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Abstract-In Body Sensor Networks (BSNs), evaluating reliability of sensors is an important research topic which aims to optimize the overall performance of BSNs. Previous studies have often addressed this problem based only on a single criterion. However, it is often unreliable to rely on a single criterion to assess sensors in real situations. Accordingly, in this paper, we propose a novel multi-criteria approach for evaluating sensor reliability in activity recognition problem based on belief function theory. Specifically, in the theoretical part, we first describe the Multi-Criteria Analysis of Sensor Reliability (MCASR) using Belief Function based the Technique for Order Preference by Similarity to Ideal Solution (BF-TOPSIS). And in our proposed MCARS,

I. INTRODUCTION

O VER the past twenty years, Body Sensor Networks (BSNs) [START_REF] Gravina | Multi-sensor fusion in body sensor betworks: state-of-the-art and research challenges[END_REF][START_REF] Nekooei | Cooperative coevolution design of multilevel fuzzy logic controllers for media access control in wireless body area networks[END_REF][START_REF] Michaelides | Uplink NOMA in body area networks with simple node pairing strategies[END_REF][START_REF] Mathews | Centralized class specific dictionary learning for wearable sensors based physical activity recognition[END_REF][START_REF]Maximum correntropy based dictionary learning framework for physical activity recognition using wearable sensors[END_REF][START_REF] Sargano | Human action recognition using transfer learning with deep representations[END_REF][START_REF] Mathews | Dictionary and deep learning algorithms with applications to remote health monitoring systems[END_REF] attract much attention from academia and industry because of the necessity to help more and more elderly or disable people to prevent accidents. Considering that the data in BSNs usually come from multiple sensors, multisensor fusion technology has received considerable attention in transforming multi-source inconsistent data into high-quality fusion data [START_REF] Wang | Hierhar: sensor-based data-driven hierarchical human activity recognition[END_REF]. However, the information collected by the sensors in BSNs is usually imperfect in actural environment. Thus, several classical uncertainty theories have been proposed such as probability theory [START_REF] Viard | Human activity discovery and recognition using probabilistic finite-state automata[END_REF], Belief Function theory (BF) [START_REF] Nimisha | Fault matters: sensor data fusion for detection of faults using Dempster-Shafer theory of evidence in IoT-based applications[END_REF][START_REF] Liu | Evidence combination based on credal belief redistribution for pattern classification[END_REF], fuzzy set theory [START_REF] Rubio-Solis | A multilayer interval type-2 fuzzy extreme learning machine for the recognition of walking activities and gait events using wearable sensors[END_REF]. Among them, BF theory has been widely used in the field of multi-sensor data fusion with its flexibility to deal with uncertainty [START_REF] Gravina | Multi-sensor fusion in body sensor betworks: state-of-the-art and research challenges[END_REF]. Thus, the topic of this article mainly focus on BF theory. Usually, the actual system often assume that the input data itself is equally reliable in the early stage of fusion process. However, in reality, the performance of the fusion system depends to a large extent on the sensors' own sensing capabilities (for example, stability, accuracy, energy consumption, sensing range, etc.). Therefore, data provided by the involved sensors often does not have the same reliability, and the information to be fused should be modified according to the reliability of its source. In other words, we should strengthen the influence of information provided by more reliable sources, while weakening the influence of information from less reliable sources.

In order to evaluate the reliability of sensors, the proper criterion needs to be chosen judiciously. In fact, research works like [START_REF] Ayadi | Network lifetime management in wireless sensor networks[END_REF][START_REF] Jamal | Deep domain adaptation in action space[END_REF][START_REF] Rezaie | An adaptive algorithm to improve energy efficiency in wearable activity recognition systems[END_REF][START_REF] Moallem | Wireless visual sensor networks energy optimization based on new entropy model[END_REF] and [START_REF] Monemian | Optimum sensor selection based on energy constraints in cooperative spectrum sensing for cognitive radio sensor networks[END_REF] present several proposals, that assess the sensors using different single criterion. The representative criteria are Fisher information [START_REF] Ayadi | Network lifetime management in wireless sensor networks[END_REF][START_REF] Rezaie | An adaptive algorithm to improve energy efficiency in wearable activity recognition systems[END_REF], error covariance [START_REF] Moallem | Wireless visual sensor networks energy optimization based on new entropy model[END_REF][START_REF] Monemian | Optimum sensor selection based on energy constraints in cooperative spectrum sensing for cognitive radio sensor networks[END_REF] and mutual information [START_REF] Huang | An energy-efficient and reliable scheduling strategy for dynamic WBANs with channel periodicity exploitation[END_REF][START_REF] Khutsoane | Watergrid-sense: a lora-based sensor node for industrial IoT Applications[END_REF]. But, the use of only a single criterion to evaluate the involved sensors is, however, disputable since this strategy is not enough sufficient to provide the comprehensive assessment. Thus, we herein consider the multi-criteria decision-making strategy to solve the complex issues where multiple inconsistent sensor measurements have happened. The multi-criteria evaluation method used in this work is the Belief Function based the Technique for Order Preference by Similarity to Ideal Solution (BF-TOPSIS) [START_REF] Dezert | A new belief function based approach for multi-criteria decision-making support[END_REF]. Thanks to BF-TOPSIS, the reliability of sensors in BSNs can be easily evaluated using multiple assessment criteria.

