Simultaneous Actuator and Sensor Faults Estimation for Aircraft Using a Jump-Markov Regularized Particle Filter - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

Simultaneous Actuator and Sensor Faults Estimation for Aircraft Using a Jump-Markov Regularized Particle Filter

Nadjim Horri
James Brusey
  • Fonction : Auteur
  • PersonId : 1106441

Résumé

The advances in aircraft autonomy have led to an increased demand for robust sensor and actuator fault detection and estimation methods in challenging situations including the onset of ambiguous faults. In this paper, we consider potential simultaneous fault on sensors and actuators of an Unmanned Aerial Vehicle. The faults are estimated using a Jump-Markov Regularized Particle Filter. The jump Markov decision process is used within a regularized particle filter structure to drive a small subset of particles to test the likelihood of the alternate hypothesis to the current fault mode. A prior distribution of the fault is updated using innovations based on predicted control and measurements. Fault scenarios were focused on cases when the impacts of the actuator and sensor faults are similar. Monte Carlo simulations illustrate the ability of the approach to discriminate between the two types of faults and to accurately and rapidly estimate them. The states are also accurately estimated.
Fichier principal
Vignette du fichier
DTIS21123.pdf (650.8 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03341209 , version 1 (10-09-2021)

Identifiants

Citer

Enzo Iglésis, Nadjim Horri, James Brusey, Karim Dahia, Hélène Piet-Lahanier. Simultaneous Actuator and Sensor Faults Estimation for Aircraft Using a Jump-Markov Regularized Particle Filter. IEEE International Conference on Prognostics and Heath Management (IPCPHM) 2021, Jun 2021, Détroit, United States. pp.1-10, ⟨10.1109/ICPHM51084.2021.9486593⟩. ⟨hal-03341209⟩
36 Consultations
36 Téléchargements

Altmetric

Partager

More