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Online Decentralized Perception-Aware
Path Planning for Multi-Robot Systems

Nicola De Carli, Paolo Salaris, Paolo Robuffo Giordano

Abstract— This paper proposes a decentralized and online
optimal perception-aware strategy for multi-robot systems. The
aim is to maximize the information collected along the planned
trajectory about the relative configurations of the robots and,
hence, to minimize the localization uncertainty. This is done
by leveraging the so-called Constructability Gramian (CG),
which can quantify the information about the future state of a
nonlinear system. We show that, thanks to a proper change of
coordinates, the CG can be computed in a decentralized way
with only minor approximations. This allows for formulating
an online and decentralized trajectory generation problem for
optimal localization. To show the effectiveness of the approach,
we consider as case study the localization of a quadrotor group
with noisy distance measurements and sensing constraints. The
results show the interest of the proposed approach.

I. INTRODUCTION

Cooperative localization (CL) in a common frame from
relative sensing is a classical topic in the multi-robot commu-
nity. Many contributions have been proposed over the past
years considering, for instance, under which conditions the
localization problem can be solved (with different settings for
the robot actuation, sensing and communication models),
possible estimation schemes for recovering the relative
positions/poses from the available measurements (considering,
e.g., decentralization, explicit account of sensing/actuation
noise, imperfect and/or intermittent communication, con-
straints such as sensing limitations, and so forth). For instance,
in [1] an observability analysis for unicycle robots with
different measurement models is proposed, while in [2] the
same authors studied the estimation performances for the
different measurement models using an Extended Kalman
Filter (EKF). Numerous CL algorithms have been proposed
using different estimation schemes [3]–[5], among which
various instances of EKF [6]–[9].

Cooperative localization is, at its hearth, a nonlinear
state estimation problem in which the states of interest
(the relative poses) may or may not be observable de-
pending on the particular configuration of the group (e.g,
its current sensing/communication topology and the robot
spatial arrangement) and/or the group motion (as in most
nonlinear estimation problems, the trajectories followed by
the system usually have a strong impact on the observability
of its states). One possible way to address the localization
problem that has gained attention over the last years is to
leverage the notion of framework rigidity [10], [11] (or, more
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simply, rigidity) for analysis and synthesis of localization
algorithms. In the context of multi-robot localization, the
notion of (infinitesimal) rigidity refers to the existence of a
locally unique solution to the localization problem (modulo
the usual unobservable global roto-translation of the whole
group). Furthermore, whenever a formation is rigid, simple
and decentralized localization algorithms can be designed,
which are essentially based on a decentralized gradient
descent. Some examples of the use of rigidity for cooperative
localization can be found in [12]–[15] for the cases of distance
and 3D bearing measurements.

Imposing rigidity to the robot formation can, however, be
quite constraining since a sufficient number of edges per robot
must be maintained at all times during motion. If presence
of an edge is dictated by sensing/communication constraints
(e.g., limited range or field-of-view), the rigidity requirement
can clearly limit the group mobility especially in cluttered
environments. It is worth noting that formation rigidity is
only a sufficient condition for solving the localization problem
which can also be solved without the rigidity condition but at
the cost of introducing additional requirements on the group
motion. When not rigid, the group must typically satisfy
some persistent excitation condition [16], [17] for ensuring a
converging localization (whereas no special robot motion is
required in the rigid case). Clearly, the possibility of relaxing
the rigidity requirement can be important during a mission for
allowing better maneuverability and flexibility in the group
shape (especially when coping with sensing/communication
constraints) even if this imposes some constraints on the robot
motion.

The main contribution of this paper is to propose a
decentralized and online active sensing control strategy that
optimizes the motion of each robot in the group for improving
the localization accuracy. While several works have focused
on multi-robot active sensing for target tracking [18]–[21]
and for estimation of environmental quantities [22], [23], just
few works consider the problem of active sensing to improve
localization performance in a multi-robot system. In [24],
it was considered the special case of holonomic vehicles,
for which an analytical solution minimizing the trace of the
covariance matrix given by the Riccati equation was provided.
In [15], active sensing has been exploited but combined with
bearing rigidity in order to retrieve an estimation of the
scale of a formation of quadrotors. In order to relax the
rigidity assumption, one needs to consider a measure of the
collected information about the relative poses of the multi-
robot system during motion. To this end, in this work we
extend to the multi-robot case the recently introduced notion



of Constructability Gramian (CG) [25], and we detail an
online decentralized trajectory optimization strategy able to
generate trajectories that maximize the information about the
final relative robot configurations. The proposed machinery
is applied to a group of quadrotor UAVs with distance
measurements and sensing constraints as case study, and
the results show the effectiveness of the approach.

The rest of the paper is organized as follows: Section II
introduces the main modeling assumptions and Sect. III recalls
some relevant notions and properties of the CG. Section IV
then presents one of the main results of this work, that
is, a detailed analysis of the CG in a multi-robot setting
and the proof of its decentralized structure once the ‘right’
coordinates are chosen for the group state. Subsequently
Sect. V formulates the localization optimal control problem
and discusses several possible norms for the CG to be used by
the optimization. Section VI then presents statistical results on
a number of simulations and Sect. VII concludes the paper.