The main contributions of this paper are described as follows:

• BF-TOPSIS is used to evaluate sensors more seriously according to multi-criteria. Instead of assessing the involved sensors using only one criteria, we evaluate the sensors in terms of conflicts between sensors and the imprecisions of sensor readings; • To prove the effectiveness of our new Multi-Criteria Analysis of Sensor Reliability (MCASR), we apply it to solve daily activity recognition problems. In our proposed framework of activity recognition, we first apply the Long-Short Time Memory (LSTM) network to model sequential data and generate the sensor readings. Afterwards, the MCASR strategy is used to assess these sensor readings before combination. Then, the classical discounting combination rule in BF theory is used to combine these sensor readings with the obtained weights; • In order to evaluate the effectiveness of our proposed activity recognition model, we use the UCI mHealth dataset to test the performance of our proposed model, and focus on the analysis of the impacts of some important parameters. Section II introduces the basic concepts of BF. Then, the proposed MCASR is illustrated in the third section. Section IV describes the proposed activity recognition system using MCASR in details. The fifth section gives the detailed experimental results on an activity recognition application. Several tests and comparisons are also described. The final section includes a brief conclusion.

II. BASICS OF BF

In BF theory, mass of belief is often assigned to the subsets in the set of Frame of Discernment (FoD). Generally, the mathematical symbol m(•) represents the mapping function which is defined as follows [START_REF] Shafer | A mathematical theory of evidence[END_REF]

: for θ ⊆ 2 Θ , m : 2 Θ → [0, 1], θ⊆2 Θ m(θ) = 1, (1) 
m(∅) = 0, m(θ) > 0. (2) 
In BF theory, m is also called Basic Belief Assignment (BBA) and the set of focal elements of a BBA m(•) is denoted F(m).

The classical Dempster's rule [START_REF] Shafer | A mathematical theory of evidence[END_REF] is often used to combine two independent Sources of Evidence (SoEs), which is denoted as m 1 ⊕ m 2 and defined as follows: for ∀θ ⊆ 2 Θ , θ = ∅,

(m 1 ⊕ m 2 )(θ) = 1 1 -K • θ1,θ2⊆2 Θ ,θ1∩θ2=θ m 1 (θ 1 )m 2 (θ 2 ).
(

) 3 
where K represents the degree of conflict between m 1 and m 2 as:

K = θ1,θ2⊆2 Θ ,θ1∩θ2=∅ m 1 (θ 1 )m 2 (θ 2 ). (4) 
To make a final decision, the widely used pignisitc transformation method: BetP (•) was proposed by Smets in [START_REF] Shafer | A mathematical theory of evidence[END_REF], which is given as follows: for ∀θ ⊆ Θ,

BetP (θ) = θ ⊆Θ m(θ )(|θ ∩ θ |/|θ |). (5) 
And the classical discounting steps are described in details:

for ∀θ ∈ 2 Θ \ {Θ}, m ω (θ) = ω • m(θ), m ω (Θ) = ω • m(Θ) + (1 -ω). (6) 

III. MULTI-CRITERIA BASED ANALYSIS OF SENSOR RELIABILITY

We first assume that there exists several BBAs

m i (i = 1, • • • , M ) over the same FoD Θ = {θ 1 , θ 2 , • • • , θ n } (7), which are provided by the independent A i , i = 1, • • • , M sensors. θ 1 θ 2 θ 3 • • • θ 2 |Θ| A 1    m 1 (θ 1 ) m 1 (θ 2 ) m 1 (θ 3 ) • • • m 1 (θ 2 |Θ| )    A 2 m 2 (θ 1 ) m 2 (θ 2 ) m 2 (θ 3 ) • • • m 2 (θ 2 |Θ| ) . . . . . . . . . . . . . . . . . . A M m M (θ 1 ) m M (θ 2 ) m M (θ 3 ) • • • m M (θ 2 |Θ| ) (7) 
where θ ∈ 2 Θ . According to the traditional strategy of sensor fusion, all these involved sensor readings are combined by Dempster's rule [START_REF] Michaelides | Uplink NOMA in body area networks with simple node pairing strategies[END_REF] and then the recognition system can acquire the predicted class of the activity according to the final fusion result. However, from the perspective of conflicts between sensors or information redundancy, the reliability of sensors should be evaluated before making the fusion of BBAs. The goal of evaluating sensor reliability is to eliminate or reduce the negative influence of unreliable sensors on the final recognition accuracy. To achieve this goal, the appropriate criterion need to be chosen in advance.

