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Multi-Criteria Analysis of Sensor Reliability for
Wearable Human Activity Recognition

Yilin Dong, Xinde Li, Senior Member, IEEE, Jean Dezert, Rigui Zhou, Changming Zhu and
Shuzhi Sam Ge, Fellow, IEEE

LIST OF MATHEMATICAL SYMBOLS

m(·) mapping function
Θ Frame of Discernment
θ focal element when m(θ) > 0
K the degree of conflict
|θ| the cardinality of θ
ω the discounting factor
A independent sensor
M number of sensors
S(·) the score function
N number of criteria
X original dataset
p number of attributes
L number of instances
ht input labeled data at time step t
σ(·) sigmoid function
Ct, C̃t memory states in LSTM

Win,Wf ,WC ,Wo involved weights in LSTM
bin, bf , bC , bo involved biases in LSTM

ŷ outputs of softmax layer in LSTM
n the number of classes

Abstract—In Body Sensor Networks (BSNs), evaluating relia-
bility of sensors is an important research topic which aims to opti-
mize the overall performance of BSNs. Previous studies have often
addressed this problem based only on a single criterion. However,
it is often unreliable to rely on a single criterion to assess
sensors in real situations. Accordingly, in this paper, we propose
a novel multi-criteria approach for evaluating sensor reliability
in activity recognition problem based on belief function theory.
Specifically, in the theoretical part, we first describe the Multi-
Criteria Analysis of Sensor Reliability (MCASR) using Belief
Function based the Technique for Order Preference by Similarity
to Ideal Solution (BF-TOPSIS). And in our proposed MCARS,
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two criteria are chosen in this work: 1) the conflict between
sensor readings and, 2) the imprecision of sensor readings. In
the application part, in order to prove the efficiency of MCASR,
we propose a novel fused Long-Short Term Memory (LSTM)
with MCASR to solve the problem of activity recognition. By
using our proposed strategy, the final recognition accuracy has
been significantly improved as compared with classical methods.

Index Terms—Sensor Reliability, Belief Function Theory,
Multi-Criteria, Activity Recognition, Body Sensor Networks.

I. INTRODUCTION

OVER the past twenty years, Body Sensor Networks
(BSNs) [1–7] attract much attention from academia and

industry because of the necessity to help more and more
elderly or disable people to prevent accidents. Considering that
the data in BSNs usually come from multiple sensors, multi-
sensor fusion technology has received considerable attention in
transforming multi-source inconsistent data into high-quality
fusion data [8]. However, the information collected by the
sensors in BSNs is usually imperfect in actural environment.
Thus, several classical uncertainty theories have been proposed
such as probability theory [9], Belief Function theory (BF)
[10, 11], fuzzy set theory [12]. Among them, BF theory has
been widely used in the field of multi-sensor data fusion with
its flexibility to deal with uncertainty [1]. Thus, the topic of
this article mainly focus on BF theory. Usually, the actual
system often assume that the input data itself is equally reliable
in the early stage of fusion process. However, in reality, the
performance of the fusion system depends to a large extent on
the sensors’ own sensing capabilities (for example, stability,
accuracy, energy consumption, sensing range, etc.). Therefore,
data provided by the involved sensors often does not have the
same reliability, and the information to be fused should be
modified according to the reliability of its source. In other
words, we should strengthen the influence of information pro-
vided by more reliable sources, while weakening the influence
of information from less reliable sources.

In order to evaluate the reliability of sensors, the proper cri-
terion needs to be chosen judiciously. In fact, research works
like [13–16] and [17] present several proposals, that assess the
sensors using different single criterion. The representative cri-
teria are Fisher information [13, 15], error covariance [16, 17]
and mutual information [18, 19]. But, the use of only a single
criterion to evaluate the involved sensors is, however, dis-
putable since this strategy is not enough sufficient to provide
the comprehensive assessment. Thus, we herein consider the
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multi-criteria decision-making strategy to solve the complex
issues where multiple inconsistent sensor measurements have
happened. The multi-criteria evaluation method used in this
work is the Belief Function based the Technique for Order
Preference by Similarity to Ideal Solution (BF-TOPSIS) [20].
Thanks to BF-TOPSIS, the reliability of sensors in BSNs can
be easily evaluated using multiple assessment criteria.