II. MULTI-ROBOT SYSTEM MODEL

A. Robot Model

We consider a group of NR robots with a particular
focus on quadrotor UAVs because of their popularity and
widespread use in the community. However, the proposed
methodology would also apply to other kinds of mobile robots
with minor modifications.

As in related works on formation control/localization for
multiple UAVs (e.g., [14], [26]–[28]), the UAV state is
simplified into a 3D position and a yaw angle qi = (pi, ψi) ∈
R3×S1 which, as well-known, are the quadrotor flat outputs.
Any smooth enough trajectory qi(t) can then be tracked by
any of the existing flight controllers for quadrotor UAVs (e.g.,
[29]). The UAVs are modeled as first-order kinematic systems
with body-frame velocity commands[

ṗi
ψ̇i

]
=

[
Ri 0
0 1

] [
vi
wi

]
(1)

where vi and wi are respectively the commanded body-frame
linear velocity and yaw rate, and Ri = Rz(ψi) ∈ SO(3) is
the rotation matrix around the z-axis of an angle ψi. We also
let ui = (vi, wi) collect the i-th robot commands.

No global common frame is assumed directly available to
the robots since they can only obtain relative measurements
w.r.t. each other and their velocity commands are in the robot
body frames. A common frame must, however, be implicitly
or explicitly selected for expressing the estimated robot poses.
This could be an arbitrary ‘fixed’ frame (e.g., the initial pose
of one particular robot in the group), or a ‘moving’ frame
attached to the formation. In this latter case, two natural
choices seem possible: the robot poses are expressed in the
moving body frame of one particular robot (e.g., a leader
or anchor), or in a moving frame attached to the group
barycenter. The barycentral frame would seem a better choice
since it does not require the selection of a ‘special robot’
in the group. However, being the barycentral frame linearly
dependent on the frames of the robots in the formation, the

associated change of coordinates would not be valid as the
change of basis matrix would be rank deficient.

Therefore, in this work we assume presence of one
leader/anchor robot, w.l.o.g. taken as robot 1, whose body
frame A1 is taken as the common frame for expressing the
estimated poses of the other robots in the group. In view of
the following developments, it is then convenient to express
the robot states and model in terms of quantities relative
to A1. Let 1pi =

1Ri(pi − p1) and 1ψi = ψi − ψ1 be the
position and orientation of robot i in A1, and xi = (1pi,

1ψi)
the i-th robot configuration in A1. From (1) and standard
kinematics one has

ẋi =

[
1ṗi
1ψ̇i

]
=

[
1Ri 0
0 1

] [
vi
wi

]
−
[
I [e3]×

1pi
0 1

] [
v1
w1

]
(2)

where 1Ri = Rz(
1ψi), e3 =

[
0 0 1

]T
, [·]× is the skew-

symmetric operator and v1 and w1 are the control inputs of
the leader. Clearly, 1p1 = 1ṗ1 = 0 and 1ψ1 = 1ψ̇1 = 0.

B. Sensing and Communication Model
The UAVs are assumed equipped with a sensor able to pro-

vide information about the relative pose of the robots. In the
case of this work we consider range measurements corrupted
by an additive normally distributed noise νij ∼ N (0, rij)
with zero mean and variance rij

dij =
∥∥pj − pi∥∥2 + νij = hij(pj − pi) + νij . (3)

Other measurements of interest (e.g., 3D bearings) are clearly
possible and will be considered in future extensions of this
work. Note that, in case of distance measurements, (3) can
also be expressed in terms of quantities relative to the leader
frame, i.e., dij = hij(

1pj − 1pi) + νij . A robot pair (i, j)
is assumed able to measure dij when

∥∥pj − pi∥∥2 ≤ Du,
with Du being a maximum sensing range. Similarly, a robot
pair (i, j) is also assumed able to exchange information over
a radio channel when within the sensing range Du. Again,
more complex sensing/communication constraints can also
be considered, see [30], [31] for some examples.

The group interaction is modeled with a directed sensing
graph G(V , E), where V = {1, ..., NR} is the vertex set and
E ⊆ V × V the edge set. Presence of an edge ek = (i, j)
represents the possibility for robot i to obtain a measurement
w.r.t. robot j. As usual, we let Ni be the set of all robots j
for which the ‘forward’ edge (i, j) exists, and we also let
Oi be the set of all robots j for which the ‘backward’ edge
(j, i) exists (this distinction is needed because the graph is
assumed directed). The communication graph is instead taken
as the undirected counterpart of the sensing graph G, i.e., two
robots communicate if either (i, j) ∈ E or (j, i) ∈ E . We note
that the sensing model considered in this work (measurement
available when

∥∥pj − pi∥∥2 ≤ Du) would imply an undirected
sensing graph. However, we prefer to keep our formulation
general enough for accounting, in future extensions, for
more complex directed sensing models (e.g., limited fov of
onboard cameras). Moreover, because of the maximum range
constraint, the sensing/communication graphs will obviously
be time-varying with edges appearing/disappearing during
the robot motion.



