Di-gluonium sum rules, $\mathrm{I}=0$ scalar mesons and conformal anomaly

Stephan Narison

To cite this version:

Stephan Narison. Di-gluonium sum rules, $\mathrm{I}=0$ scalar mesons and conformal anomaly. Nucl.Phys.A, 2022, 1017, pp.122337. 10.1016/j.nuclphysa.2021.122337. hal-03341180

HAL Id: hal-03341180
https://hal.science/hal-03341180
Submitted on 5 Jan 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Di-Gluonium Sum Rules, $I=0$ Scalar Mesons and Conformal Anomaly

Stephan Narison*
Laboratoire Univers et Particules de Montpellier (LUPM), CNRS-IN2P3,
Case 070, Place Eugène Bataillon, 34095-Montpellier, France and
Institute of High-Energy Physics of Madagascar (iHEPMAD)
University of Ankatso, Antananarivo 101, Madagascar

Abstract

We revisit, scrutinize, improve, confirm and complete our previous results [1-3] from the scalar digluonium sum rules within the standard SVZ-expansion at N2LO without instantons and beyond the minimal duality ansatz : "one resonance $\oplus Q C D$ continuum" parametrization of the spectral function which is necessary for a better understanding of the complex spectra of the $I=0$ scalar mesons. We select different (un)subtracted sum rules (USR) moments of degree ≤ 4 for extracting the two lowest gluonia masses and couplings. We obtain: $\left[M_{\sigma_{B}}, f_{\sigma_{B}}\right]=[1.07(13), 0.46(16)],\left[M_{G_{1}}, f_{G_{1}}\right][1.55(12), 0.37(11)] \mathrm{GeV}$ and the corresponding masses of the radial excitations : $M_{\sigma_{B}^{\prime}}=1.12(12)$ and $M_{G_{1}^{\prime}}=1.56(14) \mathrm{GeV}$ which are (unexpectedly) almost degenerated with the ground states. The 2nd radial excitation is found to have a much heavier mass: $M_{G_{2}} \simeq 2.99(22) \mathrm{GeV}$. Combining these results with some Low-Energy Vertex Sum Rules (LEV-SR), we predict some hadronic widths and classify them into two groups : - The σ-like ($\sigma_{B}, \sigma_{B}^{\prime}$) which decay copiously to $\pi \pi$ from OZI-violating process and the σ_{B}^{\prime} to $2(\pi \pi) S$ through $\sigma \sigma$. - The G-like $\left(G_{1}, G_{1}^{\prime}\right.$ and eventually G_{2}) which decay into $\eta^{\prime} \eta, \eta \eta$ through the $U(1)_{A}$ gluonic vertex. Besides some eventual mixings with quarkonia states, we may expect that the observed $\sigma / f_{0}(500)$ and $f_{0}(137)$ are σ-like while the $f_{0}(1.5)$ and $f_{0}(1.7)$ are G-like gluonia. The high mass $G_{2}(2.99)$ can also mix with the G_{1}, G_{1}^{\prime} to bring the gluon component of the gluonia candidates above 2 GeV . We also estimate the conformal charge $\psi_{G}(0)=2.09(29)$ GeV^{4} and its slope $\psi_{G}^{\prime}(0)=0.95(30) \mathrm{GeV}^{2}$. Our results are summarized in Table 1.

Keywords:

QCD Spectral Sum Rules; Perturbative and Non-perturbative QCD; Exotic hadrons; Masses and Decay constants.
*ICTP-Trieste consultant for Madagascar.
Email address: snarison@yahoo.fr (Stephan Narison)

1. Introduction

Gluonia / Glueballs bound states are expected to be a consequence of QCD [5]. However, despite considerable theoretical and experimental efforts, there are not (at present) any clear indication of their signature. The difficulty is also due to the fact that the observed candidates can be a strong mixing of the gluonia with the $\bar{q} q$ light mesons or some other exotic mesons (four-quark, hybrid states). In particular, the $(I=0)$ Isoscalar Scalar Channel channel is overpopulated beyond the conventional scalar nonet such that one suspects that some of these states can be of exotic origins and may (for instance) contain some large gluon component in their wave functions.

In some previous works [1-4, 6-13] based on QCD spectral sum rules (QSSR) à la SVZ [14-16] combined with some low-energy theorems (LET), we have tried to understand the (pseudo)scalar gluonia channels. Since then, some progresses have been accomplished from experiments and from some other approaches which we shall briefly remind below.

After this short reminder, we update and improve our previous QSSR analysis. The impact of these novel results on our present understanding of the peculiar $(I=0)$ isoscalar scalar channel is discussed.

2. $\sigma / f_{0}(500)$ and $f_{0}(980)$ from scatterings data

To quantify the observables of the low-lying scalar states, we have phenomenologically studied the $\pi \pi, \bar{K} K, \gamma \gamma[17,18], K_{e 4}[19], J / \psi, \phi$ radiative and D_{s} semileptonic decays [20, 21] data with the aim to understand the internal substructure of the $\sigma / f_{0}(500)$ and $f_{0}(980)$ mesons, ${ }^{1}$.

- Masses and hadronic widths from $\pi \pi \rightarrow \pi \pi, K K$ and $K e_{4}$ data
\diamond Using a K-matrix $[26,27]$ analysis of the $\pi \pi$ elastic scattering data below 0.7 GeV , we found for the complex pole mass and the residue using one bare resonance \oplus one channel [17] :

$$
\begin{equation*}
M_{\sigma}^{\text {pole }}[\mathrm{MeV}] \simeq 422-i 290 \tag{1}
\end{equation*}
$$

\diamond We extend the previous analysis until 900 MeV and use two bare resonaces $\left[\sigma(500), f_{0}(980)\right] \oplus$ two open channels $(\pi \pi, \bar{K} K)$ parametrization of the data $[18,19]$. To the data used previously, we add the new precise measurement from NA48/2 [28] on $K e_{4}\left(K \rightarrow \pi \pi e \nu_{e}\right)$ data for the $\pi \pi$ phase shift below 390 MeV . Then, averaging this result with the previous one in Eq.1, one obtains the final estimate :

$$
\begin{equation*}
M_{\sigma}^{p o l e}[\mathrm{MeV}] \simeq 452(12)-i 260(15), \quad\left|g_{\sigma \pi^{+} \pi^{-}}\right|=1.12(31) \mathrm{GeV}, \quad \frac{\left|g_{f_{0} K^{+} K^{-}}\right|}{\left|g_{f_{0} \pi^{+} \pi^{-}}\right|}=2.58(1.34) \tag{2}
\end{equation*}
$$

which agrees with the ones based on the analytic continuation and unitarity properties of the amplitude to the deep imaginary region $[29,30]$:

$$
\begin{equation*}
M_{\sigma}^{\text {pole }}[\mathrm{MeV}] \simeq 444-i 272, \quad \text { and } \quad M_{\sigma}^{\text {pole }}[\mathrm{MeV}] \simeq 489-i 264 \tag{3}
\end{equation*}
$$

[^0]\diamond However, in order to compare these results with the QCD spectral sum rules ones where the analysis is done in the real axis, one has to introduce the On-shell or Breit-Wigner (os) mass and width where the amplitude is purely imaginary at the phase 90° :
\[

$$
\begin{equation*}
\operatorname{Re} \mathcal{D}\left(\left(M_{\sigma}^{o s}\right)^{2}\right)=0 \quad \Longrightarrow \quad\left(M_{\sigma}^{o s}, \Gamma_{\sigma}^{o s}\right)=(920,700) \mathrm{MeV} \tag{4}
\end{equation*}
$$

\]

where \mathcal{D} is the propagator appearing in the unitary $\pi \pi$ amplitude. Similar result has been obtained in [31, 32] where the wide resonance centered at 1 GeV has been interpreted in [31] as a resonance interfering destructively with the $f_{0}(980)$ and $f_{0}(1500)$.
\diamond For the $f_{0}(980)$, one obtains $[18,19]$:

$$
\begin{equation*}
M_{f_{0}}^{p o l e}[\mathrm{MeV}] \simeq 981(34)-i 18(11), \quad\left|g_{f_{0} \pi^{+} \pi^{-}}\right|=2.65(10) \mathrm{GeV}, \quad \frac{\left|g_{\sigma K^{+} K^{-}}\right|}{\left|g_{\sigma \pi^{+} \pi^{-}}\right|}=0.37(6) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{f_{0}}^{o s} \simeq M_{f_{0}}^{p o l e}, \quad \Gamma_{f_{0}}^{o s} \simeq \Gamma_{f_{0}}^{\text {pole }} \tag{6}
\end{equation*}
$$

where Eq. 6 comes from the fact that $f_{0}(980)$ is narrow.

- $\sigma / f_{0}(500)$ and $f_{0}(980) \gamma \gamma$ widths from $\gamma \gamma \rightarrow \pi \pi, K K$ scatterings
\diamond We proceed as above and deduce the average (in units of keV):

$$
\begin{equation*}
\Gamma_{\sigma_{\text {pole }}}^{d i r}=0.16(4), \quad \Gamma_{\sigma_{\text {pole }}}^{\text {resc }}=1.89(81), \quad \Gamma_{\sigma_{\text {pole }}}^{t o t}=3.08(82) \tag{7}
\end{equation*}
$$

for the direct, rescattering and total (direct \oplus rescattering) $\gamma \gamma$ widths. For the on-shell mass, these lead to :

$$
\begin{equation*}
\Gamma_{\sigma_{o s}}^{d i r}=1.2(3) \mathrm{keV}, \quad \Gamma_{\sigma_{p o l e}}^{r e s c}=\Gamma_{\sigma_{o s}}^{r e s c} \tag{8}
\end{equation*}
$$

\diamond For the $f_{0}(980)$, one obtains in units of keV :

$$
\begin{equation*}
\left.\left.\Gamma_{f_{0}}^{d i r}\right|_{p o l e} \simeq \Gamma_{f_{0}}^{d i r}\right|_{o s}=0.28(1), \quad \Gamma_{f_{0}}^{r e s}=0.85(5), \quad \Gamma_{f_{0}}^{t o t}=0.16(1) \tag{9}
\end{equation*}
$$

- Production of $\sigma / f_{0}(500)$ and $f_{0}(980)$ from some other channels

Isoscalar Scalar production in some other channels have been reviewed in [22-25], where the structures:

$$
\begin{equation*}
\sigma / f_{0}(500), \quad f_{0}(980), \quad f_{0}(1370), \quad f_{0}(1500) \tag{10}
\end{equation*}
$$

have been also found in different processes $\left(J / \psi\right.$-decays, central production in $p p$ and $e^{+} e^{-}, \bar{p} p$ and $\bar{p} n$ annihilation at rest, πp and $K p$).
\diamond We notice the production of the $\sigma / f_{0}(500)$ from $J / \psi \rightarrow \omega \pi^{+} \pi^{-}[34]$ with the extracted complex pole mass and width:

$$
\begin{equation*}
M_{\sigma}^{\text {pole }}=541(39)-i 252(42) \tag{11}
\end{equation*}
$$

and of the $f_{0}(980)$ from $J / \psi \rightarrow \gamma \pi^{0} \pi^{0}$ by BESIII [33] and from $J / \psi \rightarrow \phi \pi^{+} \pi^{-}$and $J / \psi \rightarrow \phi K^{+} K^{-}[34]$ with a ratio of coupling :

$$
\begin{equation*}
g_{f_{0} K^{+} K^{-}} / g_{f_{0} \pi^{+} \pi^{-}}=4.21 \pm 0.32 \tag{12}
\end{equation*}
$$

\diamond The $f_{0}(980)$ is also produced from $\phi \rightarrow\left(\pi^{+} \pi^{-}, K^{+} K^{-}\right)+\gamma$, a glue filter channel at KLOE [35] with the couplings :

$$
\begin{equation*}
g_{f_{0} K^{+} K^{-}}=(3.97 \sim 4.74) \mathrm{GeV}, \quad g_{f_{0} \pi^{+} \pi^{-}}=-(2.22 \sim 1.82) \mathrm{GeV} \tag{13}
\end{equation*}
$$

where in these last two experiments the presence of the $\sigma / f_{0}(500)$ improves the quality of the fit. The non-vanishing of $g_{f_{0} \pi^{+} \pi^{-}}$indicates that the $f_{0}(980)$ cannot be a pure $\bar{s} s$ state.

3. Production of some other $(I=0)$ isoscalar scalar mesons

To these data, we add the production of the new structures which can have gluon component [25] :

$$
\begin{equation*}
f_{0}(1765), \quad f_{)}(2100), \quad f_{0}(2020), \quad f_{0}(2200) \tag{14}
\end{equation*}
$$

observed from $J / \psi \rightarrow \gamma \pi^{+} \pi^{-}, K^{+} k^{-}, 4 \pi$ radiative decays, $\pi p, \bar{p} p, p p \rightarrow \eta \eta^{\prime}, \eta \eta, 4 \pi[25]$ and recently from $\left.\eta_{c} \rightarrow\left[f_{0}(1.7) \rightarrow K^{+} K^{-}\right], f_{0}(2.1) \rightarrow \pi^{+} \pi^{-}\right] \eta^{\prime}$ by BABAR [36].

4. Impacts of the previous phenomenological analysis and data

One can notice that the $I=0$ scalar channel is overpopulated and goes beyond the usual nonet expectations. From the previous phenomenological analysis, one may expect that:

- $\sigma / f_{0}(500)$ meson
\diamond It cannot be a pure four-quark $(\bar{u} u+\bar{d} d)$ or / and $\pi \pi$ molecule state as it has non-vanishing coupling to $\bar{K} K$.
\diamond However, from the large value of its $\gamma \gamma$ rescattering width (see e.g. [17]), one may be tempted to interpret it as $\pi \pi$ or/and $\bar{K} K$ molecule state but the $\bar{K} K$ molecule mass is expected to be around 1 GeV due to $S U(3)$ breakings.
\diamond From the size of its direct on-shell width of about 1 keV to $\gamma \gamma[17]$, it caanot be a pure $(\bar{u} u+\bar{d} d)$ state which has a $\gamma \gamma$-width expected to be about 4 keV from QCD spectral sum rules [11] and quark model [37] but larger than for a pure gluonium state of about (0.2-0.6) $\mathrm{KeV}[2,17]$. It cannot also be a four-quark state as the model predicts much smaller (0.00..keV) direct $\gamma \gamma$ widths [10, 38].
- $f_{0}(980)$ meson
\diamond A large $\bar{s} s$ component would lead to a direct $\gamma \gamma$ width of 0.4 keV which are comparable with the data but its non-zero coupling to $\pi \pi$ rules out this possibility. An estimate of a mass of the $\bar{s} s$ state from QSSR leads to a value around $1.4 \mathrm{GeV}[11]$ which is (relatively) too high for the $f_{-} 0(980)$.
- $f_{0}(1.37)$ meson

The large decay width of this meson to $2(\pi \pi)$ in a S-wave may signal a large gluon component in its wave functions [1, 2].