The main contributions of this paper are described as
follows:
• BF-TOPSIS is used to evaluate sensors more seriously ac-

cording to multi-criteria. Instead of assessing the involved
sensors using only one criteria, we evaluate the sensors in
terms of conflicts between sensors and the imprecisions
of sensor readings;

• To prove the effectiveness of our new Multi-Criteria
Analysis of Sensor Reliability (MCASR), we apply it to
solve daily activity recognition problems. In our proposed
framework of activity recognition, we first apply the
Long-Short Time Memory (LSTM) network to model
sequential data and generate the sensor readings. Af-
terwards, the MCASR strategy is used to assess these
sensor readings before combination. Then, the classical
discounting combination rule in BF theory is used to
combine these sensor readings with the obtained weights;

• In order to evaluate the effectiveness of our proposed
activity recognition model, we use the UCI mHealth
dataset to test the performance of our proposed model,
and focus on the analysis of the impacts of some impor-
tant parameters.

Section II introduces the basic concepts of BF. Then, the
proposed MCASR is illustrated in the third section. Section
IV describes the proposed activity recognition system using
MCASR in details. The fifth section gives the detailed exper-
imental results on an activity recognition application. Several
tests and comparisons are also described. The final section
includes a brief conclusion.

II. BASICS OF BF

In BF theory, mass of belief is often assigned to the subsets
in the set of Frame of Discernment (FoD). Generally, the
mathematical symbol m(·) represents the mapping function
which is defined as follows [21]: for θ ⊆ 2Θ,

m : 2Θ → [0, 1],
∑
θ⊆2Θ

m(θ) = 1, (1)

m(∅) = 0,m(θ) > 0. (2)

In BF theory, m is also called Basic Belief Assignment
(BBA) and the set of focal elements of a BBA m(·) is denoted
F(m).

The classical Dempster’s rule [21] is often used to combine
two independent Sources of Evidence (SoEs), which is denoted
as m1 ⊕m2 and defined as follows: for ∀θ ⊆ 2Θ, θ 6= ∅,

(m1 ⊕m2)(θ) =
1

1−K
·

∑
θ1,θ2⊆2Θ,θ1∩θ2=θ

m1(θ1)m2(θ2).

(3)

where K represents the degree of conflict between m1 and
m2 as:

K =
∑

θ1,θ2⊆2Θ,θ1∩θ2=∅

m1(θ1)m2(θ2). (4)

To make a final decision, the widely used pignisitc trans-
formation method: BetP (·) was proposed by Smets in [21],
which is given as follows: for ∀θ ⊆ Θ,

BetP (θ) =
∑
θ′⊆Θ

m(θ
′
)(|θ ∩ θ

′
|/|θ

′
|). (5)

And the classical discounting steps are described in details:
for ∀θ ∈ 2Θ \ {Θ},{

mω(θ) = ω ·m(θ),
mω(Θ) = ω ·m(Θ) + (1− ω).

(6)

III. MULTI-CRITERIA BASED ANALYSIS OF SENSOR
RELIABILITY

We first assume that there exists several BBAs mi (i =
1, · · · ,M) over the same FoD Θ = {θ1, θ2, · · · , θn} (7),
which are provided by the independent Ai, i = 1, · · · ,M
sensors.

θ1 θ2 θ3 · · · θ2|Θ|
A1

 m1(θ1) m1(θ2) m1(θ3) · · · m1(θ2|Θ| )
A2 m2(θ1) m2(θ2) m2(θ3) · · · m2(θ2|Θ| )

...
...

...
...

. . .
...

AM mM (θ1) mM (θ2) mM (θ3) · · · mM (θ2|Θ| )

(7)

where θ ∈ 2Θ. According to the traditional strategy of
sensor fusion, all these involved sensor readings are combined
by Dempster’s rule (3) and then the recognition system can
acquire the predicted class of the activity according to the
final fusion result. However, from the perspective of conflicts
between sensors or information redundancy, the reliability of
sensors should be evaluated before making the fusion of BBAs.
The goal of evaluating sensor reliability is to eliminate or
reduce the negative influence of unreliable sensors on the final
recognition accuracy. To achieve this goal, the appropriate
criterion need to be chosen in advance.