C. Group Model

Let κ be the state dimension of one robot (κ = 4 in
our case). In view of the following developments we let
x =

[
xT2 . . . xTNR

]T ∈ Rκ(NR−1) represent the collection
of the NR − 1 robot poses xi in A1 (leader excluded), u =
[uT1 , . . . , u

T
NR

]T ∈ RκNR the collection of all robot inputs,
and y =

[
d1 . . . d|E|

]T ∈ R|E| the collection of all the |E|
distance measurements among robot pairs. Regrouping (2–3)
for all the NR − 1 robots, the group dynamics in the leader
frame is compactly expressed as

ẋ(t) = f(x(t),u(t)), x(t0) = x0

y(t) = h(x(t)) + ν(t) (4)

where ν ∼ N (0, R) collects all the measurement
noise νij with cumulative covariance matrix
R = diag(rij). Similarly, we also introduce vector
q =

[
qT1 . . . qTNR

]T ∈ (R3 × S1)NR as the collection of
configurations qi of all the robots the global frame (this
time leader included). Regrouping (1), we denote the group
dynamics in the global frame as

q̇(t) = g(q(t),u(t)), q(t0) = q0. (5)

This distinction between vectors x and q (and respective
dynamics) may appear redundant but it will be important
in the next developments: indeed x represents the ‘leader-
frame’ robot poses that will be actually estimated by the
employed filter (a EKF in our case), whereas q represents
the ‘fixed-frame’ robot poses that are forward propagated
by the robots at each optimization step for maximizing the
future information gain. These points will be explained more
clearly in Sect. V.

III. INFORMATION MEASURES

Among the many possible measures for quantifying the
amount of information about the state of a nonlinear system,
in this work we consider the so-called Gramians [32], [33]
which have already been successfully applied to optimal
estimation problems for single mobile robots [25], [34], [35].
Gramians indeed represent a general observability measure
not related to the particular filter used for state estimation
(e.g., a EKF). In particular, in this work we focus on the
so-called Constructability Gramian (CG) rather than on
the Observability Gramian (OG), since the CG provides
a measure of the information collected during motion about
the final state xf , while the OG measures the information
collected about the initial state x0 [25]. We here briefly recall
the main properties of the CG and its link with the OG which
will be important in the next developments.

Consider the following quantities

A(t) =
∂f(x(t))

∂x(t)
∈ Rκ(NR−1)×κ(NR−1)

H(t) =
∂h(x(t))

∂x(t)
∈ R|E|×κ(NR−1) (6)

and let Φ(t, t0) ∈ Rκ(NR−1)×κ(NR−1) be the so-called state
sensitivity matrix. As well-known, matrix Φ(t, t0) obeys

Φ̇(t, t0) = A(t)Φ(t, t0) Φ(t0, t0) = I, (7)

and the following semigroup properties hold Φ(t0, tf ) =
Φ(t0, τ)Φ(τ, tf ) = Φ−1(τ, t0)Φ(τ, tf ).

Let W (t) ∈ R|E|×|E| be a symmetric positive definite
weight matrix (a design parameter). By considering the
weighted norm of the output variation δy(t) = y(t)− yo(t),
with y(t) the actual measurement and yo the nominal one
over a time interval [t0, tf ] due to a variation of the final
state δxf = x(tf )− xo(tf ), one has

‖δy(t0, tf )‖W (t) = δxTf Gc(t0, tf ))δxf (8)

where Gc(t0, tf ) ∈ Rκ(NR−1)×κ(NR−1) is the weighted CG
defined as

Gc(t0, tf ) =
∫ tf

t0

ΦT (t, tf )H
T (t)W (t)H(t)Φ(t, tf ) dt.

(9)
By letting W (t) = R−1(t) (the inverse of the output
covariance matrix), the following important relationship holds
between the weighted CG and the inverse of the optimal
estimation error covariance matrix P (t) (as given by the
Riccati equation) [25]

P−1(tf ) = ΦT (t0, tf )P
−1
0 Φ(t0, tf ) + Gc(t0, tf ) (10)

where P 0 = P (t0). This equation has the following interpre-
tation: the first term represents the contribution of the a-priori
information P−10 shifted at the final time tf by the operator
Φ(t0, tf ), whereas the second term represents the information
actually collected during the time interval [t0, tf ]. If one
further interprets P−10 as being the information collected over
the past interval (−∞, t0], equation (10) can be compactly
expressed as P−1(tf ) = Gc(−∞, tf ). Maximisation of a
norm of Gc(−∞, tf ) w.r.t. the state trajectory x(t) over
[t0, tf ] is then expected to result in the minimization of
a norm of the covariance matrix P (tf ) at the final time tf
in addition to, more in general, improve the performance of
the employed observer.

We conclude with the following additional decomposition
of the CG which shows its link with the OG and, as explained
in [25], is convenient for formulating an online optimal
trajectory generation problem as the one considered in this
work

Gc(−∞, tf ) = ΦT (t, tf )

(
Gc(−∞, t) + Go(t, tf )

)
Φ(t, tf )

(11)

where

Go(t, tf ) =
∫ tf

t

ΦT (τ, t)HT (τ)R−1(τ)H(τ)Φ(τ, t) dτ

(12)
is the weighted Observability Gramian (OG).



Fig. 1. Possible shape of the weights wij .