A. Assessment criteria

The involved criteria considered in this work can be divided into two main classes. The first class of criteria relates to the conflict between sensor readings provided by each sensor combination. The second class related to the sensor readings themselves. Combined together, these two criteria are deemed to yield a more efficient and comprehensive assessment of sensors really useful for the recognition system.

1) Conflict using interval distance d BI : The interval distance between evidences between two BBAs m 1 and m 2 expressed in their vector form is given by Han [START_REF] Han | Belief interval-based distance measures in the theory of Belief Functions[END_REF]:

d BI (m 1 , m 2 ) = N om • 2 n -1 ii=1 [d I (BI 1 (θ ii ), BI 2 (θ ii ))] 2 . (8)
Here, N om is the normalization factor:

N om = 1/2 (n-1)
and

BI 1 (θ ii ) : [Bel 1 (θ ii ), P l 1 (θ ii )], BI 2 (θ ii ) : [Bel 2 (θ ii ), P l 2 (θ ii )], d I ([a, b], [c, e]) = [ a+b 2 -c+e 2 ] 2 + 1 3 [ b-a 2 -e-c 2 ]
2 . Thus, we can define the conflict degree (this is criterion Cr 1 ) between A i and other involved sensors A i as follows:

Cr 1 = Conf lict(A i ) = 1 M • M i =1 d BI (m A i (•), m A i (•)). (9) 
2) Imprecision: Within the BF theory, the imperfection of a BBA is mainly determined by strife (Cr 2 ) [START_REF] Dong | A novel multi-criteria discounting combination approach for multi-sensor fusion[END_REF]. The measure of strife is defined as:

Cr 2 (m) = St(m) = - θ∈F (m) m(θ)Log 2 [ θ ∈F (m) |θ ∩ θ | |θ| m(θ )]. (10) 
It is important to note that the purpose of using these two aforementioned criteria is to illustrate the effectiveness of our proposed sensor reliability strategy for activity recognition. Of course, more appropriate criteria can be chosen according to the specific problems to be solved in other application contexts such as illness detection.

B. Evaluation of sensor reliability based on BF-TOPSIS 1) Calculating the scoring matrix: Firstly, with A i , i = 1, • • • , M sensors, one calculates the reliability of all involved sensors:

A = {A 1 , A 2 , • • • , A i , • • • , A M } according to each criterion Cr j , j = 1, • • • , N
and then constructs the following scoring matrix S:

A 1 A 2 A 3 • • • A M Cr 1     S 1 (A 1 ) S 1 (A 2 ) S 1 (A 3 ) • • • S 1 (A M )     Cr 2 S 2 (A 1 ) S 2 (A 2 ) S 2 (A 3 ) • • • S 2 (A M ) . . . . . . . . . . . . . . . . . . Cr N S N (A 1 ) S N (A 2 ) S N (A 3 ) • • • S N (A M ) (11) 
And in this paper, N = 2: Cr 1 is the conflict measure represented by the distance between two BBAs, and Cr 2 is the imprecision measure. It is noteworthy that the involved criteria here can be adjusted according to the actual needs depending on the chosen application.

2) Construction of BBAs:

First, A {A 1 , A 2 , • • • , A M }
is the special FoD which each element in it represents the independent sensor. And we here use the method presented in [START_REF] Dezert | A new belief function based approach for multi-criteria decision-making support[END_REF] to calculate the BBAs:

m j (A i ) Bel j (A i ) (12) m j ( Āi ) Bel j ( Āi ) = 1 -P l j (A i ) ( 13 
)
m j (A i ∪ Āi ) P l j (A i ) -Bel j (A i ). (14) 
Besides, Bel j (A i ), P l j (A i ) and Bel j ( Āi ) in ( 14) are defined as follows:

Bel j (A i ) Sup j (A i ) A j max = k∈{1,••• ,M }|S jk ≤Sji |S ji -S jk | max i Sup j (A i ) . Bel j ( Āi ) Inf j (A i ) A j min = -k∈{1,••• ,M }|S jk ≥Sji |S ji -S jk | min i Inf j (A i ) . P l j (A i ) 1 -Bel j ( Āi ).
3) BF-TOPSIS Methods:

• Step 1: From the score matrix S, compute BBAs m ij (A i ), m ij ( Āi ) and m ij (A i ∪ Āi ) using ( 14);

• Step 2: Compute the belief interval based distance d BI (m ij , m best ij ) and the distance d BI (m ij , m worst ij ), where the best ideal BBA is m best ij (A i ) 1 and the worst ideal BBA is m worst ij ( Āi ) 1 [22]; • Step 3: Calculate d BI (m ij , m best ij ) and d BI (m ij , m worst ij ): d best (A i ) N j=1 w j • d BI (m ij , m best ij ); (15) 
d worst (A i ) N j=1 w j • d BI (m ij , m worst ij ). (16) 
• Step 4: The relative closeness is then defined by

Clossness(A i , A best ) d worst (A i ) d worst (A i ) + d best (A i ) . (17) 
• Step 5: (Weights calculation) The weights of each sensor combination can be calculated Closeness(A i , A best ) ∈ [0, 1] using [START_REF] Huang | An energy-efficient and reliable scheduling strategy for dynamic WBANs with channel periodicity exploitation[END_REF], where a larger ω(A i ) value means a higher degree of reliability.