- $f_{0}(1.37)$ and $f_{0}(1.5)$ mesons

Its decay into $\eta^{\prime} \eta$ and $\eta \eta$ and the presence of a $2(\pi \pi)_{S}$ indicate a large glun component in its wave function.

5. Theoretical expectations

- In the $I=0$ isoscalar scalar channel, we have $[1,2]$ explored the possibility that the $\sigma / f_{0}(500)$ meson can be the lowest scalar gluonium state σ_{B} (hereafter, the subindex B refers to unmixed glyonium state) having a mass around 1 GeV . From our approach the σ is composed mainly with gluons and it couples strongly and universally to $\pi \pi$ and $\bar{K} K$ explaining its large width while its "direct" decay to $\gamma \gamma$ is expected to be about (0.2-0.6) keV .
- A maximal mixing of this gluonium with a $(\bar{u} u+\bar{d} d)$ state may explain the feature of the observed $\sigma / f_{0}(500)$ and $f_{0}(980)$: narrow width in $\pi \pi$ but strong coupling to $\bar{K} K[4]^{2}$.
- We have also argued [1, 2] that the contribution of the σ_{B} to the subtracted (SSR) and unsubtracted (USR) sum rules is necessary for resolving the apparent inconsistency between these two sum rules where, in addition, a higher mass gluonium $G(1.5)$ is needed which we have identified [1] with the $G(1.6)$ found from the GAMS data [39]. The contribution of σ_{B} to the SSR compensates the large contribution of the two-point subtraction constant to the SSR without appealing to more speculative direct instanton non-perturbative contributions.
- Another striking feature of the σ_{B} is its analogy with its chiral partner the η^{\prime} which plays a crucial role for the $U(1)_{A}$ anomaly by its contribution to the topological charge (subtraction constant of the $U(1)_{A}$ twopoint correlator) $[6,42-45]$. The σ_{B}, being the dilaton particle of the conformal anomaly $[1,46,47,67,68]$, is expected to be associated to the trace of the energy-momentum tensor θ_{μ}^{μ} :

$$
\begin{equation*}
\theta_{\mu}^{\mu}=\frac{1}{4} \beta\left(\alpha_{s}\right) G_{a}^{\mu \nu} G_{\mu \nu}^{a}+\left(1+\gamma_{m}\left(\alpha_{s}\right)\right) \sum_{u, d, s} m_{i} \bar{\psi}_{i} \psi_{i} \tag{15}
\end{equation*}
$$

with : $\gamma_{m}=2 a_{s}+\cdots$ is the quark mass anomalous dimension and $a_{s} \equiv \alpha_{s} / \pi . \beta\left(\alpha_{s}\right)$ is the β-function normaized as :

$$
\begin{equation*}
\beta\left(\alpha_{s}\right)=\beta_{1} a_{s}+\beta_{2} a_{s}^{2}+\beta_{3} a_{s}^{3}+\cdots \tag{16}
\end{equation*}
$$

with:

$$
\begin{equation*}
\beta_{1}=-\frac{11}{2}+\frac{n_{f}}{3}, \quad \beta_{2}=-\frac{51}{4}+\frac{19}{12} n_{f}, \quad \beta_{3}=\frac{1}{64}\left(-2857+\frac{5033}{9} n_{f}-\frac{325}{27} n_{f}^{2}\right) \tag{17}
\end{equation*}
$$

for n_{f} number of quark flavours. For $n_{f}=3$ used in this paper, one has :

$$
\begin{equation*}
\beta_{1}=-9 / 2, \quad \beta_{2}=-8, \quad \beta_{3}=-20.1198 \tag{18}
\end{equation*}
$$

[^1]
6. Prospects

In this paper, we shall :

- Use selected low and high degree moments of QCD spectral sum rules (QSSR) within the standard SVZ expansion without instantons and parametrize the spectral function beyond the minimal duality ansatz "one resonance $\oplus Q C D$ continuum" in order to extract the masses and decay constants of the scalar gluonia.
- Extract the value of the conformal charge $\psi_{G}(0)$ (value of the two-point correlator at zero momentum) in order to test the Low Energy Theorem (LET) [68] estimate.
- Discuss some phenomenological implications of our results for an attempt to understand the complex spectrum of the $I=0$ observed scalar mesons.

7. The QCD anatomy of the two-point correlator

We shall work with the gluonium two-point correlator :

$$
\begin{equation*}
\psi_{G}\left(q^{2}\right)=16 i \int d^{4} x e^{i q x}\langle 0|\left(\theta_{\mu}^{\mu}\right)_{G}(x)\left(\theta_{\mu}^{\mu}\right)_{G}^{\dagger}(0)|0\rangle \tag{19}
\end{equation*}
$$

built from the gluon component of the trace of the energy-momentum tensor in Eq. 15.

- The standard SVZ-expansion

Using the Operator Product Expansion (OPE) à la SVZ, its QCD expression can be written as :

$$
\begin{equation*}
\psi_{G}\left(q^{2}\right)=\beta^{2}\left(\alpha_{s}\right)\left(\frac{2}{\pi^{2}}\right) \sum_{0,1,2, \ldots} C_{2 n}\left\langle\mathcal{O}_{2 n}\right\rangle . \tag{20}
\end{equation*}
$$

where $C_{2 n}$ is the Wilson coefficients calculable perturbatively while $\left\langle\mathcal{O}_{2 n}\right\rangle$ is a short-hand notation for the non-perturbative vacuum condensates $\langle 0| \mathcal{O}_{2 n}|0\rangle$ of dimension $2 n$.
\diamond The unit perturbative operator ($n=0$)
Its contribution reads :

$$
\begin{align*}
C_{0} & \equiv-Q^{4} L_{\mu}\left[C_{00}+C_{01} L_{\mu}+C_{02} L_{\mu}^{2}\right] \text { with : } \\
C_{00} & =1+\frac{659}{36} a_{s}+247.480 a_{s}^{2}, \quad C_{01}=-a_{s}\left(\frac{9}{4}+65.781 a_{s}\right), \quad C_{02}=5.0625 a_{s}^{2}, \tag{21}
\end{align*}
$$

where the NLO (resp. N2LO) contributions have been obtained in [52] (resp. [53]) and has been adapted for a sum rule use in [54]. $L_{\mu} \equiv \log \left(Q^{2} / \mu^{2}\right)$ where μ is the subtraction point. We shall use for 3 flavours :

$$
\begin{equation*}
\Lambda=340(28) \mathrm{MeV} \tag{22}
\end{equation*}
$$

deduced from $\alpha_{s}\left(M_{Z}\right)=0.1182(19)$ from $M_{\chi_{c o, b 0}}-M_{\eta_{c}, \eta_{b}}$ mass-splittings [61, 62], τ-decays [55, 56] and the world average [25,57]. We shall use the running QCD coupling to order α_{s}^{2} :

$$
\begin{equation*}
a_{s}(\mu)=a_{s}^{(0)}\left\{1-a_{s}^{(0)} \frac{\beta_{2}}{\beta_{1}} L L_{\mu}+\left(a_{s}^{(0)}\right)^{2}\left[\left(\frac{\beta_{2}}{\beta_{1}}\right)^{2}\left(L L_{\mu}^{2}-L L_{\mu}-1\right)+\frac{\beta_{3}}{\beta_{1}}\right]\right\}, \tag{23}
\end{equation*}
$$

where:

$$
\begin{equation*}
a_{s}^{(0)} \equiv \frac{1}{-\beta_{1} \log (\mu / \Lambda)} \quad \text { and } \quad L L_{\mu} \equiv \log [2 \log (\mu / \Lambda)] \tag{24}
\end{equation*}
$$

\diamond The dimension-four gluon condensate ($n=2$)
Its contribution reads :

$$
\begin{equation*}
C_{4}\left\langle\mathcal{O}_{4}\right\rangle \equiv\left(C_{40}+L_{\mu} C_{41}\right)\left\langle\alpha_{s} G^{2}\right\rangle \quad: \quad C_{40}=2 \pi a_{s}\left(1+\frac{175}{36} a_{s}\right), \quad C_{41}=-\frac{9}{2} \pi a_{s}^{2} \tag{25}
\end{equation*}
$$

We shall use the value :

$$
\begin{equation*}
\left\langle\alpha_{s} G^{2}\right\rangle=(6.35 \pm 0.35) \times 10^{-2} \mathrm{GeV}^{4} \tag{26}
\end{equation*}
$$

determined from light and heavy quark systems [60-62].
\diamond The dimension-six $(n=3)$ gluon condensate
Its contribution reads (see [63] for the α_{s} correction for $n_{f}=0$ and where a $1 / \pi$ misprint is corrected):

$$
\begin{equation*}
C_{6}\left\langle\mathcal{O}_{6}\right\rangle=\left\langle C_{60}+L_{\mu} C_{61}\right\rangle\left\langle g^{3} f_{a b c} G^{a} G^{b} G^{c}\right\rangle / Q^{2} \quad: \quad C_{60}=a_{s}, \quad C_{61}=-\frac{29}{4} a_{s}^{2} \tag{27}
\end{equation*}
$$

with [64-66] :

$$
\begin{equation*}
\left\langle g^{3} f_{a b c} G^{a} G^{b} G^{c}\right\rangle=(8.2 \pm 1.0) \mathrm{GeV}^{2}\left\langle\alpha_{s} G^{2}\right\rangle \tag{28}
\end{equation*}
$$

which notably differs from the instanton liquid model estimate $\left\langle g^{3} f_{a b c} G^{a} G^{b} G^{c}\right\rangle \approx(1.5 \pm 0.5) \mathrm{GeV}^{2}\left\langle\alpha_{s} G^{2}\right\rangle[14$, 67-69] used in [2].
\diamond The dimension-eight $(n=4)$ gluon condensate
Its contribution reads :

$$
\begin{equation*}
C_{8}\left\langle\mathcal{O}_{8}\right\rangle=C_{80}\left\langle\alpha_{s}^{2} G^{4}\right\rangle / Q^{4} \quad: \quad C_{80}=4 \pi \alpha_{s} \tag{29}
\end{equation*}
$$

with :

$$
\begin{equation*}
\left\langle\alpha_{s}^{2} G^{4}\right\rangle \equiv\left[14\left\langle\left(\alpha_{s} f_{a b c} G_{\mu \rho}^{a} G_{\nu \rho}^{b}\right)^{2}\right\rangle-\left\langle\left(\alpha_{s} f_{a b c} G_{\mu \nu}^{a} G_{\rho \lambda}^{b}\right)^{2}\right\rangle\right] \simeq(0.55 \pm 0.01)\left\langle\alpha_{s} G^{2}\right\rangle^{2} \tag{30}
\end{equation*}
$$

from a modified factorization with $1 / N_{c}^{2}$ corrections (13/24) [70] and factorization (9/16) [67]. (0.55 ± 0.01) measures the deviation from factorization which has been found to be largely violated for the four-quark condensates [41, 56, 71].

- Beyond the standard SVZ-expansion
\diamond The tachyonic gluon mass $(n=1)$
To these standard contributions in the OPE, we can consider the one from a dimension-two tachyonic gluon mass contribution introduced by ${ }^{3}$ which phenomenologically parametrizes the large order terms of the

[^2]perturbative QCD series [74]. Its existence is supported by some AdS approaches [75-77]. This effect has been calculated explicitly in [78]:
\[

$$
\begin{equation*}
C_{2}\left\langle O_{2}\right\rangle=C_{21} L_{\mu} \lambda^{2} Q^{2}: \quad C_{21}=\frac{3}{a_{s}} \tag{31}
\end{equation*}
$$

\]

where λ^{2} is the tachyonic gluon mass determined from $e^{+} e^{-} \rightarrow$ hadrons data and the pion channel [78-80]:

$$
\begin{equation*}
a_{s} \lambda^{2} \simeq-(6.0 \pm 0.5) \times 10^{-2} \mathrm{GeV}^{2} \tag{32}
\end{equation*}
$$

\diamond The direct instanton ($n \geq 5 / 2$)
In an instanton liquid model [68,69], the direct instanton contribution is assumed to be dominated by the single instanton-anti-instanton contribution via a non-perturbative contribution to the perturbative Wilson coefficient [81, 82]:

$$
\begin{equation*}
\left.\psi\left(Q^{2}\right)\right|_{\bar{I}-I}=32 \beta^{2} Q^{4} \int \rho^{4}\left[K_{2}\left(\rho \sqrt{Q^{2}}\right)\right]^{2} d n(\rho) \tag{33}
\end{equation*}
$$

where $K_{2}(x)$ is the modified Bessel function of the second kind. At this stage this classical field effect is beyond the SVZ expansion where the later assumes that one can separate without any ambiguity the perturbative Wilson coefficients from the non-perturbative condensate contributions.

Besides the fact that its contributes in the OPE as $1 / Q^{5}$, i.e it acts like other high-dimension condensates not taken into account in the OPE, the above instanton effect depends crucially on the (model-dependent) overall density $\bar{n}=\int_{0}^{\infty} d \rho n(\rho)$ and on its average size $\bar{\rho}=(1 / \bar{n}) \int_{0}^{\infty} d \rho \rho n(\rho)$ which (unfortunately) are not quantitatively under a good control ($\bar{\rho}$ ranges from 5 [68] to $1.94,[65,66]$ and $1.65 \mathrm{GeV}^{-1}[69]$, while $\left.\bar{n} \approx(0.5 \sim 1.2) \mathrm{fm}^{-4}\right)$. They contribute with a high power in ρ to the spectral function $\operatorname{Im} \psi(t)$, which can be found explicitly in [81, 82], and behave as :

$$
\begin{align*}
\left.\operatorname{Im} \psi_{G}(t)\right|_{\bar{I}-I} & \stackrel{t \rightarrow \infty}{\sim} n(\rho \sqrt{t})^{-5} \\
& \stackrel{t \rightarrow 0}{\sim} n(\rho \sqrt{t})^{4} . \tag{34}
\end{align*}
$$

As such effects are quite inaccurate and model-dependent, we shall not consider them explicitly in the analysis. Instead, an eventual deviation of our results within the standard SVZ expansion from some experimental data or/and or some other alternative estimates (Low-Energy Theorems (LET), Lattice calculations,...) may signal the need of such (beyond the standard OPE) effects in the analysis. One should mention that the approach within the standard SVZ OPE and without a direct instanton effect used in the :

- $U(1)_{A}$ channel has predicted successfully the value of the topological charge, its slope and the η^{\prime}-mass and decay constant $[6,13]$.
- Pseudoscalar pion and kaon channels have reproduced successfully the value of the light quark masses where we have also explicitly shown [83] that the direct instanton effect induces a relatively small correction contrary to some other strong claims [84] in the literature.

