion decomposition Eq. (54) taking into account

only the matrix S (dots displayed in gray level) and taking into account only the reduced

matrix S (blue dots) for two levels: |P1| = 0.1 and 100.

of the backward acoustic wave with respect to the harmonics of the incoming

acoustic wave. We notice that for systems which nonlinearity is holomorphic,460

the matrix T is null.

We apply these results to two examples of nonlinear, dynamic absorbers.

The first one is a membrane which first mode exhibits large deformations, with

a cubic term in the relationship between pressure and displacement (i.e. in the

equation of motion). The second one is a Helmholtz resonator with quadratic465

and cubic terms in the relationship between pressure and displacement. For

both cases, The matrices give polyharmonic responses of the devices almost

identical to calculation made with numerical, time integration of the equations

of motion. In our examples the matrix T is not null, even though its coefficients

are small with respect to the highest coefficients of S and could be probably470

neglected.

The highest coefficients of S are the diagonal coefficients, which means that

the energy of the backward wave is mostly in its fundamental component. A

further physical interpretation can be done : the energy lost by the fundamental

inward wave when it is reflected on the absorber, is higher than the sum of the475

energy diffused backward by the higher harmonics, which is consistent with

the passive nature of the absorbers. This is consistent with small off-diagonal

coefficients. We stress the fact that the same system could be described with
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the same accuracy by other matrices, even some with off-diagonal terms much

higher than the diagonal terms, or some full matrices. This implies probably480

to set explicit rules for the construction of the diffusion matrices in view of

standardization or physical interpretation.

We have been developing a setup for the nonlinear characterization of acous-

tic absorbers [12] that may measure the coefficients of the scattering matrices S

and T. This study will be useful for modeling the responses of known nonlinear485

systems in order to compare experimental and numerical results.

In this work, the scattering matrices are established for a wide range of

systems and may be applied to nonlinear systems in other fields of physics, like

those submitted to electromagnetic waves.
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Appendix A. Continuation procedure

An arc-length continuation method is used to solve Eq. (62) considering

VVRI and f as unknown.495

Starting from a root (V̄V
RI
, f̄) of

R̃RI(f̄ , V̄V
RI
,PRI(f̄)) = 0, (A.1)

a solution path with respect to the length variable s is obtained solving the

system of Algebraic-Differential Equations (ADE)

2H+1∑
m=1

(
dVVRI

m

ds
(s)

)2

+

(
df

ds
(s)

)2

= 1, for s1 < s < s2 (A.2a)

R̃RI(f(s),VVRI(s),PRI(f(s))) = 0, for s1 < s < s2 (A.2b)
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associated to the initial conditions

f(0) = f̄ ,
df

ds
(0) = 1, (A.3a)

VVm(0) = V̄V
RI
m ,

dVVRI
m

ds
(0) = 0, for m = 1, . . . , 2H + 1. (A.3b)

The ADE (A.2a)-(A.3b) are solved using NDSolve whereas the root (A.1) is

obtained with FindRoot available in c©Mathematica.

Appendix B. The model parameters of the NES

As established in [7], the parameters of the NES model (66) are given by500

mm = ρmhmSm, km = k0m
f21m
f20m

, cm = ηk0mand k3m =
1

2

8πEmhm
3(1− ν2)R2

m

(B.1)

with

k0m =
2πEh3m

3(1− ν2)R2
m

and f0m =
1

2π

√
1.0154π4Eh2m

12(1− ν2)ρmR4
m

(B.2)

where ρm is the mass volume, ν the Poisson’s coefficient and E the Young’s

modulus of the membrane (made here in latex), hm is its thickness, Rm its

radius and Sm its area. The coefficients k1m and k3m stand for the linear and

nonlinear stiffness coefficients, respectively. As suggested and justified in [7], the

coefficient k3m was divided by 2 [19]. f0m represents the resonance frequency505

of the membrane without pre-stress. The last two parameters f1m (≥ f0m) and

η (> 0) characterizes the pre-tension applied to the membrane and the damping.

When no pre-tension is considered, f1m = f0m.

The NES membrane under study is defined from the numerical values of

the parameters given in terms of geometrical quantities Rm = 0.03 m, Sm =510

π0.032 m2, hm = 0.18×0.001 m; in terms of material quantities ρa = 1.17 kg m−3,

ca = 344 m s−1 for the air and ρm = 980 kg m−3, E = 1200000 Pa and

ν = 0.49 for latex membrane, and, in terms of damping quantities η = 0.00114.

With these parameters the resulting resonance frequency of the linear part of

membrane is f0m = 3.45 Hz. Finally, we select the pre-tension parameter as515

f1m = 40 Hz. Note that the values of the parameters related to the membrane
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(Rm, hm, ρm, E, ν, η and f1m) have been chosen following the recommendations

discussed in [7] in reference to the experiment data.
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Acoustic characterization of a nonlinear vibroacoustic absorber at low

frequencies and high sound levels, J Sound Vib. 416 (2017) 244–257.

doi:https://doi.org/10.1016/j.jsv.2017.11.031.

[13] J. Verspecht, D. E. Root, Polyharmonic distortion modeling, IEEE Mi-

crowave Magazine 7 (3) (2006) 44–57. doi:https://doi.org/10.1109/565

MMW.2006.1638289.

[14] H. Bodén, One-sided multi-port techniques for characterisation of in-duct

samples with nonlinear acoustic properties, J Sound Vib. 331 (2012) 3050–

3067. doi:https://doi.org/10.1016/j.jsv.2012.02.013.

32

https://doi.org/https://doi.org/10.1016/j.jsv.2010.01.029
https://doi.org/https://doi.org/10.1016/j.jsv.2010.01.029
https://doi.org/https://doi.org/10.1016/j.jsv.2010.01.029
https://doi.org/https://doi.org/10.1016/j.jsv.2011.03.034
https://doi.org/https://doi.org/10.1016/j.jsv.2018.03.014
https://doi.org/https://doi.org/10.1115/1.4039960
https://doi.org/https://doi.org/10.1006/jsvi.2000.3428
https://doi.org/https://doi.org/10.1016/j.jsv.2017.11.031
https://doi.org/https://doi.org/10.1109/MMW.2006.1638289
https://doi.org/https://doi.org/10.1109/MMW.2006.1638289
https://doi.org/https://doi.org/10.1109/MMW.2006.1638289
https://doi.org/https://doi.org/10.1016/j.jsv.2012.02.013
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