ω(A i ) Clossness(A i , A best ) M i=1 Clossness(A i , A best ) . ( 18 
)
Sensor 
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C. The proposed multi-criteria based analysis of sensor reliability

In this paper, the sensor reliability is evaluated by using the conflict and the imprecision. The general process works as follows:

• Acquisition of sensor readings. First, the involved sensor readings are constructed which are given as BBAs based on the common FoD; • Evaluation of each sensor candidate. In the second step, we calculate the scoring value of each sensor reading according to the considered criteria and then we construct the scoring matrix; • Multi-criteria supports for evaluating sensor reliability. After the construction of the scoring matrix, the ranking list drawn from the BF-TOPSIS approach and then we can calculate the related weights using (18);

IV. APPLICATION TO ACTIVITY RECOGNITION In this part, the practical application of activity recognition in BSNs [START_REF] Chen | A novel ensemble ELM for human activity recognition using smartphone sensors[END_REF][START_REF] Dong | Dezert-Smarandache theory-based fusion for human activity recognition in body sensor networks[END_REF][START_REF] Golestani | Human activity recognition using magnetic induction-based motion signals and deep recurrent neural networks[END_REF] is presented. A flow chart of our proposed recognition system based on MCASR is shown in Fig. 1.

A. Training stage

As shown in our proposed framework of activity recognition (Fig. 1), in the training stage, we use the classical LSTM as the basic classifier to learn the high-level features from raw data collected by sensors. The LSTM was originally proposed by Hochreiter and Schmidhuber in [START_REF] Hochreiter | Long Short-Term Memory[END_REF]. Untill now, the LSTM has been successfully applied to solve many complex tasks, such as video sequence prediction [START_REF] Villegas | Decomposing motion and content for natural video sequence prediction[END_REF] and natural language processing [START_REF] Zhu | A novel semisupervised deep learning method for human activity recognition[END_REF].

Here, we consider an n-class classification problem. That is to say, an instance with its corresponding pattern x has to be classified among n classes, denoted as Besides, the structure of the basic LSTM network and the inner structure of the LSTM are given in Fig. 2 and Fig. 3. As shown in Fig. 3, we herein denote the input gate, forget gate, output gate and two memory cell states as in t , f t , o t , Ct and C t , respectively:

Θ = {θ 1 , θ 2 , • • • , θ n }.
in t = σ(W in [h t-1 , x t ] + b in ); (19) f t = σ(W f [h t-1 , x t ] + b f ); (20) Ct = tanh(W C [h t-1 , x t ] + b C ); (21) 
C t = f t * C t-1 + in t * Ct ; (22) o t = σ(W o [h t-1 , x t ] + b o ); (23) h t = o t * tanh(C t ). (24) 
where the sigmoid function is as follows:

σ(x) = 1 1 + e -x . (25) 
Finally, we can obtain the outputs of LSTM Network as follows:

ŷ = sof tmax(z) = sof tmax(W T h t + b). ( 26 
)
where the definition of softmax function is

sof tmax(z i ) = e zi n i=1 e zi . (27) 

B. Testing stage

After the training process of the basic LSTM networks is completed, we can easily recognize the unlabeled data based on our activity recognition strategy. Considering that each trained LSTM corresponds to the specific sensor (we here consider M independent A i , i = 1, • • • , M sensors), the output of the LSTM network in [START_REF] Golestani | Human activity recognition using magnetic induction-based motion signals and deep recurrent neural networks[END_REF] is directly used as M BBAs for the wearable sensor:

m 1 = ŷ1 ; m 2 = ŷ2 ; . . . m M = ŷM .
And the proposed MCASR in Section III is applied to assess the reliability degree of each sensor which is denoted as 

ω = {ω 1 , ω 2 , • • • , ω M }. Then, the classical discounting
, m ω2 2 , • • • , m ω M M
) and we can combine all these updated SoEs using Dempster's rule (3) which is denoted symbolically by

m f usion = Dempster s rule(m ω1 1 , m ω2 2 , • • • , m ω M M ). (28) Finally, BetP (•) (5) is used to transform m f usion into the Bayesian belief function m BetP f usion : m BetP f usion (θ) = θ ⊆Θ m f usion (θ )(|θ ∩ θ |/|θ |). (29) 
and then the final decision of the predicted class of x can be made as

θ * = argmax θ m BetP f usion (θ). ( 30 
)
where θ * is a singleton of 2 Θ based on the max of belief mass.