8. The Inverse Laplace transform sum rules

From its QCD asymptotic behaviour $\sim\left(-q^{2}\right)^{2} \log \left(-q^{2} / \mu^{2}\right)$ one can write a twice subtracted dispersion relation:

$$
\begin{equation*}
\psi_{G}\left(q^{2}\right)=\psi_{G}(0)+q^{2} \psi_{G}^{\prime}(0)+\frac{q^{4}}{\pi} \int_{0}^{\infty} \frac{d t}{t^{2}} \frac{\operatorname{Im} \psi_{G}(t)}{\left(t-q^{2}-i \epsilon\right)} \tag{35}
\end{equation*}
$$

- Following standard QSSR techniques [14, 16], on can derive from it different form of the sum rules. In this paper, we shall work with the Exponential or Borel [14, 85, 86] or Inverse Laplace transform [87] finite energy sum rule(LSR) ${ }^{4}$:

$$
\begin{equation*}
\mathcal{L}_{n}^{c}(\tau)=\int_{0}^{t_{c}} d t t^{n} e^{-t \tau} \frac{1}{\pi} \operatorname{Im} \psi_{G}(t): n=-1,0,1,2,3 \tag{36}
\end{equation*}
$$

and the corresponding ratios of sum rules :

$$
\begin{equation*}
\mathcal{R}_{n+l n}^{c}(\tau) \equiv \frac{\mathcal{L}_{n+l}^{c}(\tau)}{\mathcal{L}_{n}^{c}(\tau)}, \tag{37}
\end{equation*}
$$

where τ is the Laplace sum rule variable. In the duality ansatz :

$$
\begin{equation*}
\frac{1}{\pi} \operatorname{Im} \psi_{G}(t)=2 \sum_{G} f_{G}^{2} M_{G}^{4} \delta\left(t-M_{G}^{2}\right)+\theta\left(t-t_{c}\right) " \mathrm{QCD} \text { continuum" } \tag{38}
\end{equation*}
$$

where the f_{G} are the lowest resonances couplings normalized as $f_{\pi}=93 \mathrm{MeV}$ and M_{G} their masses while the "QCD continuum" comes from the discontinuity $\left.\operatorname{Im} \psi_{G}(t)\right|_{Q C D}$ of the QCD diagrams from the continuum threshold t_{c}. In the "one narrow resonance $\oplus Q C D$ continuum" parametrization of the spectral function:

$$
\begin{equation*}
\mathcal{R}_{n+l n}^{c}(\tau) \simeq M_{G}^{2} \tag{39}
\end{equation*}
$$

- To get \mathcal{L}_{-1}, we find convenient to take the Inverse Laplace transform of the first superconvergent 2nd derivative of the correlator. It reads explicitly:

$$
\begin{equation*}
\mathcal{L}_{-1}^{c}(\tau)=\beta^{2}\left(\alpha_{s}\right)\left(\frac{2}{\pi^{2}}\right) \tau^{-2} \sum_{n=0,2, \cdots} D_{n}^{-1}+\psi_{G}(0) \tag{40}
\end{equation*}
$$

with:

$$
\begin{align*}
D_{0}^{-1} & =\left[C_{00}+2 C_{01}\left(1-\gamma_{E}-L_{\tau}\right)+3 C_{02}\left[1-\pi^{2} / 6+\left(-1+\gamma_{E}+L_{\tau}\right)^{2}\right]\right]\left(1-\rho_{1}\right) \\
D_{2}^{-1} & =C_{21} \lambda^{2} \tau\left(1-\rho_{0}\right) \\
D_{4}^{-1} & =-\left[C_{40}-\frac{C_{41}}{36}\left[55+6\left(\gamma_{E}+L_{\tau}\right)\right]\right]\left\langle\alpha_{s} G^{2}\right\rangle \tau^{2} \\
D_{6}^{-1} & =-\left[C_{60}-C_{61}\left(-1+\gamma_{E}+L_{\tau}\right)\right]\left\langle g^{3} f_{a b c} G^{a} G^{b} G^{c}\right\rangle \tau^{3} \\
D_{8}^{-1} & =\frac{C_{80}}{2}(1.1 \pm 0.5)\left\langle\alpha_{s} G^{2}\right\rangle^{2} \tau^{4} \tag{41}
\end{align*}
$$

with :

$$
\begin{equation*}
L_{\tau} \equiv-\log \left(\tau \mu^{2}\right), \quad \rho_{n} \equiv e^{-t_{c} \tau}\left(1+t_{c} \tau+\cdots \frac{\left(t_{c} \tau\right)^{n}}{n!}\right) \tag{42}
\end{equation*}
$$

[^3]is the QCD continuum contribution from the discontinuity of the QCD diagrams to the sum rule. We omit some eventual continuum contributions from the non-perturbative condensates which are numerically tiny.
$\psi_{G}(0)$ is the value of the two-point correlator at zero momentum and can be fixed by a LET as [67,68]:
\[

$$
\begin{equation*}
\psi_{G}(0) \simeq-\frac{16}{\pi} \beta_{1}\left\langle\alpha_{s} G^{2}\right\rangle=(1.46 \pm 0.08) \mathrm{GeV}^{4} \tag{43}
\end{equation*}
$$

\]

which we shall test later on.

- To get \mathcal{L}_{0}, we take the Inverse Laplace transform of the 1 st superconvergent 3 rd derivative of the two-point correlator. In this way, we obtain :

$$
\begin{equation*}
\mathcal{L}_{0}^{c}(\tau)=\beta^{2}\left(\alpha_{s}\right)\left(\frac{2}{\pi^{2}}\right) \tau^{-2} \sum_{n=0,2, \cdots} D_{n}^{0} \tag{44}
\end{equation*}
$$

with:

$$
\begin{align*}
D_{0}^{0} & =\left[2 C_{00}-2 C_{01}\left(3-2 \gamma_{E}-2 L_{\tau}\right)-6 C_{02}\left[1-3 \gamma_{E}+\gamma^{2}-\pi^{2} / 6+\left(-3+2 \gamma_{E}\right) L_{\tau}+L_{\tau}^{2}\right]\right]\left(1-\rho_{2}\right) \\
D_{2}^{0} & =-\frac{C_{21}}{2} \lambda^{2} \tau\left(1-\rho_{1}\right) \\
D_{4}^{0} & =-C_{41}\left\langle\alpha_{s} G^{2}\right\rangle \tau^{2} \\
D_{6}^{0} & =\left[C_{60}-C_{61}\left(\gamma_{E}-L_{\tau}\right)\right]\left\langle g^{3} f_{a b c} G^{a} G^{b} G^{c}\right\rangle \tau^{3} \\
D_{8}^{0} & =C_{80}(0.55 \pm 0.01)\left\langle\alpha_{s} G^{2}\right\rangle^{2} \tau^{4} \tag{45}
\end{align*}
$$

- The other higher degrees sum rules $\mathcal{L}_{n}^{c}(\tau)$ for $n \geq 1$ can be deduced from the $n^{\text {th }} \tau$-derivative of $\mathcal{L}_{0}^{c}(\tau)$:

$$
\begin{equation*}
\mathcal{L}_{n}^{c}(\tau)=(-1)^{n} \frac{d^{n}}{d \tau^{n}} \mathcal{L}_{0}^{c}(\tau) \tag{46}
\end{equation*}
$$

- These superconvergent sum rules obey the homogeneous renormalization group equation (RGE):

$$
\begin{equation*}
\left\{-\frac{\partial}{\partial t}+\beta\left(\alpha_{s}\right) \alpha_{s} \frac{\partial}{\partial \alpha_{s}}\right\} \mathcal{L}_{n}^{c}\left(e^{t} \tau, \alpha_{s}\right)=0 \tag{47}
\end{equation*}
$$

with $t \equiv(1 / 2) L_{\tau}$ with the renormalization group improved (RGI) solution :

$$
\begin{equation*}
\mathcal{L}_{n}^{c}\left(e^{t} \tau, \alpha_{s}\right)=\mathcal{L}_{n}^{c}\left(t=0, \bar{\alpha}_{s}(\tau)\right) \tag{48}
\end{equation*}
$$

where $\bar{\alpha}_{s}$ is the QCD running coupling.

- In the following analysis, we shall work with the family of sum rules having degrees less or equal to 4. Then, we shall select the sum rules which present stability (minimum or inflexion point) in the sum rule variable τ and in the continuum threshold t_{c} such that we can extract optimal information from the analysis.

9. τ and t_{c} behaviours of the QCD side of the $\operatorname{LSR} \mathcal{L}_{n}^{c}$

Before doing the phenomenological analysis of the LSR, we study the τ and t_{c} behaviour of their QCD expressions. For instance, we show the subtracted (SSR) \mathcal{L}_{-1}^{c} and unsubtracted (USR) \mathcal{L}_{0}^{c} sum rules in Figs 1 and 2, where we notice that the subtraction constant shifts the USR minimum (optimization point)
at lower values of τ. This feature has leaded to the inconsistencies of the gluonium mass from these sum rules within a "one resonance $\oplus Q C D$ continuum" parametrization of the spectral function as noted in $[1,2]$ which can be cured by working instead with "two resonances $\oplus Q C D$ continuum"

- The other USR moments \mathcal{L}_{2}^{c} and \mathcal{L}_{4}^{c} stabilize for τ of about $1.5 \mathrm{GeV}^{-2}$ while \mathcal{L}_{1}^{c} and \mathcal{L}_{3}^{c} do not present τ-stability. To understand these τ-behaviours :
\diamond We write explictly the OPE expression of \mathcal{L}_{0} and \mathcal{L}_{1} to lowest order but includes the α_{s} correction of the $D=4$ contribution as this contribution vanishes to LO. Normalized to $\left(2 / \pi^{2}\right) \beta^{2}$, they read:

$$
\begin{align*}
\mathcal{L}_{0} & =\tau^{-3}\left[1+\frac{9}{2} \pi a_{s}^{2}\left\langle\alpha_{s} G^{2}\right\rangle \tau^{2}+a_{s}\left\langle g^{3} f_{a b c} G^{a} G^{b} G^{c}\right\rangle \tau^{3}+4 \pi \alpha_{s}\left\langle\alpha_{s}^{2} G^{4}\right\rangle \tau^{4}\right] \\
\mathcal{L}_{1} & =3 \tau^{-4}\left[1-\frac{9}{6} \pi a_{s}^{2}\left\langle\alpha_{s} G^{2}\right\rangle \tau^{2}-4 \pi \alpha_{s}\left\langle\alpha_{s}^{2} G^{4}\right\rangle \tau^{4}\right] \tag{49}
\end{align*}
$$

where the changes of sign of the condensate contributions destabilize \mathcal{L}_{1}.
\diamond The inclusion of the huge PT radiative corrections shows that they also participate to the τ-behaviour of the QCD expression due to the non-trivial reorganization of these PT terms in each Laplace transformed moment.

- From this explicit analysis, one expects that, a priori:
\diamond One may extract reliably the decay constant of the gluonium from \mathcal{L}_{1}^{c}. However, we shall see later on that the extraction of the decay constant from \mathcal{L}_{3}^{c} can present τ-stability due to the exponential weight $e^{M_{G}^{2} \tau}$ brought by the resonance contributions which compensates the decrease of the QCD expression $\left[\mathcal{L}_{n}^{c} \sim \tau^{-(n+3)}\right]$ for increasing τ. In the specific example of \mathcal{L}_{2}^{c}, we shall that the exponential factor shifts the τ-minimum to lower τ-values (Fig. 10) at which the PT corrections are much smaller than in Fig. 4, while for \mathcal{L}_{3}^{c}, there appears a plateau inflexion point (Fig. 11) which render reliable the extraction of $f_{G_{1}}$.
\diamond The mass of the gluonium can be reliably obtained from the ratios $\mathcal{R}_{n l}^{c}$ of the USR $\mathcal{L}_{n, l}^{c}$ which optimize at about the same value of τ and where the PT corrections tend to compensate.

Figure 1: \mathcal{L}_{-1}^{c} as a function of τ at N 2 LO for different values of t_{c}.

Figure 2: \mathcal{L}_{0}^{c} as a function of τ at N 2 LO for different values of t_{c}.

Figure 3: \mathcal{L}_{1}^{c} as a function of τ at N2LO for different values of t_{c}.

Figure 4: \mathcal{L}_{2}^{c} as a function of τ at N2LO for different values of t_{c}.

Figure 5: \mathcal{L}_{3}^{c} as a function of τ at N2LO for different values of t_{c}.

Figure 6: \mathcal{L}_{4}^{c} as a function of τ at N2LO for different values of t_{c}.

Figure 7: $M_{\sigma_{B}}$ from \mathcal{R}_{20}^{c} as a function of τ at N2LO for different values of t_{c} within a one resonance parametrization.

10. The masses of the two lightest gluonia σ_{B} and G_{1}

In order to get the lowest ground state gluonia masses, we shall work with different forms of USR. We shall not use for this case the observables involving \mathcal{L}_{-1} in order to avoid the dependence of the result on the input value of $\psi_{G}(0)$ which we shall test later on. Among the possible ratios of sum rules, we have selected \mathcal{R}_{20}^{c} and \mathcal{R}_{42}^{c} which appear to give the most stable results versus the variation of different parameters.

- Mass of the lightest ground state (hereafter named σ_{B}) from \mathcal{R}_{20}^{c}

In so doing, we work with the ratio of sum rules \mathcal{R}_{20}^{c}. We show its τ-behaviour for different values of t_{c} in Fig. 8.
\diamond The case : one resonance $\oplus Q C D$ continuum
We show in Fig. 7 the result with one resonance \oplus QCD continuum parametrization of the spectral function.

Figure 8: $M_{\sigma_{B}}$ from \mathcal{R}_{20}^{c} as a function of τ at N 2 LO for different values of t_{c} including the effect of the 2nd resonance with $\left(M_{G_{1}}, f_{G_{1}}\right)=(1.50,0.39) \mathrm{GeV}[2]$.

The τ-stability starts from $t_{c}=2.5 \mathrm{GeV}^{2}$ while t_{c}-stability is reached around $5.5 \mathrm{GeV}^{2}$. We deduce in this range:

$$
\begin{equation*}
M_{\sigma_{B}}=1088(2)_{\tau}(54)_{t_{c}}(57)_{\Lambda}(1)_{G^{2}}(2)_{G^{3}}=1088(79) \mathrm{MeV} \tag{50}
\end{equation*}
$$

where the errors are mainly due to Λ and t_{c}.
\diamond The case : two resonances $\oplus Q C D$ continuum
We show in Fig. 8 the effect of a 2nd resonance with the parameters in [2] :

$$
\begin{equation*}
M_{G_{1}}=1.5 \mathrm{GeV} \quad \text { and } \quad f_{G_{1}}=0.39 \mathrm{GeV} \tag{51}
\end{equation*}
$$

It affects the σ_{B} mass result by a negligible amount of about 22 MeV . We deduce the conservative result from $t_{c}=3$ to $5.5 \mathrm{GeV}^{2}$ and use an input error of $0.1 \mathrm{GeV}^{-2}$ for the localization of τ :

$$
\begin{equation*}
M_{\sigma_{B}}=1085(5)_{\tau}(59)_{t_{c}}(89)_{\Lambda}(1)_{G^{2}}(2)_{G^{3}}(1)_{\lambda^{2}}(39)_{M_{G}}(53)_{f_{G}}=1085(126) \mathrm{MeV} \tag{52}
\end{equation*}
$$

where the errors due to the non-perturbative condensates are regligible.