A. Assessment criteria

The involved criteria considered in this work can be divided
into two main classes. The first class of criteria relates to
the conflict between sensor readings provided by each sensor
combination. The second class related to the sensor readings
themselves. Combined together, these two criteria are deemed
to yield a more efficient and comprehensive assessment of
sensors really useful for the recognition system.

1) Conflict using interval distance dBI : The interval dis-
tance between evidences between two BBAs m1 and m2

expressed in their vector form is given by Han [22]:

dBI(m1,m2) =

√√√√Nom ·
2n−1∑
ii=1

[dI(BI1(θii), BI2(θii))]2.

(8)
Here, Nom is the normalization factor: Nom =

1/2(n−1) and BI1(θii) : [Bel1(θii), P l1(θii)],

1
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BI2(θii) : [Bel2(θii), P l2(θii)], dI([a, b], [c, e]) =√
[a+b

2 −
c+e

2 ]2 + 1
3 [ b−a2 −

e−c
2 ]2.

Thus, we can define the conflict degree (this is criterion
Cr1) between Ai and other involved sensors Ai′ as follows:

Cr1 = Conflict(Ai) =
1

M
·

M∑
i
′
=1

dBI(mAi
(·),mA

i
′ (·)). (9)

2) Imprecision: Within the BF theory, the imperfection of a
BBA is mainly determined by strife (Cr2) [23]. The measure
of strife is defined as:

Cr2(m) = St(m)

= −
∑

θ∈F(m)

m(θ)Log2[
∑

θ′∈F(m)

|θ ∩ θ′ |
|θ|

m(θ
′
)].

(10)

It is important to note that the purpose of using these two
aforementioned criteria is to illustrate the effectiveness of our
proposed sensor reliability strategy for activity recognition. Of
course, more appropriate criteria can be chosen according to
the specific problems to be solved in other application contexts
such as illness detection.

B. Evaluation of sensor reliability based on BF-TOPSIS

1) Calculating the scoring matrix: Firstly, with Ai, i =
1, · · · ,M sensors, one calculates the reliability of all involved
sensors: A = {A1, A2, · · · , Ai, · · · , AM} according to each
criterion Crj , j = 1, · · · , N and then constructs the following
scoring matrix S:

A1 A2 A3 · · · AM
Cr1


S1(A1) S1(A2) S1(A3) · · · S1(AM )

Cr2 S2(A1) S2(A2) S2(A3) · · · S2(AM )
...

...
...

...
. . .

...
CrN SN (A1) SN (A2) SN (A3) · · · SN (AM )

(11)

And in this paper, N = 2: Cr1 is the conflict measure
represented by the distance between two BBAs, and Cr2 is
the imprecision measure. It is noteworthy that the involved
criteria here can be adjusted according to the actual needs
depending on the chosen application.

2) Construction of BBAs: First, A , {A1, A2, · · · , AM}
is the special FoD which each element in it represents the
independent sensor. And we here use the method presented in
[20] to calculate the BBAs:

mj(Ai) , Belj(Ai) (12)

mj(Āi) , Belj(Āi) = 1− Plj(Ai) (13)

mj(Ai ∪ Āi) , Plj(Ai)−Belj(Ai). (14)

Besides, Belj(Ai), Plj(Ai) and Belj(Āi) in (14) are
defined as follows:

Belj(Ai) ,
Supj(Ai)

Ajmax

=

∑
k∈{1,··· ,M}|Sjk≤Sji

|Sji − Sjk|
maxiSupj(Ai)

.

Belj(Āi) ,
Infj(Ai)

Ajmin

=
−
∑
k∈{1,··· ,M}|Sjk≥Sji

|Sji − Sjk|
miniInfj(Ai)

.

P lj(Ai) , 1−Belj(Āi).