In order to show how our proposed fusion method works in the testing stage, here, we give a simple example to illustrate the principle of the discounting fusion discussed in this paper: assuming that there exists a specific testing sample x testing with unknown label and three LSTM models trained from three different sensors are used to predict the label of x testing . And three corresonding outputs (BBAs: m 1 , m 2 , m 3 ) of LSTM models are given in Table I. It is worth noting that the scale of FoD in this simple example is consistent with the experimental discussions in Section V:

Θ = {θ 1 , • • • , θ 12 } and 2 Θ = {θ 1 , • • • , θ 12 , Θ}.
In Θ, each singleton represents a kind of the specific activity and Θ in 2 Θ represents the unknown activity. Based on ( 9) and ( 10), the scoring matrix related with conflict and imprecision can be calculated and presented in Table II. We can observe that m 3 has the highest conflict degree compared with other sensor readings and m 1 has the lowest degree of imprecision among all considered BBAs.

Then, we can get the positive and negative evidence supports of each sensor (A 1 : m 1 , A 2 : m 2 , A 3 : m 3 ) based on [START_REF] Jamal | Deep domain adaptation in action space[END_REF] which are given in Table III and Table IV. After that, the derived inner BBA of each sensor A i can be also obtained using [START_REF] Jamal | Deep domain adaptation in action space[END_REF] shown in Table V 

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this part, we show the effectiveness of our proposed activity recognition method based on MCASR. To do these experiments, a well-known activity recognition dataset mHealth1 is chosen from the UCI Machine Learning repository [START_REF] Banos | mhealthdroid: a novel framework for agile development of mobile health applications[END_REF]. In addition, all related experiments in this paper are implemented in MATLAB TM R2019b environment running on the PC with Intel Core i5-6500 CPU (Window 10).

A. Dataset: mHealth

The raw data in mHealth activity recognition dataset [START_REF] Banos | mhealthdroid: a novel framework for agile development of mobile health applications[END_REF] were collected from heterogeneous sensors. These independent sensors were deployed on the subject's chest, right or left arm and right or left ankle. The involved sensor types consist of accelerometer and magnetic, and the whole collected dataset comprises daily activity recordings for ten volunteers 

B. Measures of performances

As measures of performances of our activity recognition system, we consider the classical Accuracy defined by 

Accuracy = 1 n n k=1 TP k + TN k TP k + TN k + FP k + FN k . (31) 

C. Experimental setup

In this paper, we have made the comparisons between our proposed method and start-of-the-art methods. These classical approaches include: (1) Support Vector Machine (SVM): the input vectors derived from the segmented raw signals, are used as the input of SVM model. Similar to HMM, the SVM models are trained with the classical One-vs-all strategy and the number of SVM models is consistent with the number of activity classes; (2) Hidden Conditional Random Fields (HCRF): each HCRF model is trained by using three hidden states and we select the highest scoring model among all one-vs-all HCRF models; (3) Convolutional Neural Networks with 2D kernel (2D CNN): here, we consider CNN using 2D convolution kernel and 2D pooling kernel.

In our proposed method (Fig. 1), raw data collected from three sensors (AC, ALA and ARLA) are used to train three basic LSTM network. The default parameters of LSTM network are: the number of features for the input layer is 3 (axisx,y,z); the number of hidden units is 70; the total epoch is 50 with an early stopping criteria. For the convenience of representation and comparisons in the following sections, we just use abbreviations to denote basic LSTM network and our proposed model: AC, ALA and ARLA means that LSTM network is trained by raw data collected from accelerator located on chest, left ankle and right lower arm, respectively. And fused LSTM network refers to our proposed model which aims to combine all basic LSTM (AC, ALA, ARLA) using MCASR. Besides, in our proposed MCASR, the important parameter values are fixed: M = 3 which represents that in this specific application, sensor readings collected from three sensors (AC, ALA, ARLA) are considered for fusion; n = 12 means that there are twelve predefined activities which need to be classified; N = 2 is the number of assessment criteria which are defined in ( 9) and [START_REF] Nimisha | Fault matters: sensor data fusion for detection of faults using Dempster-Shafer theory of evidence in IoT-based applications[END_REF]; In this application, considering that there are nearly twelve activities to be classified, we simplify the power set space and only consider the incomplete power set space: 

2 Θ ref ined = {θ 1 , • • • , θ 12 , Θ}.