- Mass of the medium ground state gluonium G_{1} from \mathcal{R}_{42}^{c}

Among the different combinations of sum rules, we find that \mathcal{R}_{42}^{c} can give a reliable prediction of the medium ground state G_{1} because \mathcal{L}_{2}^{c} and \mathcal{L}_{4}^{c} stabilize at about the same value of $\tau \simeq(1.2 \sim 1.5) \mathrm{GeV}^{-2}$ (see Figs 4 and 6). We show in Fig. 9 the τ behaviour of \mathcal{R}_{42} for different values of t_{c}.

Figure 9: $M_{G_{1}}$ as a function of τ at N2LO for different values of t_{c} from a two resonances parametrization.
\diamond The case : two resonances $\oplus Q C D$ continuum
We obtain for $t_{c}=3$ to $6 \mathrm{GeV}^{2}$:

$$
\begin{equation*}
M_{G_{1}}=1524(36)_{t_{c}}(7)_{\tau}(115)_{\Lambda}(2)_{G^{2}}(2)_{G^{3}}(0)_{\lambda^{2}}(6)_{M_{\sigma}}(11)_{f_{\sigma}}=1524(121) \mathrm{MeV} \tag{53}
\end{equation*}
$$

where the error comes mainly from the one of Λ. We have used $f_{\sigma_{B}}=0.47$ as anticipated from the next section.
\diamond The case : one resonance $\oplus Q C D$ continuum
A similar analysis leads to:

$$
\begin{equation*}
M_{G_{1}}=1515(123) \mathrm{MeV} \tag{54}
\end{equation*}
$$

indicating that the σ_{B} effect to the value of the mass is quite small (about 9 MeV).

11. Decay constants $f_{\sigma_{B}}$ and $f_{G_{1}}$

To extract these decay constants, we work simultaneously with $\mathcal{L}_{2}^{c}, \mathcal{L}_{3}^{c}$ and \mathcal{L}_{-1}^{c} and use an iteration procedure. The two former are expected to be more sensitive to $f_{G_{1}}$ while the third to $f_{\sigma_{B}}$.
\diamond We shall take $M_{\sigma_{B}}$ from Eq. 52 and $M_{G_{1}}=1.548 \mathrm{GeV}$ anticipated from Eq. 53 . We start the iteration by using $f_{\sigma_{B}}=800 \mathrm{MeV}$ from [1, 2]. Then, we compare the value of $f_{G_{1}}$ from $\mathcal{L}_{2}^{c}, \mathcal{L}_{3}^{c}$. Then, we use the common solution of $f_{G_{1}}$ from the two sum rules into \mathcal{L}_{-1}^{c} to extract $f_{\sigma_{B}}$. We continue the iterations until we reach convergent solutions. The analysis corresponding to the final value of the decay constants are shown in Figs. 10 to 13.

- In Figs. 10 and reffig:fg12, we show the τ and t_{c} behaviours of $f_{G_{1}}$ given the value of $f_{\sigma_{B}}$. - In Fig. 10, we show the results from $\mathcal{L}_{2}^{c}, \mathcal{L}_{3}^{c}$ at the τ minimas or plateau from which we deduce the common solution for $f_{G_{1}}$ for fixed $f_{\sigma_{B}}$ which allows to fix:

$$
\begin{equation*}
t_{c} \simeq(3.3 \pm 0.3) \mathrm{GeV}^{2} \tag{55}
\end{equation*}
$$

- In Fig. 13, we show the τ and t_{c} behaviours of $f_{\sigma_{B}}$ where we take the value $\tau=0.5 \mathrm{GeV}^{-2}$ at the inflexion point which is more pronounced for higher values of t_{c}.

Then, we obtain :

$$
\begin{align*}
f_{G_{1}} & =394(45)_{t_{c}}(2)_{\tau}(22)_{\Lambda}(0)_{G^{2}}(1)_{G^{3}}(23)_{M_{\sigma_{B}}}(9)_{f_{\sigma_{B}}}(94)_{M_{G_{1}}}=394(109) \mathrm{MeV} \text { from } \quad \mathcal{L}_{3}^{c} \\
f_{\sigma_{B}} & =563(36)_{t_{c}}(64)_{\tau}(81)_{\Lambda}(9)_{G^{2}}(11)_{G^{3}}(10)_{M_{\sigma}}(3)_{M_{G_{1}}}(107)_{f_{G_{1}}}=563(154) \mathrm{MeV} \text { from } \mathcal{L}_{-1}^{c} \tag{56}
\end{align*}
$$

One can note that value of $f_{G_{1}}$ agrees perfectly with the one in [2] while $f_{\sigma_{B}}$ is in the range of the one obtained in [1, 2].

Figure 10: $f_{G_{1}}$ from \mathcal{L}_{2}^{c} as a function of τ at N2LO for different values of t_{c} from a two resonances parametrization and for given values of $\left(M_{\sigma_{B}},\left(f_{\sigma_{B}}\right)\right.$.

Figure 11: $f_{G_{1}}$ from \mathcal{L}_{3}^{c} as a function of τ at N2LO for different values of t_{c} from a two resonances parametrization and for given values of $\left(M_{\sigma_{B}}, f_{\sigma_{B}}\right)$.

Figure 12: $f_{G_{1}}$ from \mathcal{L}_{2}^{c} and \mathcal{L}_{3}^{c} from the τ-minimum $\tau \simeq 0.5 \mathrm{GeV}^{-2}$ from previous figures as a function of t_{c} for given values of $\left(M_{\sigma_{B}}, f_{\sigma_{B}}\right)$.

Figure 13: $f_{\sigma_{B}}$ as a function of τ at N2LO for different values of t_{c} from a two resonances parametrization and for given values of $\left(M_{G_{1}}, f_{G_{1}}\right)$.

12. First radial excitation σ_{B}^{\prime} of σ_{B}

\diamond The σ_{B}^{\prime} mass

We attempt to extract its mass from \mathcal{R}_{20}^{c} which we have used to estimate $M_{\sigma_{B}}$. In so doing, we subtract the contributions of the σ_{B} and G_{1} at take the result for very large values of t_{c} i.e by replacing the QCD continuum contribution by the σ_{B}^{\prime}. In this way, we obtain the result in Fig. 14 from \mathcal{R}_{20}^{c}.

Figure 14: $M_{\sigma_{B}^{\prime}}$ as a function of τ at N2LO for different values of t_{c} within a three resonances parametrization. from \mathcal{R}_{20}^{c}

We obtain for $t_{c} \simeq(6 \sim 8) \mathrm{GeV}^{2}$: at the τ-minimum :

$$
\begin{equation*}
M_{\sigma_{B}^{\prime}}=1121(25)_{t_{c}}(10)_{\tau}(110)_{\Lambda}(0)_{G^{2}}(3)_{G^{3}}(1)_{M_{\sigma_{B}}}(12)_{f_{\sigma_{B}}}(7) M_{G_{1}}(23)_{f_{G_{1}}}=1124(117) \mathrm{MeV}, \tag{57}
\end{equation*}
$$

where the contributions of σ_{B} and G_{1} have been included after iteration from $2\left(M_{\sigma_{B}^{\prime}}=1124\right)$ to 3 (value in Eq. 57) resonances values of the σ_{B} and G_{1} masses and decay constants.
\diamond The σ_{B}^{\prime} decay constant

Figure 15: $f_{\sigma_{B}^{\prime}}$ as a function of τ at N 2 LO for different values of t_{c} within a three resonances parametrization. from \mathcal{L}_{-1}^{c}

We extract the decay constant from \mathcal{L}_{-1}^{c} using the same range of t_{c} as for $M_{\sigma_{B}^{\prime}}$ and taking $\tau \simeq 0.4$ GeV^{-2}. We obtain:

$$
\begin{align*}
f_{\sigma_{B}^{\prime}} & =648(75)_{t_{c}}(43)_{\tau}(124)_{\Lambda}(20)_{G^{2}}(7)_{G^{3}}(24)_{M_{\sigma_{B}}}(137)_{f_{\sigma_{B}}}(0) M_{G_{1}}(56)_{f_{G_{1}}}(33)_{M_{\sigma_{B}^{\prime}}} \\
& =648(216) \mathrm{MeV} \text { from } \mathcal{L}_{-1}^{c} . \tag{58}
\end{align*}
$$

Anticipating the estimate in Section 20 by extracting the decay constant from $f_{0}(1.37) \rightarrow 2(\pi \pi)_{S}$ data through a LEV-SR, we shall work instead with the more precise value:

$$
\begin{equation*}
f_{\sigma_{B}^{\prime}}=329(30) \mathrm{MeV} \tag{59}
\end{equation*}
$$

13. Iterative improvments of the previous estimates

In the following, we study the effect of the σ_{B}^{\prime} which is below $M_{G_{1}}$ on the previous estimates

- The mass $M_{\sigma_{B}}$

We include the contribution of the σ_{B}^{\prime} which is below the G_{1} mass. Using \mathcal{R}_{20}^{c} as in previous section, the curves are similar to the ones in Fig. 8. The mass in Eq. 52 becomes :

$$
\begin{equation*}
M_{\sigma_{B}}=1070(126)(1)_{f_{\sigma_{B}^{\prime}}}(1)_{M_{\sigma_{B}^{\prime}}} \mathrm{MeV} \tag{60}
\end{equation*}
$$

which is our final estimate.

- The mass $M_{G_{1}}$

Including the contribution of the σ_{B}^{\prime} into \mathcal{R}_{42}^{c}, the mass in Eq. 53 becomes :

$$
\begin{equation*}
M_{G_{1}}=1548(118)(15)_{f_{\sigma_{B}^{\prime}}}(13)_{M_{\sigma_{B}^{\prime}}}=1548(120) \mathrm{MeV} \tag{61}
\end{equation*}
$$

which is our final estimate.

- The decay constants $f_{\sigma_{B}}$ and $f_{G_{1}}$

We repeat the procedure used previously by extracting simultaneously $f_{\sigma_{B}}$ and $f_{G_{1}}$ from \mathcal{L}_{-1}^{c} and from $\mathcal{L}_{2}^{c}, \mathcal{L}_{3}^{c}$ by including the σ_{B}^{\prime} contribution. The value of t_{c} at which the solutions from $\mathcal{L}_{2}^{c}, \mathcal{L}_{3}^{c}$ meet is sligthly shifted from 3.3 to $3.2 \mathrm{GeV}^{2}$. We obtain the final estimate:

$$
\begin{equation*}
f_{\sigma_{B}}=456(154)(8)_{M_{\sigma_{B}^{\prime}}}(12)_{f_{\sigma_{B}^{\prime}}}=456(157) \mathrm{MeV} \tag{62}
\end{equation*}
$$

and:

$$
\begin{equation*}
f_{G_{1}}=365(109)(17)_{M_{\sigma_{B}^{\prime}}}(1)_{f_{\sigma_{B}^{\prime}}}=365(110) \mathrm{MeV} \tag{63}
\end{equation*}
$$

14. The first radial excitation G_{1}^{\prime} of G_{1}

- The G_{1}^{\prime} mass
\diamond We attempt to estimate the mass of the first radial excitation by replacing the QCD continuum by a 4 th resonance in the sum rule \mathcal{R}_{42}^{c} which we have used to extract $M_{G_{1}}$. The analysis is shown in Fig. 16

Figure 16: $M_{G_{1}^{\prime}}$ as a function of τ at N2LO for from a four resonances parametrization.

We deduce for $t_{c} \simeq(4 \sim 8) \mathrm{GeV}^{2}$ at the τ-minimum:

$$
\begin{equation*}
M_{G_{1}^{\prime}}=1563(23)_{t_{c}}(2)_{\tau}(138)_{\Lambda}(3)_{G^{2}}(3)_{G^{3}}(6)_{f_{\sigma_{B}}}(2)_{M_{\sigma_{B}}}(3)_{f_{G_{1}}}(9)_{M_{G_{1}}}(11)_{f_{\sigma_{B}^{\prime}}}(1)_{M_{\sigma_{B}^{\prime}}}=1563(141) \mathrm{MeV} \tag{64}
\end{equation*}
$$

where the error comes mainly from Λ. We have included the contributions of the $\sigma_{B}, \sigma_{B}^{\prime}$ and G_{1}.

Figure 17: $f_{G_{1}^{\prime}}$ as a function of τ at N 2 LO from a three resonances parametrization.

- The decay constant $f_{G_{1}^{\prime}}$

To extract the decay constant we shall work with the sum rules \mathcal{L}_{2}^{c} or/and \mathcal{L}_{3}^{c} used previously to get $f_{G_{1}}$ where \mathcal{L}_{2}^{c} presents a τ-minimum (Fig. 17) while \mathcal{L}_{3}^{c} an inflexion point. From \mathcal{L}_{2}^{c}, one deduces:

$$
\begin{align*}
f_{G_{1}^{\prime}} & =1000(65)_{t_{c}}(11)_{\tau}(150)_{\Lambda}(1)_{G^{2}}(2)_{G^{3}}(15)_{f_{\sigma_{B}}}(58)_{M_{\sigma_{B}}}(53)_{f_{G_{1}}}(63)_{M_{G_{1}}}(1)_{f_{\sigma_{B}^{\prime}}}(8)_{M_{\sigma_{B}^{\prime}}}(125)_{M_{G_{1}^{\prime}}} \\
& =1000(230) \mathrm{MeV} . \tag{65}
\end{align*}
$$

15. The second radial excitation G_{2}

- The mass $M_{G_{2}}$

In so doing, we work with some judicious sum rules which optimize at smaller values of τ and are more sensitive to the high-mass meson contributions. This criterion is satisfied by \mathcal{R}_{21}^{c} and \mathcal{R}_{31}^{c} which one can see in Figs 18 and 19 where the contributions of the $\sigma_{B}, \sigma^{\prime}$ and G_{1}, G_{1}^{\prime} have been substracted. \mathcal{R}_{21}^{c} has a $\left(\tau, t_{c}\right)$ minimas at $(0.18,12)$ in units of $\left(\mathrm{GeV}^{-2}, \mathrm{GeV}^{2}\right)$ while \mathcal{R}_{31}^{c} has the minimas at $(0.24,10)$.

Figure 18: $M_{G_{2}}$ as a function of τ at N2LO for a four resonances parametrization. from \mathcal{R}_{21}^{c}.