IV. GRAMIAN DECENTRALIZATION

In this section, we provide one of the main contributions of
this work, that is, the analysis of the structure of the CG and
of its gradient w.r.t. the control inputs (vi, wi) of the i-th
robot. We will show that, mainly thanks to a suitable change
of coordinates for the robot states, it will be possible to obtain
a decentralized structure for the CG and its gradient which
will be instrumental for then solving the optimal estimation
problem introduced in next Sect. V in a decentralized way.

A. Structure of the CG

In order to take into account the sensing/communication
model of Sect. II-B, we introduce, as standard practice, a
weight wij(dij) for each edge (i, j) ∈ E which smoothly
approaches zero as dij → Du. Fig. 1 shows a possible shape
for this weight. By letting W e = diag(wij) ∈ R|E|×|E|,
we define the weighted covariance matrix RW to be used
in (12) as R−1W =W T

eR
−1W e. With this choice if an edge

is approaching disconnection because of the limited range
Du, the corresponding measurement covariance is forced to
approach infinity indicating the loss of information over the
edge.

As explained in the previous section, a norm of the CG
Gc(−∞, tf ), computed using the decomposition given in (11),
is a suitable metric for formulating an online optimal trajectory
generation problem. Possible norms for the CG will be
discussed in Sect. V-A, while here we study in detail the
structure of the CG in (11). We start by showing that the
state sensitivity matrix Φ is block diagonal: this can be easily
shown by noting that, from the definition of f , one has

A =
∂f

∂x
=

A2

. . .
ANR

 . (13)

Since Φ(t, t) = I andA is block diagonal, from (7) it follows
that

Φ =

Φ2

. . .
ΦNR

 (14)

where each Φi ∈ Rκ×κ is such that

Φ̇i(τ, t) = Ai(τ)Φi(τ, t), Φi(t, t) = I. (15)

Let us now expand (11) as

Gc(−∞, tf ) =ΦT (t, tf )Gc(−∞, t)Φ(t, tf )+

+ ΦT (t, tf )Go(t, tf )Φ(t, tf ) = T 1 + T 2

(16)

and consider the first term T 1. As explained in the previous
section, one has Gc(−∞, t) = P−1(t) where P (t) is
the optimal estimation error covariance. In this work, an
EKF is employed as state estimator so that a (converging)
estimation of P (t) can be considered available at runtime. By
approximating P (t) as block-diagonal, one can then conclude
that T 1 is also block-diagonal with κ× κ blocks

T 1ii = ΦT
i (t, tf )P

−1
i (t)Φi(t, tf ) ∈ Rκ×κ. (17)

Before considering the second term T 2 we need to look
at the structure of matrix H = ∂h/∂x which is needed
for evaluating (12). Using the measurement definition (3), it
follows that the row of H associated to an edge (i, j) takes
the form

Hij =

[
0 . . . Hiji︸︷︷︸

i

. . . 0 . . . Hijj︸︷︷︸
j

. . . 0
]
(18)

with non-zero entries only on the i-th and j-th columns. Since
the edge weights wij are by construction zero for any non-
neighboring pair of robots, after some (tedious) developments
one can conclude that T 2 can also be partitioned into κ× κ
blocks with the non-zero blocks having expression

T 2ij = ΦTi (t, tf )

(∫ tf

t
ΦTi (τ, t)

(
w2
ij(t)H

T
iji(τ)r

−1
ij Hijj(τ)+

+ w2
ji(τ)H

T
jii(τ)r

−1
ij Hjij(τ)

)
Φj(τ, t) dτ

)
Φj(t, tf ), j ∈ Ni

T 2ii = ΦTi (t, tf )

(∫ tf

t
ΦTi (τ, t)

( ∑
k∈Ni

w2
ik(τ)H

T
iki(τ)r

−1
ik Hiki(τ)

+
∑
k∈Oi

w2
ki(τ)H

T
kii(τ)r

−1
ki Hkii(τ)

)
Φi(τ, t) dτ

)
Φi(t, tf ), i = j.

(19)

What can be concluded from this analysis is that matrix
Gc(−∞, tf ) has a natural ‘decentralized’ structure since every
κ×κ(NR−1) row block corresponding to robot i consists of
the diagonal block (T 1ii+T 2ii ) and of the off-diagonal blocks
(T 2ij ) only for those j ∈ Ni. In particular, the quantities
needed by robot i for evaluating ‘its own’ i-th block row
are: the state sensitivity matrix Φi and Φj for j ∈ Ni, the
diagonal block P i of the covariance matrix, the measurement
noise variances (rij , rki), the weights (wij , wki) and the
measurement matrices (Hiji, Hijj , Hkii, Hkik) for j ∈
Ni and k ∈ Oi. Notice that the error covariance block P i,
the measurement noise variances and the weights are locally
available to robot i or can be communicated by its 1-hop
neighbors. However, the situation is not so favorable for
what concerns the state transition matrices and measurement
matrices (as well as the associated gradients) as discussed in
the next section.