D. Experimental results

1) Main performance of the fused LSTM model for each subject: For 1 in mHealth, our proposed fused LSTM network achieves the mean prediction performance of 0.9433. Similarly, for subject 2-10, it achieves 0.8663, 0.9193, 0.8749, 0.8566, 0.9046, 0.9049, 0.8826, 0.9335, 0.8613. In order to show the accuracy of each activity, we also give the specific confusion matrix of subject 10 in Fig. 4. By looking at the confusion matrix of our fused LSTM network in Fig. 4, we see that the corresponding accuracy of twelve activities based on our fused model is significantly different: the activity with the highest recognition accuracy (0.9870) is V3 (lying down) and the type of activity with the lowest recognition accuracy is V12 (jump front and back); for other defined activities: V1-V2, V4-V11, our fused model could give relative good performance and the average accuracies of these ten remaining activities are 91.22%, 97.72%, 98.70%, 91.71%, 91.04%, 97.29%, 97.76%, 97.89%, 97.52%, 97.56%. However, for all subjects, our fused LSTM model has the lowest performance in recognizing V12 (jump front and back). This class is more misclassified as jogging (V10) or running (V11) which might be related to the pace that each individual takes to perform these activities. In order to observe the spatial relationship between these three complex activities, we just draw the corresponding original data in Fig. 5. It is obvious that although the accelerators are deployed on different locations of bodies, the overlap of these three activities is very high, which directly affects the classification accuracy of our proposed model. This also further illustrates that more wearable sensors need to be deployed on body to sense such complex activities, which means that a single accelerator sensor deployed on three locations is not enough. [START_REF] Sojeong | Convolutional neural networks for human activity recognition using multiple accelerometer and gyroscope sensors[END_REF] 89.14% 634.1/0.3 Posterior-Adapted Fusion [START_REF] Chowdhury | Physical activity recognition using posterior-adapted class-based fusion of multiaccelerometer data[END_REF] 88.59% 173/13 Automated Feature Classifier [START_REF] Zdravevski | Improving activity recognition accuracy in ambient-assisted living systems by automated feature engineering[END_REF] 76.44% 130.4/1.2 DSmT-Based Classifier [START_REF] Dong | Dezert-Smarandache theory-based fusion for human activity recognition in body sensor networks[END_REF] 88.46% 94.3/0.2 Multiscale DCNN Ensemble [START_REF] Jessica | Human activity recognition based on smartphone and wearable sensors using multiscale DCNN ensemble[END_REF] 83.99% 634.1/0.6 Autonomous Encoders [START_REF] Kemilly | An ensemble of autonomous auto-encoders for human activity recognition[END_REF] 82.00% 209.9/31 Our Proposed Fused LSTM 91.12% 449.9/0.3

2) Compared to State-of-the-Art approaches: In order to compare the proposed fused LSTM network with other traditional methods, several baseline approaches are implemented herein which were shown in Table IX. We can obviously see that the average accuracy of fused LSTM is the highest. By comparisons, those models (SVM, HCRF, BDT, DSmTbased KDE) trained by hand-crafted features had relatively lower accuracy. Since 2D-CNN can extract deep features using deep neural network, it performed better than other traditional methods. However, such single model didn't consider the important issue of sensor reliability and directly assumes that all involved sensors have the same weights. Based on this premise, all sensor readings are used to train their models which in some degree affects the performance of activity recognition. In terms of training computational cost, the listed three models using deep learning framework: 2D CNN, Muliscale DCNN Ensemble and our proposed Fused LSTM required more training time than the other traditional methods. At the same time, the classical SVM and our previous model DSmT-Based Classifier have the lowest training time in Table IX. This mainly because that these two methods used the traditional manual feature selection and training strategies without deep learning architecture. Therefore, the training time of these two models is lower than other models, which is reasonable. In terms of the testing computational cost, our proposed fused LSTM is highly competitive which has the average testing time similar to SVM, 2D CNN, DSmT-Based Classifier. However, the training time of the proposed fused LSTM is superior than others and this is mainly because that there are several basic LSTM networks which are required to be trained in our proposed ensemble recognition framework Fig. 1.

(1) Subject 1

(2) Subject 2

(3) Subject 3 (4) Subject 4

(5) Subject 5 (6) Subject 6 As shown in the framework of our proposed model in Fig. 1, we essentially integrates multiple basic LSTMs into the fused model. Thus, we further compare the performances of basic LSTMs and fused LSTM, which was shown in Fig. 6. Considering the mHealth dataset, we can observe a plot containing 10 violin box-plots representing the variation/dispersion of the accuracy per model in Fig. 6. In this figure, we notice that fused LSTM network (yellow) has less dispersion in accuracy that other basic LSTMs for all ten individuals. And the median accuracy (white circle) of fused LSTM is obviously better than all mentioned basic LSTMs. This shows, once again, the superiority and effectiveness of our proposed fused LSTM with MCASR.