Figure 19: $M_{G_{2}}$ as a function of τ at N2LO for a four resonances parametrization. from \mathcal{R}_{31}^{c}

We obtain :

$$
\begin{align*}
M_{G_{2}} & =3079(15)_{t_{c}}(10)_{\tau}(63)_{\Lambda}(1)_{G^{2}}(2)_{G^{3}}(10)_{M_{\sigma_{B}}}(7)_{f_{\sigma_{B}}}(20)_{M_{G_{1}}}(36)_{f_{G_{1}}}(6)_{M_{\sigma^{\prime}}}(1)_{f_{\sigma^{\prime}}}(193)_{M_{G_{1}^{\prime}}}(207)_{f_{G_{1}^{\prime}}} \\
& =3079(294) \mathrm{MeV} \quad \text { from } \mathcal{R}_{21}^{c} . \tag{66}
\end{align*}
$$

and:

$$
\begin{align*}
M_{G_{2}} & =2879(9)_{t_{c}}(3)_{\tau}(64)_{\Lambda}(1)_{G^{2}}(2)_{G^{3}}(10)_{M_{\sigma_{B}}}(8)_{f_{\sigma_{B}}}(25)_{M_{G_{1}}}(40)_{f_{G_{1}}}(6)_{M_{\sigma^{\prime}}}(0)_{f_{\sigma^{\prime}}}(226)_{M_{G_{1}^{\prime}}}(233)_{f_{G_{1}^{\prime}}} \\
& =2879(334) \mathrm{MeV} \text { from } \mathcal{R}_{31}^{c}, \tag{67}
\end{align*}
$$

from which we deduce the mean value:

$$
\begin{equation*}
M_{G_{2}}=2992(221) \mathrm{MeV} \tag{68}
\end{equation*}
$$

This second radial excitation is far above the ground states and first radial ecitations and may mix with the trigluonium scalar ground state $[2,12]$:

$$
\begin{equation*}
M_{3 g} \simeq 3.1 \mathrm{GeV} \tag{69}
\end{equation*}
$$

\diamond The decay constant $f_{G_{2}}$

Figure 20: $f_{G_{2}}$ as a function of τ at N2LO for different values of t_{c} for a four resonances parametrization from \mathcal{L}_{3}^{c}

We shall work with \mathcal{L}_{3}^{c} (used to get $f_{G_{1}}$) for extracting the decay constant $f_{G_{2}}$. The analysis is shown in Fig. 20 where one obtains:

$$
\begin{equation*}
f_{G_{2}}=797(27)_{t_{c}}(57)_{\Lambda}(1)_{M_{\sigma_{B}^{\prime}}}(3) M_{G_{1}}(3)_{f_{G_{1}}}(36)_{M_{G_{1}^{\prime}}}(11)_{f_{G_{1}^{\prime}}}(11)_{M_{G_{2}}}=797(74) \mathrm{MeV} \tag{70}
\end{equation*}
$$

The errors due to the other terms not quoted are zero. One should note that, like in the case of $f_{\sigma^{\prime}}^{\text {eff }}$ which is comparable in size, the previous coupling of the G_{2} to the gluonic correlator can be interpreted as the sum of effective couplings of all higher states contributing to the spectral function.

16. Truncation of the PT series, tachyonic gluon mass and the OPE

- Truncation of the PT series

One can notice from the expression of the two-point correlator in Eq. 21 that the radiative corrections to the unit operator are huge.
$\diamond M_{\sigma_{B}}$ and $M_{G_{1}}$
We compare explictily the effect of PT radiative corrections for the predictions of $M_{\sigma_{B}}$ and $M_{G_{1}}$ and \mathcal{R}_{42}^{c} in the case of "one resonance $\oplus \mathrm{QCD}$ continuum" parametrization of the spectral function. For e.g $t_{c}=4$ GeV^{2}, one obtains:

$$
\begin{align*}
& M_{\sigma_{B}} \simeq 768(\mathrm{LO}) \quad \rightarrow 1000(\mathrm{NLO}) \quad \rightarrow \quad 1076(\mathrm{~N} 2 \mathrm{LO}) \text { from } \mathcal{R}_{20}^{c} \\
& M_{G_{1}} \simeq 1492(\mathrm{LO}) \quad \rightarrow \quad 1522(\mathrm{NLO}) \quad \rightarrow \quad 1530(\mathrm{~N} 2 \mathrm{LO}) \text { from } \mathcal{R}_{42}^{c} \tag{71}
\end{align*}
$$

indicating that the α_{s} corrections increase the LO masses by about $30 / \%$ for the σ_{B} while the increase from NLO to N2LO is only about 8%. For $M_{G_{1}}$ the effect of radiative corrections is much smaller. This relatively small effect is due to the fact that radiative PT corrections tend to compensate in the ratios of sum rules.
\diamond The decay constant $f_{\sigma_{B}}$
Fixing e.g $t_{c} \simeq 4 \mathrm{GeV}^{2}$, we study the effect of the truncation of the PT series on the estimate of the coupling from \mathcal{L}_{-1}^{c}. Taking $\tau \simeq 0.5 \mathrm{GeV}^{-2}$ at the inflexion point, we obtain the result in units of MeV for a "one resonance" parametrization :

$$
\begin{equation*}
f_{\sigma_{B}}=202(\mathrm{LO}) \quad \rightarrow \quad 406(\mathrm{NLO}) \quad \rightarrow \quad 696(\mathrm{~N} 2 \mathrm{LO}) \tag{72}
\end{equation*}
$$

The effect of radiative corrections is huge as expected.
\diamond The decay constant $f_{G_{1}}$
Here we fix $t_{c}=3.75 \mathrm{GeV}^{2}$ as obtained in the previous analysis. There is a large plateau in τ for different PT series. We obtain in units of MeV from \mathcal{L}_{3}^{c} within a "one resonance $\oplus \mathrm{QCD}$ continuum":

$$
\begin{equation*}
f_{G_{1}}=360(\mathrm{LO}) \quad \rightarrow \quad 470(\mathrm{NLO}) \quad \rightarrow \quad 580(\mathrm{~N} 2 \mathrm{LO}) \tag{73}
\end{equation*}
$$

which shows relatively moderate PT corrections.

- Gluon condensates and the OPE

Though the presence of the gluon condensates in the OPE are crucial for the stability points, their effects are relatively small ensuring the convergence of the OPE.

- The tachyonic gluon mass λ^{2}

As emphasized in [78] this effect is expected to explain the large scale of the scalar gluonium channel compared to the ordinary ρ meson channel. It is also expected [74] to give a phenomenological estimate of the uncalculated terms of the PT series.
$\diamond M_{\sigma_{B}}$ and $M_{G_{1}}$
Including the λ^{2} contribution in the OPE, we check that its effect on the mass determination is negligible which can be due to the fact that the effects tend to compensate in the ratio of moments.
\diamond The decay constants $f_{\sigma_{B}}$ and $f_{G_{1}}$
Within a two resonances parametrization, we find for a given value of t_{c} and τ that the tachyonic gluon mass decreases the value of $f_{\sigma_{B}}$ by about $30-50 \%$ while it increases only slightly $f_{G_{1}}$ by about 5%.

- Comparison with some other determinations
\diamond The σ_{B}
The existence of the σ_{B} with a mass about 1 GeV is compatible with the idea that it is the dilaton associated to conformal $U(1)_{V}$ invariance analogous to the case where the η^{\prime}-meson is associated to the $U(1)_{A}$ symmetry. The dilaton has been extensively discussed in an effective Lagrangian approach (see e.g. [46, 47, 89]) including the $U(1)_{V}$ symmetry.
- The mass in Eq. 52 is in a good agreement with the earlier sum rule result [7]:

$$
\begin{equation*}
M_{\sigma_{B}} \simeq(0.95 \sim 1.10) \mathrm{GeV} \tag{74}
\end{equation*}
$$

from a least square fit of the USR ratio of sum rules. A similar result has been obtained from the analysis [40] based on Gaussian sum rules [41] including instanton effects.
-A full lattice calculation [48, 49] finds a relative suppressed mass of the lightest glueball which moves from the quenched result about 1.6 GeV to the full QCD one around 1 GeV . However, a more approriate comparison with the lattice results requires a simulation beyond the one resonance contribution to the scalar gluonium correlator.

- A strong coupling analysis of the gluon propagator [90] finds a gluonium pole mass around M_{σ} and $M_{f_{0}(980)}$ from the mass gap [90].

\diamond The higher mass gluonium G_{1}

- Its mass is given in Eqs. 54 and 53 in the case of one or two resonances $\oplus Q C D$ continuum parametrization of the spectral function. These results agree with the earlier ones in Ref. [2] from ratio of USR and can be compared to some other sum rules results [81, 91, 92]. We conclude fro the paper of Ref. [93] that their result for $M_{G_{1}} \simeq 1.8 \mathrm{GeV}$ is obtained outside the τ minima of their sum rule which leads to an overestimate.
- Our result for $M_{G_{1}}$ is slightly lower than the one from quenched and full lattice calculations [48-51]. However, a precise comparison of the results from the two approaches is delicate as the lattice situation for the 1 GeV result remains unclear [48, 49], while the lattice analysis is done by only retaining a single resonance contribution to the two-point correlator.
\diamond The gluonium radial excitations σ^{\prime} and G_{2} and
We have also attempted to extract the masses and decay constants of the gluonium first radial excitations with the result in Eqs. 57, 58, 68 and 70. In the next phenomenological analysis, we are tempted to indentify the $\sigma^{\prime}(1.32)$ with the $f_{0}(1.37)$. The $G_{2}(2.5)$ is (within the large errors) in the range of the observed $f_{0}(2.02)$ and $f_{0}(2.2)[25]$.

\diamond Comments

- In the example of the scalar gluonium channel, we have seen that (at least) NLO corrections are important in the determination of the scalar gluonium masses from the sum rules, while N2LO corrections are needed for a good determination of the decay constants. Therefore, one should make a great care for quoting the LO results given in the literature.
- The smallness of the tachyonic gluon mass contribution to the gluonium mass determinations may indicate that the PT series reaches its asymptotic form after the inclusion of the N2LO contribution which can be sufficient for extracting with a good accuracy these observables from the sum rules. However, we have also noticed that the decay constant of the σ_{B} is largely affected (-30 to -40%) by the tachyonic gluon mass which tends to decouple the σ_{B} from the two-point correlator.
- Some other analysis using "two resonances \oplus QCD continuum parametrization from sum rules with instantons [40] and an inverse problem dispersive approach without instantons [94] reproduce our results for $M_{\sigma_{B}}$ and $M_{G_{1}}$. The apparent discrepancies with the lattice results requests a clarification of the full QCD results and a two resonance parametrization of the two-point correlator.
- Some phenomenological implications of our results will be discussed in the next section.

17. The conformal charge $\psi_{G}(0)$

- Test of the Low Energy Theorem (LET)

LET suggests that the value of $\psi_{G}(0)$ is given by Eq. 43 . We test the accuracy of this relation by saturating the two-point function by the two lowest ground state resonances σ_{B} and G_{1}. In this way, we obtain :

$$
\begin{equation*}
\psi_{G}(0)=\sum_{i=\sigma, G, \cdots} 2 f_{G}^{2} M_{G}^{2} \approx 1.95 \mathrm{GeV}^{4} \tag{75}
\end{equation*}
$$

which is slightly higher than the LET estimate in Eq. 43 :

$$
\begin{equation*}
\psi_{G}^{L E T}(0)=(1.46 \pm 0.08) \mathrm{GeV}^{2} \tag{76}
\end{equation*}
$$

without any appeal to some contributions beyond the OPE such as the instantons ones.

- Sum rule extraction of conformal charge $\psi_{G}(0)$

Here, we shall, instead, determine $\psi_{G}(0)$ from the sum rule within the standard SVZ expansion. A similar analysis has been already done in [7] which we shall update here. In so doing, we work with the combination
of sum rules ${ }^{5}$:

$$
\begin{equation*}
\psi_{G}^{\mathrm{LSR}}(0)=\int_{0}^{t_{c}} \frac{d t}{t} e^{-t \tau}\left(1-\frac{t \tau}{2}\right) \frac{1}{\pi} \operatorname{Im} \psi_{G}(t)-\left(\mathcal{L}_{-1}^{c}-\frac{\tau}{2} \mathcal{L}_{0}^{c}\right)_{Q C D} \tag{77}
\end{equation*}
$$

where the 1 st part of the RHS is parametrized by the lowest resonances $\sigma_{B}, G_{1}, \sigma_{B}^{\prime}$ and the 2 nd part is the QCD expression of the moment sum rules \mathcal{L}_{n}^{c}. The other radial excitations G_{1}^{\prime} and G_{2} having less certain values of the dcay constants are included in the QCD continuum.

Figure 21: $\psi(0)_{G}$ from LSR as a function of τ for different values of t_{c}.

- The result of the analysis is shown in Fig. 21, where the curves present nice τ at $(1.0 \pm 0.04) \mathrm{GeV}^{-2}$. A t_{c}-minimum appears at $(2 \sim 4) \mathrm{GeV}^{2}$ and a stability from $8 \mathrm{GeV}^{2}$. We obtain:

$$
\begin{align*}
\psi_{G}^{\mathrm{LSR}}(0) & =2.09(2)_{t_{c}}(0)_{\tau}(18)_{\Lambda}(11)_{G^{2}}(10)_{G^{3}}(1)_{M_{\sigma_{B}}}(14)_{f_{\sigma_{B}}}(2) M_{G}(7)_{f_{G}}(0)_{M_{\sigma_{B}^{\prime}}}(2)_{f_{\sigma_{B}^{\prime}}} \\
& =2.09(29) \mathrm{GeV}^{4} \tag{78}
\end{align*}
$$

where the central value is 1.4 times the LET estimate in Eq. 43 and the one in [7] obtained within a one resonance and to LO.
\diamond One can notice that adding the two radial excitation contributions changes this value to $2.23 G_{2}$. The contribution of σ_{B} is about 70% which is crucial for recovering the LET result.

- We analyze the effect of this result in the estimate of $f_{\sigma_{B}}$ and $f_{\sigma_{B}^{\prime}}$ obtained previously from the moment $\mathcal{L}^{c}{ }_{-1}$ where $\psi_{G}(0)$ contributes.
\diamond We find e.g for $f_{\sigma_{B}}$ that the inflexion point in τ moves from $\tau=0.56 \mathrm{GeV}^{-2}$ (see Fig. 13) to 0.46 for e.g $t_{c}=3.75 \mathrm{GeV}^{2}$ to which corresponds to an increase of about 4 MeV , which is negligible compared to the large error of $f_{\sigma_{B}}$.

[^4]\diamond For $f_{\sigma_{B}^{\prime}}$, the LSR value of $\psi_{G}(0)$ increases the decay constant by about 100 MeV but this value is inside the range spanned by the large error of 342 MeV obtained in its determination. Therefore, we keep the result obtained in the previous section.