B. A Suitable Change of Coordinates

Let us first consider the i-th κ × κ block of the state
transition matrix Φi: from (2) one has

Ai =
∂f i
∂xi

=

 0 ω1 0 (− sin (1ψi)vi,x − cos(1ψi)vi,y)
−ω1 0 0 (cos (1ψi)vi,x − sin(1ψi)vi,y)
0 0 0 0
0 0 0 0


(20)

where vi,x and vi,y are the x and y components of the
velocity input vi. Therefore, in order to implement (15) for
evaluating Φi(τ, t) over the interval [t, tf ], robot i would
require knowledge of its relative orientation 1ψi(t) in the
leader frame and of the leader yaw rate ω`(t) during the
interval. These quantities may not be directly available if
robot i and the leader are not neighbors.

Furthermore, using the measurement definition (3), it
follows that

Hiji =
∂dij
∂xi

=
1

dij

[
(1pi − 1pj)

T 0
]

Hijj =
∂dij
∂xj

=
1

dij

[
(1pj − 1pi)

T 0
]
. (21)

As before, evaluation of Hij by robot i along the interval
[t, tf ] would require knowledge of the i-th and j-th robot
position in the leader frame which may not be available
if robots i and/or j are not neighbors of the leader, since
the robots would need to know the future leader inputs in
order to compute these quantities. Moreover, this coupling
with the dynamics of the leader would also appear in
the gradient computation, thus further complicating the
optimization process since the leader inputs would be required
for optimizing the CG blocks corresponding to each robot.

We then now show that it is indeed possible to avoid
this inconvenient coupling thanks to a suitable change of
coordinates. Consider the time-varying change of coordinates
x(t) = T (ψ(t))z(t) where

T (ψ(t)) =

T 2(
1ψ2(t))

. . .
TNR(

1ψNR(t))

 (22)

and

T i(
1ψi(t)) =

[
Rz(

1ψi(t)) 0
0 1

]
. (23)

One has δẋ = T (ψ)δż + d
dtT (ψ)δz and the linearized state

equations can be re-written as

δż(t) =

[
(T(ψ(t)))−1

(
A(t)T(ψ(t))− d

dt
T(ψ(t))

)]
δz(t) =

= Ã(t)δz(t)

δy(t) = H(t)T(ψ(t))δz = H̃(t)δz(t)
(24)

where d
dtT (ψ(t)) is again a block diagonal matrix with each

block expressed as

d

dt
Ti(ψ) =

[
d
dt

Rz(
1ψi) 0

0 0

]
=

[
Rz(

1ψi)(ωi − ω1)[e3]× 0
0 0

]
(25)

Thus, in the new coordinates z the original matrix A is
replaced by

Ã =

Ã2

. . .
ÃNR

 (26)

with each block having expression

Ãi = (Ti(
1ψi))

−1
(

AiTi(
1ψi)−

d

dt
Ti(

1ψi)

)
=

=

 0 ωi 0 −vi,y
−ωi 0 0 vi,x
0 0 0 0
0 0 0 0

. (27)

Notice that now Ãi only depends on quantities relative to
robot i. Similarly, in the new coordinates the original matrix
Hiji is replaced by

H̃iji = HijiTi(
1ψi) = −

1

dij

[
ipj

T
0
]

(28)

and analogously for Hijj , where ipj denotes the position
of robot j expressed in the frame of robot i with j ∈ Ni.
Again, the dependency on the leader is now avoided since
dij and ipj can be evaluated from the sole knowledge of the
future inputs of robot i and robot j that can be exchanged
via 1-hop communication.

Let then Φ̃i be the state transition matrix in the new
coordinates obeying

˙̃Φi(τ, t) = Ãi(τ)Φ̃i(τ, t), Φ̃i(t, t) = I.

One can conclude that, in these coordinates, the relevant
quantities Φ̃i, H̃iji and H̃iji can be evaluated by robot
i over a time interval [t, tf ] by only resorting to local or
1-hop information from its neihgbors, without the need of
necessarily receiving information from the leader. In the new
coordinates the CG is reformulated as

G̃c(−∞, tf ) = Φ̃
T
(t, tf )

(
G̃c(−∞, t) + G̃o(t, tf )

)
Φ̃(t, tf )

(29)

with

G̃o(t, tf ) =
∫ tf

t

Φ̃
T
(τ, t)H̃

T
(τ)R−1

W (τ)H̃(τ)Φ̃(τ, t) dτ (30)

and

G̃c(−∞, t) = P̃
−1

(t) = T (ψ̂(t))P−1(t)T (ψ̂(t))T . (31)

Therefore, the diagonal blocks of G̃c(−∞, t) become P̃
−1
i =

T (1ψ̂i)P
−1
i T (

1ψ̂i)
T , where 1ψ̂i(t) is the current estimated

orientation of robot i provided by the EKF (and, thus,
locally available to robot i at the current time t). The
block decomposition detailed in (17–19) then becomes fully
decentralized since each block can be evaluated by robot i
by only resorting to local and 1-hop information.