E. Impacts of hidden nodes and MaxEpochs in LSTM 1) Number of hidden nodes in LSTM network: For the LSTM network, the number of hidden layer nodes in the network is directly related to the performance of the recognition model. Here, we focus our discussions on the impact of this key parameter on the recognition accuracy for three basic LSTMs trained by raw data collected from AC, ALA, ARLA, and the proposed fused LSTM network with MCASR using the mHealth dataset. We can clearly find in Fig. 7 that the accuracies of all basic LSTM models and also fused LSTM network increases with more hidden nodes (from 10 to 90). However, when the number of hidden nodes is greater than a certain number, the accuracies become stable. Thus, the default value (70) of epochs for our proposed fused LSTM network is proper. Our proposed fused LSTM network with MCASR achieves the best performance by taking the advantages of MCASR and ensemble framework.

2) Number of MaxEpochs in LSTM network: In addition to the number of hidden nodes, another important hyperparameter is the number of epochs in the training process of LSTM network. Here, we further explore the impact of this parameter on recognition accuracy for three basic LSTMs trained by raw data collected from AC, ALA, ARLA, and the proposed fused LSTM network with MCASR using the mHealth dataset. The recognition accuracies for all the approaches with the number of epochs from 10 to 50 are shown in Fig. 8. We can find that the accuracies of all the approaches increase with more epochs. Similar to the previous experimental results, our proposed fused LSTM network also performs better than basic LSTM models, which indicates the merits of MCASR and our framework of activity recognition. As we all know that the use of higher numbers of epochs will lead to longer training time, thus, the selection of this parameter is a tradeoff between training time and recognition accuracy. Taking training time into consideration, the default value (50) of epochs for our proposed fused LSTM network is proper.

VI. CONCLUSION

In this paper, we have proposed a novel analysis of sensor reliability coupled with multi-criteria support. Besides, a new framework for activity recognition based on the proposed MCASR has also been described and tested. At first, we use BF-TOPSIS to assess the reliability of sensors according to multi-criteria. In this paper, two common used criteria are conflict between sensor readings and imprecision degree of sensor readings. Then, in our application section, we also propose a novel ensemble framework for activity recognition using basic LSTM network with MCASR. Finally, we have verified the validity of the proposed method by classifying twelve daily activities in UCI mHealth dataset. The simulation results show that our proposed fused LSTM network can give the highest accuracy compared with state-of-art approaches. In our future works, more complex activity recognition problems will be also considered with different decision-making strategies in BF theory. Besides, in order to realize the detailed analysis of misclassification, we will further study and discuss the interpretability of our proposed activity recognition model [START_REF] Mathews | Explainable artificial intelligence applications in nlp, biomedical, and malware classification: A literature review[END_REF][START_REF] Selvaraju | Grad-cam: Visual explanations from deep networks via gradient-based localization[END_REF].

Fig. 1 :

 1 Fig. 1: The framework of our activity recognition model.

  Generally, in our following experiments, the raw data will be first divided into two parts: training dataset and testing dataset. The training data X = {x l = {x l1 , x l2 , • • • , x lp }|l = 1, • • • , L} is acquired by sensors in BSNs with known classes, where p is the number of attributes and L is the number of instances.

m

  BetP f usion (θ 1 ) = 0.1199; m BetP f usion (θ 2 ) = 0.0888; m BetP f usion (θ 3 ) = 0.0522; m BetP f usion (θ 4 ) = 0.0923; m BetP f usion (θ 5 ) = 0.0808; m BetP f usion (θ 6 ) = 0.0755; m BetP f usion (θ 7 ) = 0.0792; m BetP f usion (θ 8 ) = 0.0873; m BetP f usion (θ 9 ) = 0.0661; m BetP f usion (θ 10 ) = 0.1140; m BetP f usion (θ 11 ) = 0.0904; m BetP f usion (θ 12 ) = 0.0534. and we can make the final decision that θ 1 is the predicted class of x testing based on (30).

  where TP k , FP k and FN k are respectively the number of correctly recognized class examples (true positives: TP), examples that were either incorrectly assigned to the class (false positives: FP) and not recognized as class examples (false negatives: FN).

Fig. 4 :

 4 Fig. 4: Confusion matrix of subject 10 in UCI mHealth dataset based on our proposed fused LSTM.

2 0Fig. 5 :

 25 Fig. 5: Raw data corresponding to three activities (V10, V11, V12) which are collected from three accelerators located on chest, left ankle and right lower arm, respectively.

Fig. 6 :

 6 Fig. 6: Violin box-plot showing the dispersion of accuracy of the basis LSTM and fused LSTM (IQR: Inter Quartile Range).

Fig. 7 :

 7 Fig. 7:The impacts of the number of hideen nodes for the performance of LSTM network.

Fig. 8 :

 8 Fig. 8: The impacts of the number of MaxEpochs for the performance of LSTM network.

TABLE I :

 I Three BBAs derived from the outputs of LSTM models.