18. The slope $\psi_{G}^{\prime}(0)$ of the conformal charge

The slope $\psi_{G}^{\prime}(0)$ obeys the twice subtracted sum rule:

$$
\begin{equation*}
\left.\psi_{G}^{\prime}\right|^{\mathrm{LSR}}(0)=\int_{0}^{t_{c}} \frac{d t}{t^{2}} e^{-t \tau} \frac{1}{\pi} \operatorname{Im} \psi_{G}(t)-\left.\mathcal{L}_{-2}^{c}\right|_{Q C D}+\tau \psi(0)_{G} \tag{79}
\end{equation*}
$$

where:

$$
\begin{equation*}
\mathcal{L}_{-2}^{c}(\tau)=\beta^{2}\left(\alpha_{s}\right)\left(\frac{2}{\pi^{2}}\right) \tau^{-1} \sum_{n=0,2, \cdots} D_{n}^{-2}, \tag{80}
\end{equation*}
$$

with:

$$
\begin{align*}
D_{0}^{-2} & =\left[C_{00}-2 C_{01} \gamma_{E}+C_{02}\left[\gamma_{E}-\frac{\pi^{2}}{6}\right]\right]\left(1-\rho_{0}\right) \\
D_{2}^{-2} & =\tau C_{21}\left(1-\gamma_{E}\right) \lambda^{2} \\
D_{4}^{-2} & =-\tau^{2}\left[C_{40}-C_{41}\left[\frac{1}{2}-\gamma_{E}\right]\right]\left\langle\alpha_{s} G^{2}\right\rangle \\
D_{6}^{-2} & =-\frac{\tau^{3}}{2}\left[C_{60}-C_{61}\left(\frac{1}{3}-\gamma_{E}\right)\right]\left\langle g^{3} f_{a b c} G^{a} G^{b} G^{c}\right\rangle \\
D_{8}^{-2} & =-\frac{\tau^{4}}{6} C_{80}(1.1 \pm 0.5)\left\langle\alpha_{s} G^{2}\right\rangle^{2} \tag{81}
\end{align*}
$$

We show the analysis in Fig. 22 from which we deduce from $t_{c}=2 \sim 8 \mathrm{GeV}^{2}$ at the τ-minima $\pm 0.04 \mathrm{GeV}^{-2}$:

Figure 22: $\psi^{\prime}(0)_{G}$ from LSR as a function of τ for different values of t_{c}.

$$
\begin{align*}
\left.\psi_{G}^{\prime}\right|^{\mathrm{LSR}}(0) & =0.95(5)_{t_{c}}(0)_{\tau}(2) \Lambda(0)_{G^{2}}(0.1)_{G^{3}}(1.5)_{M_{\sigma_{B}}}(25)_{f_{\sigma_{B}}}(1.1) M_{G_{1}}(11.4)_{f_{G_{1}}}(0.7)_{M_{\sigma^{\prime}}}(1.7)_{f_{\sigma^{\prime}}}(11)_{\psi_{G}(0)} \\
& =0.95(30) \mathrm{GeV}^{2} \tag{82}
\end{align*}
$$

where the σ_{B} contributes to about 80%. The present result updates the earlier one in Ref. [7].

19. Hadronic couplings of the σ_{B} meson

- The σ_{B} coupling to $\pi \pi$

One can use the previous result of the decay constant in Eq. 62 to predict the hadronic width of the σ_{B}. For this purpose, we consider the vertex (see e.g [1]):

$$
\begin{equation*}
V_{\pi}\left(q^{2}\right)=\left\langle\pi_{1}\right| \theta_{\mu}^{\mu}\left|\pi_{2}\right\rangle \quad: \quad q=p_{1}-p_{2} \quad \text { with } \quad V(0)=\mathcal{O}\left(m_{\pi}^{2}\right) \tag{83}
\end{equation*}
$$

In the chiral limit $\left(m_{\pi}^{2}=0\right)$, one has :

$$
\begin{equation*}
V\left(q^{2}\right)=q^{2} \int_{4 m_{\pi}^{2}}^{\infty} \frac{d t}{t\left(t-q^{2}-i \epsilon\right)} \frac{1}{\pi} \operatorname{Im} V(t) \tag{84}
\end{equation*}
$$

Using the fact that $V^{\prime}(0)=1[67,68]$, one can deduce the Low Energy Vertex sum rule (LEV-SR) [1]:

$$
\begin{equation*}
\frac{1}{4} \sum_{G=\sigma_{B}, \cdots} g_{G \pi \pi} \frac{\sqrt{2} f_{G}}{M_{G}^{2}}=1 \tag{85}
\end{equation*}
$$

where the contribution of the light σ_{B} is enhanced. Then, assuming (to a first approximation) that the σ_{B} dominates the sum rule, one can deduce :

$$
\begin{equation*}
g_{\sigma_{B} \pi^{+} \pi^{-}} \approx(7.1 \pm 2.5) \mathrm{GeV} \tag{86}
\end{equation*}
$$

to which corresponds the width:

$$
\begin{equation*}
\Gamma\left[\sigma_{B} \rightarrow \pi^{+} \pi^{-}+2 \pi^{0}\right]=\frac{3}{2} \frac{\left|g_{\sigma_{B} \pi^{+} \pi^{-}}\right|^{2}}{16 \pi M_{\sigma_{B}}}\left(1-\frac{4 m_{\pi}^{2}}{M_{\sigma_{B}}^{2}}\right)^{1 / 2} \approx(1.4 \pm 0.8) \mathrm{GeV} \tag{87}
\end{equation*}
$$

To check the validity of this approximation, we use the average of the recent data from 2005 [25] which is :

$$
\begin{equation*}
\Gamma\left[f_{0}(1.37) \rightarrow \pi \pi\right] \simeq 215(14) \mathrm{MeV} \Longrightarrow g_{\sigma_{B}^{\prime} \pi \pi} \simeq(3.2 \pm 0.1) \mathrm{GeV} \tag{88}
\end{equation*}
$$

while the $\pi \pi$ width of the $f_{0}(1.5)$ of 39 MeV [25] can be neglected. Including the $f_{0}(1.37)$ contribution, the previous sum rule gives:

$$
\begin{equation*}
g_{\sigma_{B} \pi^{+} \pi^{-}} \simeq 5.7 \mathrm{GeV} \quad \Longrightarrow \quad \Gamma\left[\sigma_{B} \rightarrow \pi^{+} \pi^{-}+2 \pi^{0}\right] \simeq 873 \mathrm{MeV} \tag{89}
\end{equation*}
$$

in agreement with previous estimates [1, 2].

- The σ_{B} coupling to $K^{+} K^{-}$

Up to $S U(3)$ breaking, the vertex sum rule in Eq. 85 indicates that the σ_{B} couples (almost) universally to Goldstone boson pairs, such that in this gluonium picture, one also expects a large coupling of the σ_{B} to $K^{+} K^{-}$. This feature has been observed from the analysis of $\pi \pi \rightarrow K^{+} K^{-}$scattering data [18-20].

- σ_{B} mass and width confronted to the data

It is informative to compare the previous mass and width to the one of the observed σ from scatterings data analysis :
\diamond The values of the mass and width obtained in Eqs. 52 and 87 for σ_{B} are comparable with the on-shell/Breit-Wigner mass and width obtained in Eq. 4.
\diamond These results together with the ones from data analysis reviewed in the first sections can indicate the presence of an important gluon component inside the observed $\sigma / f_{0}(500)$ meson wave function.

20. Hadronic couplings of the higher mass gluonium G

- G_{1} coupling to $\eta \eta^{\prime}, \eta \eta$

In order to compute the $g_{G_{1} \eta_{1} \eta_{1}}$ coupling of the G_{1} to the singlet η_{1}, one starts from the $[1,42]$:

$$
\begin{equation*}
\tilde{V}_{\mu \nu}\left(q_{1}, q_{2}\right)=i \int d^{4} x_{1} d^{4} x_{2} e^{i\left(q_{1} x_{1}+q_{2} x_{2}\right)}\langle 0| \mathcal{T} Q\left(x_{1}\right) Q\left(x_{2}\right) \theta_{\mu \nu}(0)|0\rangle \tag{90}
\end{equation*}
$$

where $\theta_{\mu \nu}$ is the energy-momentum tensor with 3 light quarks and:

$$
\begin{equation*}
Q(x)=\frac{\alpha_{s}}{16 \pi} \epsilon^{\mu \nu \rho \sigma} G_{\mu \nu}^{a} G_{\rho \sigma}^{a} \tag{91}
\end{equation*}
$$

is the topological charge density, where one reminds that, in the large N_{c} limit (no quark loops), the solution to the $U(1)_{A}$ problem is [1, 42]:

$$
\begin{equation*}
\Gamma_{2}(q) \equiv i \int d^{4} x\langle 0| \mathcal{T} Q(x) Q(0)|0\rangle \rightarrow \Gamma_{2}^{\mathrm{YM}}(q \ll \Lambda) \rightarrow \Gamma_{2}^{\mathrm{YM}}(0) \simeq(180 \mathrm{MeV})^{4} \tag{92}
\end{equation*}
$$

Using the expression of the topological charge in the presence of quark loops [44] and the consistent one for the vertex $\tilde{V}_{\mu \nu}\left(q_{1}, q_{2}\right)$, one can deduce [1] the constraint:

$$
\begin{equation*}
\left.\left\langle\eta_{1}\right| \theta_{\mu}^{\mu}\right|_{n_{f}=3}\left|\eta_{1}\right\rangle \simeq \frac{9}{11} \frac{12}{f_{\pi}^{2}} \Gamma_{2}^{\mathrm{YM}}(0)=2 M_{\eta_{1}}^{2}=1.15 \mathrm{GeV}^{2} \tag{93}
\end{equation*}
$$

where the factor $(9 / 11)$ comes from the ratio of the β-function β_{1} for $n_{f}=3$ and $n_{f}=0$ and $M_{\eta_{1}} \simeq 0.76$ $\mathrm{GeV}[1,42]$. Then, we deduce the LEV-SR [1]:

$$
\begin{equation*}
\frac{1}{4} \sum_{i=\sigma_{B}, G_{1}} g_{G \eta_{1} \eta_{1}} \sqrt{2} f_{i} \simeq 1.15 \mathrm{GeV}^{2} \tag{94}
\end{equation*}
$$

Picking the singlet component of the physical η, η^{\prime} via the pseudoscalar mixing angle $\theta_{P} \simeq-(18 \pm 2)^{0}[96]$: $\eta=\sin \theta_{P} \eta_{1}+\cdots, \eta^{\prime}=\cos \theta_{P} \eta_{1}+\cdots$, one deduces:

$$
\begin{equation*}
\sum_{G=\sigma_{B}, G_{1}} g_{G \eta \eta^{\prime}} f_{G} \simeq \frac{4}{\sqrt{2}}\left(\sin \theta_{P}\right) 1.15 \mathrm{GeV}^{2} \simeq-1.0 \mathrm{GeV}^{2} \quad \text { and } \quad g_{G_{1} \eta \eta}=\left(\sin \theta_{P}\right) g_{G_{1} \eta \eta^{\prime}} \tag{95}
\end{equation*}
$$

Following Ref. [1] by using the constraint from $\eta^{\prime} \rightarrow \eta \pi \pi$ (allowing a 1% deviation from the precision of the data [25]), and a Gell-Mann, Sharp, Wagner-type model, for the intermediate state σ_{B}, one can deduce the upper bound for $M_{\sigma_{B}}=1.08 \mathrm{GeV}$:

$$
\begin{equation*}
\left|g_{\sigma_{B} \eta \eta^{\prime}}\right| \leq 0.34 \mathrm{GeV} \tag{96}
\end{equation*}
$$

which is a relatively small contribution. Neglecting this contribution and the $f_{0}(1.37)$ one, the LEV-SR in Eq. 95 leads to :

$$
\begin{equation*}
g_{G_{1} \eta \eta^{\prime}} \simeq 2.74(78) \mathrm{GeV} \quad \text { and } \quad g_{G_{1} \eta \eta} \simeq 0.85(25) \mathrm{GeV} \tag{97}
\end{equation*}
$$

We deduce the width for $\mathrm{M}_{G_{1}}=1.55 \mathrm{GeV}, p_{\eta \eta^{\prime}}=20 \mathrm{MeV}$ and $p_{\eta \eta}=517 \mathrm{MeV}$:

$$
\begin{equation*}
\Gamma\left(G_{1} \rightarrow \eta \eta^{\prime}\right)=\frac{\left|g_{G_{1} \eta^{\prime} \eta}\right|^{2}}{8 \pi} \frac{p_{\eta \eta^{\prime}}}{M_{G_{1}}^{2}} \simeq(2.5 \pm 1.4)[(2.6 \pm 0.9) \mathrm{Data}] \mathrm{MeV} \tag{98}
\end{equation*}
$$

which implies:

$$
\begin{equation*}
\frac{\Gamma(G \rightarrow \eta \eta)}{\Gamma\left(G \rightarrow \eta \eta^{\prime}\right)}=\sin ^{2} \theta_{P} \frac{p_{\eta \eta}}{p_{\eta^{\prime} \eta}} \simeq(2.3 \pm 0.6)[(3.0) \text { Data }] \tag{99}
\end{equation*}
$$

The results agree perfectly within the errors with the data.

- σ^{\prime}, G_{1} couplings to $\sigma_{B} \sigma_{B}$

One can also write a low-energy vertex sum rule (LEV-SR) for this coupling [1]:

$$
\begin{equation*}
\left\langle\sigma_{B}\right| \theta_{\mu}^{\mu}\left|\sigma_{B}\right\rangle=2 M_{\sigma_{B}}^{2} \tag{100}
\end{equation*}
$$

Using the dispersion relation of the vertex, one can write the sum rule:

$$
\begin{equation*}
\frac{1}{4} \sum_{G=\sigma^{\prime}, G_{1}} g_{G \sigma_{B} \sigma_{B}} \sqrt{2} f_{G} \simeq 2 M_{\sigma}^{2} \tag{101}
\end{equation*}
$$

where here it is more appropriate to use the pole mass $M_{\sigma} \simeq 0.5 \mathrm{GeV}$ for the virtual σ_{B}.
\diamond Assuming that the σ^{\prime} dominates the sum rule which is also the only one which decays copiously into $2(\pi \pi)_{S}[25]$, one can deduce :

$$
\begin{equation*}
g_{\sigma^{\prime} \sigma_{B} \sigma_{B}} \simeq(2.2 \pm 0.73) \mathrm{GeV} \tag{102}
\end{equation*}
$$

where we have used the previous estimate of the coupling in Eq. 58.
\diamond We confront this prediction with the data of $f_{0}(1.37 .1,5) \rightarrow 2(\pi \pi)$. In so doing, we use the six most recent measurements of the $f_{0}(1.37) 4 \pi$ width since 1995 compiled by PDG [25] from which we deduce the mean:

$$
\begin{equation*}
\Gamma\left[f_{0}(1.37) \rightarrow 4 \pi\right] \simeq 365(20) \mathrm{MeV} \tag{103}
\end{equation*}
$$

Using the ratio [25] :

$$
\begin{equation*}
\frac{\Gamma\left[f_{0}(1.37) \rightarrow 2(\pi \pi)_{S}\right]}{\Gamma\left[f_{0}(1.37) \rightarrow(4 \pi)\right]} \simeq 0.51(9) \tag{104}
\end{equation*}
$$

we deduce:

$$
\begin{equation*}
\Gamma\left[f_{0}(1.37) \rightarrow 2(\pi \pi)_{S}\right] \simeq 186(35) \mathrm{MeV} \Longrightarrow g_{f_{0} \sigma_{B} \sigma_{B}} \simeq(4.33 \pm 0.39) \mathrm{GeV} \tag{105}
\end{equation*}
$$

where the estimate is off by about a factor two indicating that the sum rule may have oversetimated the decay constant of the σ^{\prime}-meson which is (presumably) the sum of effective couplings of higher state resonances.
\diamond One can use instead the experimental value of $g_{f_{0} \sigma_{B} \sigma_{B}}$ into the LEV-SR. Neglecting the $G_{1}(1.55)$ contribution which has a tiny $2(\pi \pi) S$ width of 14 MeV deduced from the data on $\Gamma_{\pi \pi} \simeq 39 \mathrm{MeV} \simeq 34.5 \%$ of
its total width, $\Gamma_{4 \pi} \simeq 48.9 \%$ and $\Gamma_{2(\pi \pi)_{S}} / \Gamma_{4 \pi} \simeq 26 \%$, we deduce from $g_{f_{0} \sigma_{B} \sigma_{B}}$ and the LEV-SR in Eq. 101 the more accurate estimate :

$$
\begin{equation*}
f_{\sigma^{\prime}} \simeq f_{\sigma_{B}^{\prime}}=(329 \pm 30) \mathrm{MeV} \tag{106}
\end{equation*}
$$

This value is in line with the intuitive expectations from ordianry ρ and ρ^{\prime} mesons.