3) BF-TOPSIS Methods:

• Step 1: From the score matrix S, compute BBAs mij(Ai),
mij(Āi) and mij(Ai ∪ Āi) using (14);

• Step 2: Compute the belief interval based distance
dBI(mij ,m

best
ij ) and the distance dBI(mij ,m

worst
ij ),

where the best ideal BBA is mbest
ij (Ai) , 1 and the worst

ideal BBA is mworst
ij (Āi) , 1 [22];

• Step 3: Calculate dBI(mij ,m
best
ij ) and

dBI(mij ,m
worst
ij ):

dbest(Ai) ,
N∑
j=1

wj · dBI(mij ,m
best
ij ); (15)

dworst(Ai) ,
N∑
j=1

wj · dBI(mij ,m
worst
ij ). (16)

• Step 4: The relative closeness is then defined by

Clossness(Ai, A
best) ,

dworst(Ai)

dworst(Ai) + dbest(Ai)
. (17)

• Step 5: (Weights calculation) The weights of each sensor
combination can be calculated Closeness(Ai, A

best) ∈
[0, 1] using (18), where a larger ω(Ai) value means a
higher degree of reliability.

ω(Ai) ,
Clossness(Ai, A

best)∑M
i=1 Clossness(Ai, A

best)
. (18)

Sensor-1 Sensor-2 Sensor-M

LSTM Network LSTM Network

BBA-Sensor-1 BBA-Sensor-2 BBA-Sensor-M

Multi-Criteria Analysis of  Sensor Reliability

Discounting Fusion with Dempster Rule

LSTM Network

Training 

Dataset

Testing 

Dataset

  Training Stage

Testing Stage

Decision Making with BetP

Fig. 1: The framework of our activity recognition model.
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Fig. 3: Inner structure of LSTM.

C. The proposed multi-criteria based analysis of sensor reli-
ability

In this paper, the sensor reliability is evaluated by using
the conflict and the imprecision. The general process works
as follows:
• Acquisition of sensor readings. First, the involved sen-

sor readings are constructed which are given as BBAs
based on the common FoD;

• Evaluation of each sensor candidate. In the second step,
we calculate the scoring value of each sensor reading
according to the considered criteria and then we construct
the scoring matrix;

• Multi-criteria supports for evaluating sensor relia-
bility. After the construction of the scoring matrix, the
ranking list drawn from the BF-TOPSIS approach and
then we can calculate the related weights using (18);

IV. APPLICATION TO ACTIVITY RECOGNITION

In this part, the practical application of activity recognition
in BSNs [24–26] is presented. A flow chart of our proposed
recognition system based on MCASR is shown in Fig.1.

A. Training stage
As shown in our proposed framework of activity recognition

(Fig.1), in the training stage, we use the classical LSTM as the

basic classifier to learn the high-level features from raw data
collected by sensors. The LSTM was originally proposed by
Hochreiter and Schmidhuber in [27]. Untill now, the LSTM
has been successfully applied to solve many complex tasks,
such as video sequence prediction [28] and natural language
processing [29].

Here, we consider an n-class classification problem. That is
to say, an instance with its corresponding pattern x has to be
classified among n classes, denoted as Θ = {θ1, θ2, · · · , θn}.
Generally, in our following experiments, the raw data will
be first divided into two parts: training dataset and testing
dataset. The training data X = {xl = {xl1, xl2, · · · , xlp}|l =
1, · · · , L} is acquired by sensors in BSNs with known classes,
where p is the number of attributes and L is the number of
instances.