	Belief Mass	θ 1	θ 2	θ 3	θ 4	θ 5	θ 6	θ 7	θ 8	θ 9	θ 10	θ 11	θ 12	Θ
	m 1	0.1233 0.1069 0.0382 0.0878 0.0762 0.0415 0.0594 0.0797 0.0399 0.1811	0.1268 0.0394	0
	m 2	0.1317 0.0755 0.0273 0.1225 0.0718 0.0792 0.0984 0.0706 0.0782 0.1308	0.0832 0.0308	0
	m 3	0.1779 0.0849 0.0329 0.0865 0.0956 0.1178 0.0854 0.1314 0.0616 0.0413	0.0502 0.0345	0

TABLE II :

 II Scoring Matrix for Three Sensor Readings.

	Score(•)	m 1	m 2	m 3
	Conflict Degree (9) 0.0760 0.0610 0.0836
	Imprecision (10)	3.4047 3.4657	3.4098

TABLE III :

 III Evidential supports Sup j (m i ).

	Sup j (A i )	m 1	m 2	m 3
	Conflict (9)	0.0076	0.0376	0
	Imprecision (10) 0.0661	0	0.0559
	strategy in (6) is used to update all the sensor readings (m ω1 1

  and Table VI. From the perspective of conflict measure (Table V), A 2 : m 2 obtains the largest supporting degree and on the contrary, A 1 : m 1 can get the hightest supporting degree by using imprecision

TABLE IV :

 IV Evidential supports Inf j (m i ).

	Inf j (m i )	m 1	m 2	m 3
	Conflict (9)	-0.0150	0	-0.0302
	Imprecision (10)	0	-0.1169 -0.0051

TABLE V :

 V BBAs construction of the sensor based on Conf lict. And then, by using the specific step 3 and step 4 in BF-TOPSIS method, we can get the following distance values, and the relative closeness measures listed in TableVII. We can calculate the weights of all involved sensors based on[START_REF] Huang | An energy-efficient and reliable scheduling strategy for dynamic WBANs with channel periodicity exploitation[END_REF] and then original BBAs (m 1 , m 2 , m

	Sensor reading	m i1 (A i ) m i1 ( Āi ) m i1 (A i ∪ Āi )
	A 1 : m 1	0.2021	0.4967	0.3012
	A 2 : m 2	1.0000	0.0000	0.0000
	A 3 : m 3	0.0000	1.0000	0.0000
	measure.			

3 ) are discounted by using the discounting rule (6) and fused with DS rule (3). The related fusion results are given in Table

VIII

. In the final step, we just use BetP (•)

[START_REF] Zhu | A novel semisupervised deep learning method for human activity recognition[END_REF] 

to transform m f usion into m BetP f usion :

TABLE VI :

 VI BBAs construction of the sensor based on Imprecision.

	Sensor reading	m i2 (A i )	m i2 ( Āi ) m i2 (A i ∪ Āi )
	A 1 : m 1	1.0000	0.0000	0.0000
	A 2 : m 2	0.0000	1.0000	0.0000
	A 3 : m 3	0.8457	0.0436	0.1107
	of diverse profile while performs 12 physical activities. These
	activities are standing still, sitting and relaxing, lying down,
	walking, climbing stairs, waist bends forward, frontal elevation
	of arms, knees bending, cycling, jogging, running, jump front
	and back. For the convenience of further discussions, we just
	labelled such twelve activities as V1-V12, respectively. The
	modalities from the sensors were recorded at a sampling rate
	of 50 Hz and this dataset has 1,215,745 instances in total and
	has reasonably well balanced classes. In this paper, we here
	only consider those raw data collected from Accelerometers
	located on Chest (AC), Left Ankle (ALA) and Right Lower
	Arm (ARLA). Besides, a 10-fold cross-validation technique
	is chosen for mHealth data to generate the training instances
	(80%) and the testing instances (20%).	

TABLE VII :

 VII Distance and relative closeness measures.

	Sensor	d E BI (m ij , m best ij )	d E BI (m ij , m worst ij	) Clossness(A i , A best )	ω(A i )
	m 1	0.9870	2.0346	0.6734	0.4167
	m 2	1.4143	1.4142	0.5000	0.3093
	m 3	1.6091	1.2815	0.4433	0.2740

TABLE VIII :

 VIII Discounted Three BBAs and Final Fusion BBA.

	Belief Mass	θ 1	θ 2	θ 3	θ 4	θ 5	θ 6	θ 7	θ 8	θ 9	θ 10	θ 11	θ 12	Θ
	m ω 1 1 m ω 2	0.1233 0.1069 0.0382 0.0878 0.0762 0.0415 0.0594 0.0797 0.0399 0.1811	0.1268 0.0394	0

TABLE IX :

 IX Comparison of the Proposed Fused LSTM network with State-of-The-Art Methods on the UCI mHealth dataset.

	Method	Precision	Time (s) (train/test)
	SVM	65.40%	76.5/0.4
	HCRF	68.60%	124/2.0
	2D CNN		

http://archive.ics.uci.edu/ml/datasets/MHEALTH+Dataset.
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