We finally note that, being T (ψ(t)) orthonormal, the pro-
posed change of basis does not affect the spectral properties



of the CG. In fact, using (8), one has in the new coordinates

‖δy(t, tf )‖R−1
W

(τ)
= δzTf G̃c(t, tf ))δzf =

= (T (ψ(tf ))
−1δxf )

T G̃c(t, tf ))(T (ψ(tf ))−1δxf ) =

= δxTf

(
T (ψ(tf ))G̃c(t, tf ))T (ψ(tf ))−1

)
δxf (32)

where the orthonormality of T (ψ(t)) has been used. Then
by comparison with (8) it follows that

Gc(t0, tf )) = T (ψ(tf ))G̃c(t0, tf ))T (ψ(tf ))−1 (33)

showing that the CG in the new coordinates is similar to the
CG in the original ones. Having the two matrices the same
eigenvalues, optimizing some function of the eigenvalues of
the CG in the new basis has the same effect as optimizing it
in the original basis.

V. MULTI-ROBOT OPTIMAL CONTROL PROBLEM

Exploiting the analysis of the previous Section, the follow-
ing trajectory optimization problem will determine the inputs
ui for each robot over a future time interval that maximize a
norm of the CG and, hence, the information about the final
group state.

Problem 1 (Multi-Robot Optimal Sensing Control)
For all t ∈ [t0, tf ], with tf fixed, find the optimal control
strategy

u∗(t) = argmax
u

∥∥∥G̃c(−∞, tf )∥∥∥
s.t. ∀τ ∈ [t, tf ]

ul ≤ u(τ) ≤ uu
y(τ) ≥ yl
q̇(τ) = g(q(τ),u(τ))

y(τ) = h(q(τ),ν(τ))

˙̃Φ(τ, t) = Ã(τ)Φ̃(τ, t)

˙̃Go(t, τ) = Φ̃
T
(τ, t)H̃

T
(τ)R−1(τ)H̃(τ)Φ̃(τ, t)

Φ̃(tf , t) = Φ̃
−1

(t, tf )

G̃c(−∞, tf ) = Φ̃
T
(t, tf )

(
G̃c(−∞, t) + G̃o(t, tf )

)
Φ̃(t, tf )

q(t) = (0, x̂(t)), Φ̃(t, t) = I, G̃c(−∞, t) = P̃
−1

(t)
(34)

where ‖·‖ is a suitable norm for the CG, ul and uu are
minimum/maximum thresholds for the control inputs, and the
constraint y(τ) ≥ yl aims at avoiding inter-agent collisions
being y the vector of inter-agent distances and yl a minimum
allowed inter-agent distance1.

We note that, as expected, the relevant quantities needed for
computing the CG over the future interval [t, tf ] are expressed
in the ‘correct’ coordinates which allows for a decentralized
implementation by the robots in the group. Note also that
the resolution of Problem 1 involves the forward integration
over the future interval [t, tf ] of several quantities (e.g., the
state sensitivity matrix Φ̃), among which the group dynamics

1We note that this constraint only guarantees that robots connected by an
edge will not collide. In the case studied in this work, any two robots closer
than Du will be connected by an edge, and therefore the collision-avoidance
constraint is always enforced. However, this could not be the case for other
sensing modalities such as cameras with limited fov.

in the fixed frame (see (5) and discussion therein), which is
initialized with the current available estimation from the EKF
for all robots but the leader (line q(t) = (0, x̂(t))). Indeed,
this initialization and the use of the dynamics (5) implicitly
creates a ‘fixed-frame’, namely the frame of the leader at
time t, where all the future robot poses are expressed (leader
included). This allows any pair of neighboring robots to easily
evaluate their relative position ipj(τ) over [t, tf ] and, in turn,
the evaluation of the various terms of the CG (see, e.g., (28)).

Remark 1. We remark that the employed EKF providing
the estimated x̂(t) and P̂ (t) is built on the ‘leader-frame’
dynamics (2). Therefore, implementation of the EKF requires
that each robot has access to the current leader velocity
input u1(t) (see (2)). One possible way to address this issue
is to assume presence of a broadcasting algorithm (e.g.,
a consensus-like propagation as the one used in [36]) for
diffusing the current leader inputs to all the robots in the
group at each estimation step. We also note that assuming
presence of this propagation is conceptually different from
requiring that every robot has access to the leader inputs
(and relative poses) over the whole future interval [t, tf ]. In
this latter case, the amount of information to be propagated
to the group would be significant and could potentially
grow very large as the future prediction horizon increases.
This step is conveniently avoided thanks to the coordinate
change presented in Sect. IV-B, and we instead only require
propagation of the current leader velocity (a fixed, and small,
amount of information per robot).

Remark 2. In order to reduce the computation and communi-
cation burden (w.r.t., e.g., a typical piecewise constant pram-
eterization), in this work the inputs ui are parameterized by
B-splines using a fixed number of control points, which then
effectively become the optimization variables of Problem 1.
In this way, exploiting the convex hull of the control points,
some constraints can be simplified [37] and the robots only
need to exchange the control points of their future inputs and
their current estimated state at each optimization iteration.