Besides, the structure of the basic LSTM network and the
inner structure of the LSTM are given in Fig.2 and Fig.3. As
shown in Fig.3, we herein denote the input gate, forget gate,
output gate and two memory cell states as int, ft, ot, C̃t and
Ct, respectively:

int = σ(Win[ht−1,xt] + bin); (19)
ft = σ(Wf [ht−1,xt] + bf ); (20)

C̃t = tanh(WC [ht−1,xt] + bC); (21)

Ct = ft ∗ Ct−1 + int ∗ C̃t; (22)
ot = σ(Wo[ht−1,xt] + bo); (23)
ht = ot ∗ tanh(Ct). (24)

where the sigmoid function is as follows:

σ(x) =
1

1 + e−x
. (25)

Finally, we can obtain the outputs of LSTM Network as
follows:

ŷ = softmax(z) = softmax(WTht + b). (26)

where the definition of softmax function is

softmax(zi) =
ezi∑n
i=1 e

zi
. (27)

B. Testing stage

After the training process of the basic LSTM networks is
completed, we can easily recognize the unlabeled data based
on our activity recognition strategy. Considering that each
trained LSTM corresponds to the specific sensor (we here
consider M independent Ai, i = 1, · · · ,M sensors), the
output of the LSTM network in (26) is directly used as M
BBAs for the wearable sensor:

m1 = ŷ1;

m2 = ŷ2;

...
mM = ŷM .

And the proposed MCASR in Section III is applied to as-
sess the reliability degree of each sensor which is denoted
as ω = {ω1, ω2, · · · , ωM}. Then, the classical discounting
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TABLE I: Three BBAs derived from the outputs of LSTM models.
Belief Mass θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 θ11 θ12 Θ

m1 0.1233 0.1069 0.0382 0.0878 0.0762 0.0415 0.0594 0.0797 0.0399 0.1811 0.1268 0.0394 0
m2 0.1317 0.0755 0.0273 0.1225 0.0718 0.0792 0.0984 0.0706 0.0782 0.1308 0.0832 0.0308 0
m3 0.1779 0.0849 0.0329 0.0865 0.0956 0.1178 0.0854 0.1314 0.0616 0.0413 0.0502 0.0345 0

TABLE II: Scoring Matrix for Three Sensor Readings.
Score(·) m1 m2 m3

Conflict Degree (9) 0.0760 0.0610 0.0836
Imprecision (10) 3.4047 3.4657 3.4098

TABLE III: Evidential supports Supj(mi).
Supj(Ai) m1 m2 m3

Conflict (9) 0.0076 0.0376 0
Imprecision (10) 0.0661 0 0.0559

strategy in (6) is used to update all the sensor readings (mω1
1 ,

mω2
2 , · · · , mωM

M ) and we can combine all these updated SoEs
using Dempster’s rule (3) which is denoted symbolically by

mfusion = Dempster′s rule(mω1
1 ,mω2

2 , · · · ,mωM

M ). (28)

Finally, BetP (·) (5) is used to transform mfusion into the
Bayesian belief function mBetP

fusion:

mBetP
fusion(θ) =

∑
θ′⊆Θ

mfusion(θ
′
)(|θ ∩ θ

′
|/|θ

′
|). (29)

and then the final decision of the predicted class of x can be
made as

θ∗ = argmaxθm
BetP
fusion(θ). (30)

where θ∗ is a singleton of 2Θ based on the max of belief mass.
In order to show how our proposed fusion method works

in the testing stage, here, we give a simple example to
illustrate the principle of the discounting fusion discussed in
this paper: assuming that there exists a specific testing sample
xtesting with unknown label and three LSTM models trained
from three different sensors are used to predict the label of
xtesting. And three corresonding outputs (BBAs: m1,m2,m3)
of LSTM models are given in Table I. It is worth noting that
the scale of FoD in this simple example is consistent with the
experimental discussions in Section V: Θ = {θ1, · · · , θ12}
and 2Θ = {θ1, · · · , θ12,Θ}. In Θ, each singleton represents
a kind of the specific activity and Θ in 2Θ represents the
unknown activity. Based on (9) and (10), the scoring matrix
related with conflict and imprecision can be calculated and
presented in Table II. We can observe that m3 has the highest
conflict degree compared with other sensor readings and m1

has the lowest degree of imprecision among all considered
BBAs.