21. Summary and conclusions

The different results obtained in this paper are summarized in Table 1 which we shall briefly comments below.

- The $\sigma / f_{0}(500)$ meson

In this paper, we have started to review our present knowledge on the nature of the σ meson from $\pi^{+} \pi^{-}, \gamma \gamma \rightarrow \pi^{+} \pi^{-}, K^{+} K^{-}$data and from J / ψ gluon rich channels $(\gamma \pi \pi, \omega \pi \pi, \phi \pi \pi)$ and ϕ radiative decays, $D_{(s)}$ semileptonic decays and $\bar{p} p, p p$ production processes. The data (a priori) favour / does not exclude a large gluon component in the σ wave function where the oberved state may emerge from a maximal mixing with a $\bar{q} q$ state [4] rather than a pure four-quark $(\overline{u u})(d d)$ or a $\pi \pi$ molecule state. The four-quark or $\pi \pi$ molecule state is not favoured by the too small predicted direct $\gamma \gamma$ width of the $\sigma[17,19,20]$ and by the large $K^{+} K^{-}$ coupling found from scattering data $[18,19]$. The assumption that the σ emerges from $\pi \pi$ rescattering is not also favoured from its large coupling to $K^{+} K^{-}$.

- The $f_{0}(980)$ meson from the data
\diamond From the scattering data analysis, it is unlikely that the $f_{0}(980)$ is an $\bar{s} s$ state because its has a non negligible / large coupling to $\pi \pi$ [18-20], while the strength of its $\gamma \gamma$ coupling is relatively small for a $\bar{q} q$ state $[10,11]$. Moreover, it is too light compared to the $\bar{s} s$ mass of about $1.4 \mathrm{GeV}[11]$.

- Conclusions from the data

The previous observations may favour the interpretation that the σ and $f_{0}(980)$ emerge from a maximal mixing between a gluonium and a $(\bar{u} u+\bar{d} d)$ state like we have proposed in $[2,4]$ and what had also been expected [68] in their pioneering paper.

- The σ_{B} meson from $Q C D$ spectral sum rules (QSSR)
$\diamond \mathrm{A}$ QSSR analysis of the lowest ratios of sum rule \mathcal{L}_{20} favours a σ_{B} (the subindex B refers to a pure unmixed gluonium state) having a mass $M_{\sigma_{B}}=1.07 \mathrm{GeV}$ (see Eq. 60) and a $\pi \pi$ width Eq. (89) compatible with the ones from scattering data for a Breit-Wigner / On-shell σ-mass.
\diamond Its decay constant can be deduced from \mathcal{L}_{1}^{c} which is $f_{\sigma_{B}}=456(157) \mathrm{MeV}$ (Eq. 62).
\diamond One should also note that the set $\left(\Gamma_{\sigma_{B}}, M_{\sigma_{B}}\right)$ obtained from the sum rule is fairly compatible with the on-shell mass and width from $\pi^{+} \pi^{-} \rightarrow \pi^{+} \pi^{-}, K^{+} K^{-}$data.
- The "scalar gluonium" G_{1} from $Q S S R$
\diamond An analysis of the higher weight USR \mathcal{L}_{21} and \mathcal{L}_{31} leads to a gluonium mass: $M_{G_{1}}=(1548 \pm 121) \mathrm{MeV}$ (Eq. 53) for a"3 resonances" $\oplus Q C D$ continuum parametrization of the spectral function while its becomes $(1515 \pm 123) \mathrm{MeV}($ Eq. 54$)$ if one uses a "one resonance" $\oplus \mathrm{QCD}$ continuum indicating that the presence of the σ_{B} does not affect notably the value of $M_{G_{1}}$. It is clear that higher moments are more appropriate in the QSSR approach to pick up the higher mass gluonium state due to the power mass suppression of the lowest mass σ_{B} contribution in these sum rules.
\diamond The corresponding gluonium decay constant is $f_{G_{1}}=(365 \pm 110) \mathrm{MeV}$ (Eq. 63) which is comparable with the one of $f_{\sigma_{B}}$.
\diamond We have also seen that its small width into $2(\pi \pi)_{S}$ can be explained from the LET-V sum rule in Eq. 101 indicating that it is not a σ-like particle but instead decays into $\eta^{\prime} \eta, \eta \eta$ through th gluon vertex $U(1)$ anomaly.
- The radial excitations $\sigma^{\prime}, G_{1}^{\prime}$ and G_{2} from $Q S S R$

We have attempted to extract the mass and coupling of the radial excitations σ^{\prime} of $\sigma_{B}, G_{1}^{\prime}$ and G_{2} of G_{1}.
\diamond We found that $M_{\sigma^{\prime}} \simeq(1121 \pm 117) \mathrm{MeV}$ is rather low compared to the radial excitation of ordinary mesons where we notice that a similar feature has been observed in the analysis of the $D^{*} D$ molecule described by high-dimension quark currents.
$\diamond f_{\sigma_{B}^{\prime}} \simeq 646(216) \mathrm{MeV}$ can be large which we have interpreted as an effective sum of all radial excitations that the sum rule cannot disentangle. For a more phenomenoogical use, we identify the σ_{B}^{\prime} with the observed $f_{0}(1.37)$ and extract the decay constant from its decay to $2(\pi \pi)_{S} \oplus$ LEV-SR analysis from which we obtain: $f_{\sigma^{\prime}} \simeq(329 \pm 30) \mathrm{MeV}$ (Eq. 101).
\diamond The mass of the radial excitation $G_{1}^{\prime}: M_{G_{1}^{\prime}}=1563(141) \mathrm{MeV}$ (Eq. 64) of G_{1} is also found to be almost degenerated with the ground state mass $M_{G_{1}}=1548(121) \mathrm{MeV}$ (Eq. 61). Like in the case of σ_{B}^{\prime}, we intrepret the large coupling $f_{G_{1}^{\prime}}=1000(230) \mathrm{MeV}$ (Eq. 65) as a sum of the effective couplings of all higher radial excitations entering into the spectral function.
\diamond The 2 nd radial excitation gluonium G_{2} is found to have a relatively high mass $M_{G_{2}} \simeq 2.99 \mathrm{GeV}$.

- Phenomenology

\diamond The global picture which emerges from the approach indicates that the observed gluonia candiates can de classified into two groups :

- The σ-like gluonia $\left[\sigma / f_{0}(0.5), f_{0}(1.37)\right]$ which emerge from $\left(\sigma_{B}, \sigma_{B}^{\prime}\right)$ and which decay into $\pi \pi$ via OZI violating process while the $f_{0}(1.37)$ decays to $2(\pi \pi)_{S}$ via virutal $\sigma \sigma$.
- The G-like gluonia $\left[f_{0}(1.5), f_{0}(1.7)\right]$ which come from $\left(G_{1}, G_{1}^{\prime}\right)$ and which decay into $\eta^{\prime} \eta$ and $\eta \eta$ through the gluon $U(1)$ anomaly vertex but not copiously to $\pi \pi$ and $2(\pi \pi)_{S}$.
- We may expect that high-mass 2nd radial excitation $G_{2}(2.99)$ has similar properties and brings some gluon component to the gluonia cnadidates above 2 GeV which contributes to their $\eta^{\prime} \eta$ and $\eta \eta$ decays.
\diamond We remind that the masses of the $S_{2}(\bar{u} u+\bar{d} d), S_{3}(\bar{s} s)$ quarkonia states and their radial excitations are predicted from the sum rules to be (in units of GeV) [2] :

$$
\begin{align*}
& M_{S_{2}} \simeq 1, \quad M_{S_{2}^{\prime}} \simeq(1.1 \sim 1.4) \\
& M_{S_{3}} \simeq(1.47), \quad M_{S_{3}^{\prime}} \simeq(1.7 \sim 2.4) \tag{107}
\end{align*}
$$

which can mix with the previous gluonia states.
\diamond A more complete analysis of the data can be done within some $\bar{q} q$ meson-gluonium mixing scheme. The case for the $\sigma(500)-f_{0}(980)$ has been studied in [4] but may/should be extended to the higher meson masses. Some attempts in this direction have been also done in $[2]^{6}$ but needs to be updated.
\diamond We have not updated our analysis of the $\gamma \gamma$ and radiative widths obtained in $[1,2]$. We expect that these results are still valid within the errors.
\diamond We emphasize that a more appropriate comparison of the results obtained in this work (e.g with lattice calculations) requests an analysis beyond the "one resonance" contribution to the two-point correlator from these alternative approaches. Indeed, a simple one resonance for parametrizing the spectral function is (obviously) insufficient for describing the complex and overpopulated spectra of the $I=o$ scalar mesons.

- The conformal charge $\psi_{G}(0)$ from $Q S S R$

We have completed our analysis by the estimate of the conformal charge $\psi_{G}(0)$ and its slope $\psi_{G}^{\prime}(0)$.
\diamond Using the previous values of the σ and gluonia G masses and couplings, we have obtained $\psi_{G}^{L S R}(0)=2.09$ (29) GeV^{4} (Eq. 78) which can be compared with the LET prediction of about $1.46 \mathrm{GeV}^{4}$ (Eq.43).
\diamond The result indicates that the σ_{B} meson contributes predominantly in the spectral function for reproducing the LET prediction of $\psi_{G}(0)$. It also shows that the instanton effect in the estimate of $\psi_{G}(0)$ is (a priori) not necessary for a correct estimate of the conformal charge $\psi_{G}(0)$. A similar feature has been observed in the estimate of the topological charge and its slope in the $U(1)_{A}$ sector [13] .
\diamond The value of the slope is $\left.\psi_{G}^{\prime}(0)\right|_{L S R}=0.95(30) \mathrm{GeV}^{2}$.

- Prospects
\diamond We plan to study in more details the mixing of the $\bar{q} q$ states with the higher gluonia masses $\sigma^{\prime}(1.15)$, $G_{1}(1.53)$ and eventually with the $G_{2}(2.48)$.
\diamond We plan to extend the analysis to the case of (pseudo)scalar $C= \pm$ trigluonia channels [98] which has been studied in [12] and [99].

[^5]| Observables | Value | Eq.\# | Source | Comments |
| :---: | :---: | :---: | :---: | :---: |
| Masses [MeV] | | | | |
| Ground states | | | | |
| $M_{\sigma_{B}}$ | 1088(78) | 50 | $\mathcal{R}^{c}{ }^{\text {0 }}$ | 1 resonance \oplus QCD continuum |
| | 1085(126) | 52 | $\mathcal{R}^{c}{ }^{\text {0 }}$ | 2 resonaaces \oplus QCD continuum |
| | 1070(126) | 60 | $\mathcal{R}^{c}{ }^{\text {0 }}$ | 3 resonaaces \oplus QCD continuum |
| $M_{G_{1}}$ | 1515(123) | 54 | \mathcal{R}_{42}^{c} | 1 resonance \oplus QCD continuum |
| | 1524(121) | 53 | $\mathcal{R}^{c}{ }_{42}$ | 2 resonaaces \oplus QCD continuum |
| | 1548(121) | 61 | $\mathcal{R}_{42}{ }^{\text {a }}$ | 3 resonaaces $\oplus \mathrm{QCD}$ continuum |
| 1st Radial excitations | | | | |
| $M_{\sigma_{B}^{\prime}}$ | 1121(117) | 57 | \mathcal{R}_{20}^{c} (after iteration) | 3 resonances \oplus QCD continuum |
| $M_{G_{1}^{\prime}}$ | 1563(141) | 64 | \mathcal{R}_{42}^{c} | 4 resonances \oplus QCD continuum |
| $M_{G_{2}}$ | 2992(221) | 68 | mean from \mathcal{R}_{21}^{c} and \mathcal{R}_{31}^{c} | 5 resonances \oplus QCD continuum |
| Decay constants [MeV] | | | | |
| Ground states | | | | |
| $f_{\sigma_{B}}$ | 563(156) | 56 | $\mathcal{L}^{c}{ }_{-1}$ | 2 resonances $\oplus \mathrm{QCD}$ continuum |
| | 456(157) | 62 | $\mathcal{L}^{c}{ }_{-1}$ | 3 resonances \oplus QCD continuum |
| $f_{G_{1}}$ | 394103) | 56 | $\mathcal{L}_{2}^{c} \oplus \mathcal{L}_{3}^{c}$ | 2 resonances \oplus QCD continuum |
| | 365(110) | 63 | $\mathcal{L}_{2}^{c} \oplus \mathcal{L}_{3}^{c}$ | 3 resonances \oplus QCD continuum |
| Radial excitations | | | | |
| $f_{\sigma^{\prime}}$ | 329(30) | 106 | LEV-SR $\oplus f_{0}(1.37) \rightarrow 2(\pi \pi)_{S}[25]$ | $f_{0}(1.5)$ neglected |
| $f_{\sigma^{\prime}}^{\text {eff }}$ | 648(216) | 58 | $\mathcal{L}^{c}{ }_{-1}$ | Sum of higher states effective couplings |
| $f_{G_{1}^{\prime}}^{\text {eff }}$ | 1000(230) | 65 | \mathcal{L}_{2}^{c} | Sum of higher states effective couplings |
| $f_{G_{2}}^{\text {eff }}$ | 797(74) | 70 | mean from \mathcal{L}_{1}^{c} and \mathcal{L}_{2}^{c} | Sum of higher states effective couplings |
| Decay widths [MeV] | | | | |
| $\Gamma\left[\sigma_{B} \rightarrow \pi \pi\right]$ | 873 | 89 | LEV-SR | 700: $\pi \pi$ scattering data |
| $\Gamma\left[\sigma^{\prime}(1.37) \rightarrow 2(\pi \pi)_{S}\right]$ | 186(35) | 106 | data input [25] \oplus LEV-SR \Longrightarrow | $f_{\sigma^{\prime}}=329(15)$ |
| $\Gamma\left[G_{1}(1.55) \rightarrow \eta \eta^{\prime}\right]$ | (2.5 ± 1.4) | 98 | - | (2.6 $\pm 0.9)$ (data) [25] |
| $\frac{\Gamma\left[G_{1}(1.55) \rightarrow \eta \eta^{\prime}\right]}{\Gamma\left[G_{1}(1.58) \rightarrow \eta \eta^{\prime}\right]}$ | (2.3 ± 0.6) | 99 | - | 3.0 (data) [25] |
| Conformal Anomaly | | | | |
| Charge : $\psi_{G}^{L S R}(0)\left[\mathrm{GeV}^{4}\right]$ | 2.09(29) | 78 | $\mathcal{L}^{c}{ }_{-1} \oplus \mathcal{L}_{0}^{c}$ | 1.46(8) [LET in Eq. 43] |
| Slope : $\left.\psi_{G}^{\prime}(0)\right\|_{L S R}\left[\mathrm{GeV}^{2}\right]$ | 0.95(30) | 82 | $\mathcal{L}_{-2}^{c} \oplus \psi_{G}^{L S R}(0)$ | |

Table 1: Predictions from scalar di-gluonium LSR at N2LO and gluon condensates at NLO up to $D=8$.