A. Choice of the CG-based Metric

Various possible norms for the Gramian have been con-
sidered in previous works, for instance the determinant of
the inverse of the Gramian (also known as D-Optimality
criterion); the trace of the inverse of the Gramian (A-
Optimality criterion); the condition number of the Gramian;
and, finally, the minimum eigenvalue of the Gramian (E-
Optimality criterion). In the context of this work not all these
possible metrics can result in a decentralized implementation
of Problem 1, even though the CG itself has a decentralized
structure. For example, any metric involving the inversion of
the Gramian would not be decentralized. In this respect, a
suitable metric for a decentralized implementation could be
the trace of the CG∥∥∥G̃c(−∞, tf )∥∥∥ = trace(G̃c(−∞, tf )). (35)

Indeed, for optimizing the trace, each robot would simply
need to optimize its own i-th and j-th blocks, j ∈ Ni, of



the CG without any dependency associated to other non-
neighboring robots. However, a drawback of using the CG
trace as a cost function is that its maximization does not have
strong guarantees on the minimization of some norm of the
estimation uncertainty [25].

Another possibility, which has shown to be more effective,
is to consider the maximisation of the minimum eigenvalue
of the CG that, although being a global quantity, could
be estimated in a decentralized way by, e.g., adapting the
algorithms presented in [13], [38]. However, the derivative
of an eigenvalue is not well defined when the eigenvalue
multiplicity is greater than one, and this (to the best of our
knowledge) is still an open problem that can potentially
degrade the performance of the eigenvalue estimation and its
use in gradient-based optimization problems. A workaround
to this issue has been proposed in [15] and consists in
considering a smooth approximation of the minimum function
by employing the generalized mean (without normalization)
of the vector of eigenvalues [39]

∥∥∥G̃c(−∞, tf )∥∥∥ = λ̃min(G̃c(−∞, tf )) =
p

√√√√κ·(NR−1)∑
i=1

λpi (G̃c(−∞, tf )

(36)
with p� 0. This solution is, however, not scalable since, as
already pointed out in [30], it would require for each agent
to estimate all the eigenvalues of the CG (and associated
eigenvectors), whose number grows linearly with the size of
the group.

In this work we then propose a scalable metric based
on (36) as cost function, namely, the sum of the κ × κ
diagonal blocks of G̃c(−∞, tf )∥∥∥G̃c(−∞, tf )∥∥∥ =

NR−1∑
i=1

p

√√√√ κ∑
j=1

λpj (G̃
ii

c (−∞, tf )) (37)

with p � 0, hereafter denoted as Sum of Approximated
Minimum Eigenvalues (SAME). The use of (37) results in a
decentralized optimization since each robot i is only respon-
sible for computing the inputs optimizing the approximated
minimum eigenvalue of its κ×κ diagonal block of G̃c, whose
evaluation is decentralized. The idea behind this metric is
to minimize an approximation of the maximum uncertainty
associated to the state of each robot whereas (36) aims at
minimizing the uncertainty associated to the whole state of
the system.

VI. SIMULATION RESULTS

For illustration purposes, we first consider a group of
NR = 3 robots that needs to localize itself using relative
distance measurements, and we implement the decentralized
EKF algorithm from [9] for estimating the robot states in a
decentralized way. The measured distances are affected by
gaussian noise with covariance rij = 0.3 · Tsm2 where Ts is
the sampling period of the EKF. The initial state estimation
x̂(t0) is affected by a gaussian noise with covariance
σ2
xyz0 = 0.4m2 on the position and σ2

ψ0 = 0.3rad2 on the
yaw orientation. The thresholds defining the weights wij
(see Fig. 1) are Dl = 5m and Du = 7m. The inputs are

Metric λmax(P tf ) trace(P tf ) RMSE

Random 0.091548 0.12742 0.1286
λ̃min 0.011747 0.017749 0.0362
SAME 0.019641 0.023787 0.0466

TABLE I
AVERAGE OF THE MAXIMUM AND AVERAGE UNCERTAINTY AND

RMSE AT tf FOR 3 ROBOTS

parameterized using B-Splines [40] with N = 6 control points
and their limits are set to ul = −1 and uu = 1. Thanks to
the B-spline parameterization, the robots can simulate the
neighbors future trajectories by exchanging only a limited
amount of information (the B-Spline control points), and they
can also reduce the input constraints dimension considering
the convex hull of the control points (in future we will
consider also simplifications of the anti-collision constraints
[37]).

Starting from 4 different fixed configurations, such that
the initial sensing graph is connected, we generated 10
random paths of equal duration tf taken as initial guesses for
Problem 1 which is then solved using either the SAME (37) or
λ̃min (36) metrics. Each trajectory (initial guess or optimized
one) is executed 10 times with a different initial condition
for the EKF drawn from a Gaussian centered at the true
x(t0) with covariance P 0. When executing the initial non-
optimized trajectories, the sensing graph is considered fully
connected (all relative measurements always available to the
EKF) disregarding the sensing constraints, which are instead
fully considered in the optimized cases (thus, resulting in a
time-varying sensing graph). The final configuration xf is
not fixed while the final time is fixed at tf = 15s.

The average of the maximum eigenvalue (corresponding to
the maximum uncertainty) and of the trace (corresponding to
the average uncertainty) of P (tf ), as well as the Root Mean
Square Error (RMSE) at tf obtained optimizing the different
metrics are compared and results are shown in Table I. One
can note how, in average, the optimized cases perform better
than the initial guesses .