Then, we can get the positive and negative evidence sup-
ports of each sensor (A1 : m1, A2 : m2, A3 : m3) based
on (14) which are given in Table III and Table IV. After
that, the derived inner BBA of each sensor Ai can be also
obtained using (14) shown in Table V and Table VI. From the
perspective of conflict measure (Table V), A2 : m2 obtains
the largest supporting degree and on the contrary, A1 : m1

can get the hightest supporting degree by using imprecision

TABLE IV: Evidential supports Infj(mi).
Infj(mi) m1 m2 m3

Conflict (9) -0.0150 0 -0.0302
Imprecision (10) 0 -0.1169 -0.0051

TABLE V: BBAs construction of the sensor based on
Conflict.

Sensor reading mi1(Ai) mi1(Āi) mi1(Ai ∪ Āi)

A1 : m1 0.2021 0.4967 0.3012
A2 : m2 1.0000 0.0000 0.0000
A3 : m3 0.0000 1.0000 0.0000

measure. And then, by using the specific step 3 and step 4 in
BF-TOPSIS method, we can get the following distance values,
and the relative closeness measures listed in Table VII. We can
calculate the weights of all involved sensors based on (18) and
then original BBAs (m1,m2,m3) are discounted by using the
discounting rule (6) and fused with DS rule (3). The related
fusion results are given in Table VIII. In the final step, we just
use BetP (·) (29) to transform mfusion into mBetP

fusion:

mBetP
fusion(θ1) = 0.1199;mBetP

fusion(θ2) = 0.0888;

mBetP
fusion(θ3) = 0.0522;mBetP

fusion(θ4) = 0.0923;

mBetP
fusion(θ5) = 0.0808;mBetP

fusion(θ6) = 0.0755;

mBetP
fusion(θ7) = 0.0792;mBetP

fusion(θ8) = 0.0873;

mBetP
fusion(θ9) = 0.0661;mBetP

fusion(θ10) = 0.1140;

mBetP
fusion(θ11) = 0.0904;mBetP

fusion(θ12) = 0.0534.

and we can make the final decision that θ1 is the predicted
class of xtesting based on (30).

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this part, we show the effectiveness of our proposed activ-
ity recognition method based on MCASR. To do these exper-
iments, a well-known activity recognition dataset mHealth1

is chosen from the UCI Machine Learning repository [30]. In
addition, all related experiments in this paper are implemented
in MATLABTMR2019b environment running on the PC with
Intel Core i5-6500 CPU (Window 10).

A. Dataset: mHealth

The raw data in mHealth activity recognition dataset [30]
were collected from heterogeneous sensors. These indepen-
dent sensors were deployed on the subject’s chest, right or
left arm and right or left ankle. The involved sensor types
consist of accelerometer and magnetic, and the whole collected
dataset comprises daily activity recordings for ten volunteers

1http://archive.ics.uci.edu/ml/datasets/MHEALTH+Dataset.



6

TABLE VI: BBAs construction of the sensor based on
Imprecision.

Sensor reading mi2(Ai) mi2(Āi) mi2(Ai ∪ Āi)

A1 : m1 1.0000 0.0000 0.0000
A2 : m2 0.0000 1.0000 0.0000
A3 : m3 0.8457 0.0436 0.1107

of diverse profile while performs 12 physical activities. These
activities are standing still, sitting and relaxing, lying down,
walking, climbing stairs, waist bends forward, frontal elevation
of arms, knees bending, cycling, jogging, running, jump front
and back. For the convenience of further discussions, we just
labelled such twelve activities as V1-V12, respectively. The
modalities from the sensors were recorded at a sampling rate
of 50 Hz and this dataset has 1,215,745 instances in total and
has reasonably well balanced classes. In this paper, we here
only consider those raw data collected from Accelerometers
located on Chest (AC), Left Ankle (ALA) and Right Lower
Arm (ARLA). Besides, a 10-fold cross-validation technique
is chosen for mHealth data to generate the training instances
(80%) and the testing instances (20%).

B. Measures of performances

As measures of performances of our activity recognition
system, we consider the classical Accuracy defined by

Accuracy =
1

n

n∑
k=1

TPk + TNk
TPk + TNk + FPk + FNk

. (31)

where TPk, FPk and FNk are respectively the number of
correctly recognized class examples (true positives: TP), ex-
amples that were either incorrectly assigned to the class (false
positives: FP) and not recognized as class examples (false
negatives: FN).