References

[1] S. Narison and G. Veneziano, Int. J. Mod. Phys. A 4 (1989) 2751.
[2] S. Narison, Nucl. Phys. B 509 (1998) 312/; ibid, Nucl. Phys. Proc. Suppl. 64 (1998) 210.
[3] For reviews, see : S. Narison, Nucl. Phys. Proc. Suppl. 96 (2001) 244; Nucl. Phys. A 675 (2000) 54; Nucl. Phys. Proc.Suppl. 121 (2003) 131; Nucl. Phys. Proc. Suppl. 186 (2009) 306.
[4] A. Bramon and S. Narison, Mod. Phys. Lett. A 4 (1989) 1113.
[5] H. Fritzsch, P. Minkowski, Nuovo Cimento A 30 (1975) 393.
[6] S. Narison, Phys. Lett. B 125 (1983) 501.
[7] S. Narison, Z. Phys. C 22 (1984) 161.
[8] S. Narison, N. Pak, N. Paver, Phys.Lett. B 147 (1984) 162.
[9] G. Mennessier, S. Narison, N. Paver, Phys. Lett. B 158 (1985) 153.
[10] S. Narison, Phys. Lett. B 175 (1986) 88.
[11] S. Narison, Phys. Rev. D 73 (2006) 114024.
[12] J.I. Latorre, S. Narison, S. Paban, Phys. Lett. B 191 (1987) 437.
[13] S. Narison, G.M. Shore, G. Veneziano, Nucl.Phys. B 433 (1995) 209.
[14] M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Nucl. Phys. B 147 (1979) 385, 448.
[15] V.I. Zakharov, Int. J. Mod. Phys. A 14, 4865 (1999).
[16] For reviews, see e.g.: S. Narison, Cambridge Monogr. Part. Phys. Nucl. Phys. Cosmol. 17 (2004) 1-778 [hep-ph/0205006]; World Sci. Lect. Notes Phys. 26 (1989) 1-527; Riv. Nuov. Cim. 10 N2 (1987) 1; Phys. Rep. 84 (1982) .
[17] G. Mennessier, S. Narison, W. Ochs, Phys. Lett. B 665 (2008) 205; Nucl. Phys. Proc. Suppl. 238 (2008) 181.
[18] R. Kaminski, G. Mennessier, S. Narison, Phys. Lett. B 680 (2009) 148.
[19] G. Mennessier, S. Narison, X.G Wang, Phys. Lett. B 688 (2010) 59.
[20] G. Mennessier, S. Narison, X.G Wang, Phys. Lett. B 696 (2011) 40.
[21] H.G. Dosch and S. Narison, Nucl. Phys. Proc. Suppl. 121 (2003) 114.
[22] W. Ochs, J. Phys. G 40 (2013) 043001.
[23] U. Gastaldi, Nucl. Phys. Proc. Suppl. 96 (2000) 234; Nucl. and Part. Phys. Proc. 300-302 (2018) 113.
[24] C. Amsler et al., PDG Review on scalar mesons below 2 GeV and Review on non $\bar{q} q$ mesons in [25] and private communications from C. Amsler and C. Hanhart.
[25] P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020 (2020) 083C01.
[26] G. Mennessier, Z. Phys. C 16 (1983) 241; O. Babelon et al., Nucl. Phys. B 113 (1976) 445.
[27] G. Mennessier, T.N. Truong, Phys. Lett. B 177 (1986) 195; A Pean, Thèse Montpellier (1992) (unpublished).
[28] The NA48/2 collaboration: B. Bloch-Devaux, PoS Confinement 8 (2008) 029; J.R. Batley et al., Eur. Phys. J. C 52 (2007) 875.
[29] I. Caprini, G. Colangelo and H. Leutwyler, Phys. Rev. Lett. 96 (2006) 132001.
[30] F.J Yndurain, R. Garcia-Martin, J. R. Pelaez, Phys. Rev. D 76 (2007) 074034.
[31] P. Minkowski and W. Ochs, Eur. Phys. J. C 9 (1999) 283.
[32] K. L. Au, D. Morgan and M. R. Pennington, Phys. Rev. D 35 (1987) 1633.
[33] The BES III collaboration : L. Xu , Nucl. and Part. Phys. Proc. 282-284 (2017) 121.
[34] The BES III collaboration : S. Fang, Nucl. Phys. Proc. Suppl. 164 (2007) 135.
[35] The KLOE collaboration : F. Ambrosino et al. , Nucl. Phys. Proc. Suppl. 186 (2009) 290.
[36] The BABAR collaboration: A. Palano, talk presented at QCD 21 (5-9 july 2021, Montpellier-FR)
[37] J. Babcock and J.L. Rosner, Phys. Rev. D 14 (1976) 1286.
[38] N. N. Achasov, Nucl. Phys. Proc. Suppl. 186 (2009) 283.
[39] The GAMS collaboration, F. Binon et al, Nuovo Cimento A 78 (1983) 13; D. Alde et al., Phys. Lett. B 201 (1988) 160; D. Alde et al., Phys. Lett. B 269 (1988) 485.
[40] D. Harnett, T.G. Steele, R.T. Kleiv and K. Moats Nucl.Phys.B Proc.Suppl. 234(2013) 257; ibid Nucl. Phys. A 850 (2011) 110.
[41] R.A. Bertlmann, G. Launer and E. de Rafael, Nucl. Phys. B250, (1985) 61.
[42] E. Witten, Nucl. Phys B156 (1979) 269;
[43] G. Veneziano, Nucl. Phys. B159 (1979) 213.
[44] P. Di Vecchia and G. Veneziano, Nucl. Phys. B171 (1980) 253
[45] A. Di Giacomo, Nucl. Phys. Proc. Suppl. B 23 (1991) 191;
[46] R.J. Crewther, Phys. Rev. Lett. 28 (1972) 1421; J. Ellis and M.S. Chanowitz, Phys. Lett. B 40 (1972) 397; Phys. Rev. D 7 (1973) 2490; P. Di Vecchia, G. Veneziano, Nucl. Phys. B 171 (1981) 253.
[47] J. Ellis and J. Lanik, Phys. Lett. B 150 (1985) 289; Phys. Lett. B 175 (1986) 83; J.Lanik, Z. Phys. C 39 (1988) 143.
[48] A. Hart et al. [UKQCD Collaboration], Phys. Rev. D 74 (2006) 114504
[49] M.C. Neile, Nucl. Phys. Proc. Suppl. 186 (2009) 264.
[50] E. Gregory et al, JHEP 10 (2012) 170; A. Rago, contribution at QCD 21 (4-9 july 2021, Montpelleir - FR) and private communications.
[51] V. Mathieu, N. Kochelev, V. Vento, Int. J. Mod. Phys. E 18 (2009) 1.
[52] A.L. Kataev, N.V. Krasnikov and A.A. Pivovarov, Nucl. Phys. B 198 (1982) 508; ibid, Nucl. Phys. B 490 (1997) 505 (erratum).
[53] K.G. Chetyrkin, B.A. Kniehl and M. Steinhauser, Phys. Rev. Lett. 79 (1997) 353.
[54] D. Harnett, T.G. Steele and V. Elias, Nucl.Phys. A 686 (2001) 393 and private communication with T.G. Steele.
[55] A. Pich and A. Rodriguez-Sanchez, Phys.Rev. D94 (2016) no.3, 034027
[56] S. Narison, Phys. Lett. B673 (2009) 30.
[57] S. Bethke, Nucl. Part. Phys. Proc. 282-284 (2017)149.
[58] S. Narison, Int. J. Mod. Phys. A 331850045 (2018); 33, 1850045(E) (2018), and references therein.
[59] S. Narison, Phys. Lett. B 693, 559 (2010) ; 705, 544(E) (2011) ; Phys. Lett. B 706, 412 (2011) ; Phys. Lett. B 707, 259 (2012).
[60] S. Narison, Nucl. Part. Phys. Proc. B 207-208 (2010) 315; ibid, Nucl. Part. Phys. Proc. 258-259 (2015) 189; ibid, Nucl. Part. Phys. Proc. 300-302 (2018) 153; ibid, Nucl. Part. Phys. Proc. 309-311 (2020) 135.
[61] S. Narison, Int. J. Mod. Phys. A33 (2018) no. 10, 1850045 [arXiv:1801.00592 [hep-ph]].
[62] S. Narison, Addendum: Int. J. Mod. Phys. A33 (2018) no.10, 1850045 [arXiv:1812.09360 [hep-ph]].
[63] E. Bagan and T.G Steele, Phys. Lett. B 243 (1990) 413 and private communication from T.G Steele.
[64] S. Narison, Phys. Lett. B693 (2010) 559, erratum ibid, Phys. Lett. 705 (2011) 544.
[65] S. Narison, Phys. Lett. B706 (2012) 412.
[66] S. Narison, Phys. Lett. B707 (2012) 259.
[67] V.A. Novikov et al., Nucl. Phys. B 165 (1980) 67.
[68] V.A. Novikov et al., Nucl. Phys. B 191 (1981) 301.
[69] E. V. Shuryak, Nucl. Phys. B 203 (1982) 116; T. Schaefer and E. V. Shuryak, Rev. Mod. Phys 70 (1998) 323.
[70] E. Bagan et al., Nucl. Phys. B254, (1985) 55; ibid, Z. Phys. C32 (1986) 43.
[71] G. Launer, S. Narison and R. Tarrach, Z. Phys. C26 (1984) 433.
[72] V.I. Zakharov, Nucl. Phys. Proc. Suppl. 164 (2007) 240.
[73] S. Narison, Nucl. Phys. Proc. Suppl. 164 (2007) 225.
[74] S. Narison and V.I. Zakharov, Phys. Lett. B522 (2001) 266.
[75] O. Andreev, Phys. Rev. D73 (2006) 107901.
[76] O. Andreev and V.I. Zakharov, Phys. Rev. D74 (2006) 025023; ibid,D76 (2007)047705.
[77] F. Jugeau, S. Narison, H. Ratsimbarison, Phys. Lett. B722 (2013) 111.
[78] K.G. Chetyrkin, S. Narison and V.I. Zakharov, Nucl. Phys. B550 (1999) 353.
[79] S. Narison, Phys. Lett. B300 (1993) 293; ibid, Phys. Lett. B361 (1995) 121.
[80] M. Kozhevnikova, A. Oganesian and O. Terayev, EPJ Web of Conferences 204 (2019) 02005.
[81] H. Forkel, Phys.Rev. D 71 (2005) 054008; Phys. Rev. D 64 (2001) 034015.
[82] D. Harnett and T.G. Steele, Nucl. Phys. A 695 (2001) 205; G. Orlandini, T. G. Steele and D. Harnett, Nucl.Phys. A 686 (2001) 261.
[83] S. Narison, Phys. Lett. B738 (2014) 346.
[84]] B. V. Geshkeinben and B. L. Ioffe, Nucl. Phys. B166 (1980) 340; B.L. Ioffe, K.N. Zyablyuk, Eur. Phys. J. C27 (2003) 229; B. L. Ioffe, Prog. Part. Nucl. Phys. 56 (2006) 232 and references therein.
[85] J. S. Bell and R. A. Bertlmann, Nucl. Phys. B177, (1981) 218; ibid, Nucl. Phys. B187, (1981) 285.
[86] R. A. Bertlmann, Acta Phys. Austriaca 53, (1981) 305.
[87] S. Narison and E. de Rafael, Phys. Lett. B 522, (2001) 266.
[88] R.M. Albuquerque, S. Narison, D. Rabetiarivony Phys. Rev. D 103 (2021) 7, 074015.
[89] A.H. Fariborz and R. Jora, Phys. Lett. B 790 (2019) 410.
[90] M. Frasca, Nucl. Phys. Proc. Suppl. 207-208 (2010) 196 and references therein.
[91] L.S.Kisslinger, J.Gardner and C.Vanderstraeten, Phys. Lett. B 410 (1997) 1.
[92] T. Huang, H.-Y. Jin and A.-L. Zhang, Phys. Rev. D 59 (1999) 034026.
[93] H.-X. Chen, W. Chen and S.-L. Zhu, arXiv 2107.05271 [hep-ph] (2021).
[94] H.n. Li, arXiv 2109.0456 [hep-ph] (2021).
[95] S. Narison, Phys. Lett. B 104 (1981) 485.
[96] L. Montanet, Non-perturbative methods Conf. (Montpellier 1985) ed. S. Narison, world scientific co.; F. Gilman and R. Kauffman, Phys. Rev. D 36 (1987) 2761; T. N. Pham, Phys. Lett. B 246 (1990) 175 ; P. Ball, J.M. Frere and M. Tytgat, Phys. Lett. B 365 (1996) 367.
[97] F. Close, Nucl. Phys. Proc. Suppl. 56A (1997) 248.
[98] R. Albuquerque, S. Narison, A. Pimikov and D. Rabetiarivony (work in progress).
[99] A. Pimikov et al., Phys. Rev. D 96 (2017) 11, 114024; Phys. Rev. Lett. 119 (2017) 7, 079101; S. Narison, contribution at QCD 21 (5-9 july 2021, Montpellier-FR).

Declaration of interests

\boxtimes The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

[^0]: ${ }^{1} \mathrm{~A}$ more complete and comprehensive discussion on production processes and decays of scalar mesons can be found in the recent reviews of [22-25].

[^1]: ${ }^{2}$ An estimate of this mixing angle using Gaussian sum rules favours a maximal mixing [40].

[^2]: ${ }^{3}$ For reviews, see e.g. [72, 73].

[^3]: ${ }^{4}$ The name inverse Laplace transform has been attributed due to the fact that perturbative radiative corrections have this property.

[^4]: ${ }^{5}$ We remind that this combination of sum rules has been firstly (and successfully) introduced to quantify the deviation from kaon PCAC [95] due to $S U(3)$ breakings and later to estimate the topological charge of the $U(1)_{A}$ channel [7] and its slope [7, 13] within the standard SVZ expansion without any additional instanton contributions.

[^5]: ${ }^{6}$ For a review prior 1996, see e.g [97].