One advantage of the proposed approach over a strategy
based on instantaneous observability (like rigidity-based
localization) is that the robot group has much more freedom
in terms of mobility, which can be particularly useful when
navigating in cluttered environments. In this respect Table II
shows the results of a single illustrative run during which, for
some optimized trajectories, the group does not remain rigid
at all times because of the sensing constraints (the rigidity
eigenvalue, a common measure of rigidity [13], is reported
in Fig. 2). Despite the loss of rigidity, the group is still able
to successfully localize and achieve good performance in
terms of estimation accuracy (Table II). A video illustrating
some representative trajectories for the multi-robot group is
attached to the paper for the reader’s convenience.

The same simulations have also been performed by con-
sidering NR = 8 robots and by using rij = 0.1 · Tsm2 and
N = 8. The results are shown in Table III and show the good
performance also in this case. The attached video allows to
better appreciate the robot trajectories and behavior of the
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Fig. 2. An optimal trajectory which does not maintain the formation
rigid. In 2(a), the rigidity eigenvalue is plotted. In 2(b) the robot
trajectories are shown, with the frames in the initial positions (in
blue is the leader) and in dotted lines the estimated trajectories.

Metric λmax(P tf ) trace(P tf ) RMSE

Random 0.0198620 0.0270547 2.1273e-04
λ̃min 0.0002825 0.0014602 7.0901e-06
SAME 0.0024085 0.0073659 1.3127e-04
Trace 0.0512124 0.0550008 1.7742e-04

TABLE II
MAXIMUM AND AVERAGE UNCERTAINTY AND RMSE AT tf WITH

SAME NOT PRESERVING RIGIDIY

estimation errors for this case study.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, we have considered the localization problem
for a multi-robot system using relative measurements between
the robots. A decentralized formulation of the problem of
active sensing control based on the optimization of a norm
of the Constructability Gramian has been proposed. We have
considered, as case study, a group of quadrotors measuring
relative distances with maximum range constraints. The
effectiveness of the proposed method has been shown by
reporting the statistical results of several simulation runs.

Future works will aim at evaluating the computational
times on the actual quadrotors and integrating the actuation
noise (which for certain robots, e.g. quadrotors, is far from
negligible) in the proposed scheme. Possible solutions could
be based on the Riccati equation or on rechability concepts.

Metric λmax(P tf ) trace(P tf ) RMSE

Random 0.028253 0.041103 0.0621
λ̃min 0.00082939 0.0027855 0.0052
SAME 0.0087442 0.015267 0.0249
Trace 0.023022 0.029117 0.0513

TABLE III
AVERAGE OF THE MAXIMUM AND AVERAGE UNCERTAINTY AND

RMSE AT tf FOR 8 ROBOTS

Also, we want to consider the case in which the quadrotors
are able to measure relative bearings obtained using an
onboard camera and associated sensing constraints (e.g.,
limited fov). Furthermore, it could be interesting to evaluate
the performance when the optimisation is constrained by
higher priority tasks such as, e.g., reaching a final desired
configuration or following a navigation plan.

APPENDIX

We here discuss how the structure of the CG in (19)
(starting from the OG) and the structure of the gradient
of the CG in the new coordinates (29–30) w.r.t. the i-th
robot inputs (vi, wi) have been obtained. We note that, as
explained in [25], the term G̃c(−∞, t) in (29) is ‘fixed’ at the
current time t, since it encodes the information collected over
the past. Therefore, its gradient w.r.t. the future robot inputs
is zero and one only need to focus on the terms Φ̃(t, tf ) and
G̃o(t, tf ).

To study the structure of G̃o(t, tf ) we start introducing an
intermediary variable Ω̃(t, t0) =W e(t)H̃(t)Φ̃(t, t0). Then,
G̃o(t, tf ) can be rewritten as

G̃o(t0, tf ) =
∫ tf

t0

Ω̃
T
(t, t0)R

−1(t)Ω̃(t, t0) dt (38)

Considering a system of NR robots and p-dimensional
outputs (in our case p = 1) we have that Ω can be
divided in NR!

2!(NR−2)! row-blocks (the possible combinations
of two robots) and (NR − 1) column-blocks, with blocks of
dimension p × κ. Each row-block corresponds to an edge
ek = (i, j) and the column block (i − 1) corresponds to a
robot i (the jacobian w.r.t. the leader does not appear in H
and thus in Ω̃)

Ω̃
(k,i−1)

= wijH̃ijiΦ̃i (39)

Ω̃
(k,j−1)

= wijH̃ijjΦ̃j (40)

Ω̃
(k,l)

= 0 for l 6= (i− 1), l 6= (j − 1). (41)

Since the covariance matrix R is block diagonal (diagonal in
our case as R = diag(rij)), with each block corresponding
to an edge,

G̃ijo =

∫ tf

t0

Φ̃
T
i

(
w2
ijH̃

T
ijir
−1
ij H̃ijj+

+w2
jiH̃

T
jiir
−1
ij H̃jij

)
Φ̃j dt if i 6= j

G̃ijo =

∫ tf

t0

Φ̃
T
i

( ∑
k∈Ni

w2
ikH̃

T
ikir
−1
ik H̃iki+

+
∑
k∈Oi

w2
kiH̃

T
kiir
−1
ki H̃kii

)
Φ̃i dt if i = j. (42)
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