C. Experimental setup

In this paper, we have made the comparisons between our
proposed method and start-of-the-art methods. These classical
approaches include: (1) Support Vector Machine (SVM): the
input vectors derived from the segmented raw signals, are
used as the input of SVM model. Similar to HMM, the SVM
models are trained with the classical One-vs-all strategy and
the number of SVM models is consistent with the number
of activity classes; (2) Hidden Conditional Random Fields
(HCRF): each HCRF model is trained by using three hidden
states and we select the highest scoring model among all
one-vs-all HCRF models; (3) Convolutional Neural Networks
with 2D kernel (2D CNN): here, we consider CNN using 2D
convolution kernel and 2D pooling kernel.

In our proposed method (Fig.1), raw data collected from
three sensors (AC, ALA and ARLA) are used to train three
basic LSTM network. The default parameters of LSTM net-
work are: the number of features for the input layer is 3 (axis-
x,y,z); the number of hidden units is 70; the total epoch is
50 with an early stopping criteria. For the convenience of
representation and comparisons in the following sections, we
just use abbreviations to denote basic LSTM network and our

proposed model: AC, ALA and ARLA means that LSTM
network is trained by raw data collected from accelerator
located on chest, left ankle and right lower arm, respectively.
And fused LSTM network refers to our proposed model which
aims to combine all basic LSTM (AC, ALA, ARLA) using
MCASR. Besides, in our proposed MCASR, the important
parameter values are fixed: M = 3 which represents that in
this specific application, sensor readings collected from three
sensors (AC, ALA, ARLA) are considered for fusion; n = 12
means that there are twelve predefined activities which need
to be classified; N = 2 is the number of assessment criteria
which are defined in (9) and (10); In this application, consid-
ering that there are nearly twelve activities to be classified, we
simplify the power set space and only consider the incomplete
power set space: 2Θ

refined = {θ1, · · · , θ12,Θ}.

Confusion Matrix for Fused LSTM Network (Subject 10).
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Fig. 4: Confusion matrix of subject 10 in UCI mHealth
dataset based on our proposed fused LSTM.

D. Experimental results

1) Main performance of the fused LSTM model for each
subject: For subject 1 in mHealth, our proposed fused LSTM
network achieves the mean prediction performance of 0.9433.
Similarly, for subject 2-10, it achieves 0.8663, 0.9193, 0.8749,
0.8566, 0.9046, 0.9049, 0.8826, 0.9335, 0.8613. In order to
show the accuracy of each activity, we also give the specific
confusion matrix of subject 10 in Fig.4. By looking at the
confusion matrix of our fused LSTM network in Fig.4, we see
that the corresponding accuracy of twelve activities based on
our fused model is significantly different: the activity with the
highest recognition accuracy (0.9870) is V3 (lying down) and
the type of activity with the lowest recognition accuracy is V12
(jump front and back); for other defined activities: V1-V2, V4-
V11, our fused model could give relative good performance
and the average accuracies of these ten remaining activities are
91.22%, 97.72%, 98.70%, 91.71%, 91.04%, 97.29%, 97.76%,
97.89%, 97.52%, 97.56%. However, for all subjects, our fused
LSTM model has the lowest performance in recognizing V12
(jump front and back). This class is more misclassified as
jogging (V10) or running (V11) which might be related to the
pace that each individual takes to perform these activities. In
order to observe the spatial relationship between these three
complex activities, we just draw the corresponding original
data in Fig.5. It is obvious that although the accelerators are
deployed on different locations of bodies, the overlap of these
three activities is very high, which directly affects the clas-
sification accuracy of our proposed model. This also further
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TABLE VII: Distance and relative closeness measures.
Sensor dEBI(mij ,m

best
ij ) dEBI(mij ,m

worst
ij ) Clossness(Ai, A

best) ω(Ai)

m1 0.9870 2.0346 0.6734 0.4167

m2 1.4143 1.4142 0.5000 0.3093

m3 1.6091 1.2815 0.4433 0.2740

TABLE VIII: Discounted Three BBAs and Final Fusion BBA.
Belief Mass θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 θ11 θ12 Θ

mω1
1 0.1233 0.1069 0.0382 0.0878 0.0762 0.0415 0.0594 0.0797 0.0399 0.1811 0.1268 0.0394 0

mω2
2 0.1317 0.0755 0.0273 0.1225 0.0718 0.0792 0.0984 0.0706 0.0782 0.1308 0.0832 0.0308 0

mω3
3 0.1779 0.0849 0.0329 0.0865 0.0956 0.1178 0.0854 0.1314 0.0616 0.0413 0.0502 0.0345 0

mfusion 0.0880 0.0569 0.0202 0.0604 0.0489 0.0435 0.0473 0.0553 0.0342 0.0821 0.0585 0.0214 0.3833

(a) Raw data collected from accelerator

 deployed on the chest

(b) Raw data collected from accelerator

 deployed on left ankle

(c) Raw data collected from accelerator

deployed on the right lower arm

-2
5

-2
0

-1
5

-1
0

-5
0

5
10

15
20 -15

-10

-5
0

5
10

15
20

25-15

-10

-5

0

5

10

15

20

axis-
y

a
x
is-z

axis-x

V12(jump front and back)

V11(running)

V10(jogging)
-3

0

-2
0

-1
0

0

10

20 -20

-10

0

10

20-20

-10

0

10

20

axis-
y

ax
is-z

axis-x

V12(jump front and back)

V11(running)

V10(jogging)

-0
.6

-0
.4

-0
.2

0.0

0.2

0.4

0.6

0.8

1.0
-1.1

-1.0

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

axis-
y

a
x
is-z

axis-x

V12(jump front and back)

V11(running)

V10(jogging)

Fig. 5: Raw data corresponding to three activities (V10, V11, V12) which are collected from three accelerators located
on chest, left ankle and right lower arm, respectively.

illustrates that more wearable sensors need to be deployed on
body to sense such complex activities, which means that a
single accelerator sensor deployed on three locations is not
enough.

TABLE IX: Comparison of the Proposed Fused LSTM net-
work with State-of-The-Art Methods on the UCI mHealth
dataset.

Method Precision Time (s) (train/test)
SVM 65.40% 76.5/0.4
HCRF 68.60% 124/2.0

2D CNN [31] 89.14% 634.1/0.3
Posterior-Adapted Fusion [32] 88.59% 173/13

Automated Feature Classifier [33] 76.44% 130.4/1.2
DSmT-Based Classifier [25] 88.46% 94.3/0.2

Multiscale DCNN Ensemble [34] 83.99% 634.1/0.6
Autonomous Encoders [35] 82.00% 209.9/31

Our Proposed Fused LSTM 91.12% 449.9/0.3

2) Compared to State-of-the-Art approaches: In order to
compare the proposed fused LSTM network with other tradi-
tional methods, several baseline approaches are implemented
herein which were shown in Table IX. We can obviously
see that the average accuracy of fused LSTM is the highest.
By comparisons, those models (SVM, HCRF, BDT, DSmT-
based KDE) trained by hand-crafted features had relatively

lower accuracy. Since 2D-CNN can extract deep features using
deep neural network, it performed better than other traditional
methods. However, such single model didn’t consider the
important issue of sensor reliability and directly assumes that
all involved sensors have the same weights. Based on this
premise, all sensor readings are used to train their models
which in some degree affects the performance of activity
recognition. In terms of training computational cost, the listed
three models using deep learning framework: 2D CNN, Mulis-
cale DCNN Ensemble and our proposed Fused LSTM required
more training time than the other traditional methods. At the
same time, the classical SVM and our previous model DSmT-
Based Classifier have the lowest training time in Table IX. This
mainly because that these two methods used the traditional
manual feature selection and training strategies without deep
learning architecture. Therefore, the training time of these two
models is lower than other models, which is reasonable. In
terms of the testing computational cost, our proposed fused
LSTM is highly competitive which has the average testing time
similar to SVM, 2D CNN, DSmT-Based Classifier. However,
the training time of the proposed fused LSTM is superior
than others and this is mainly because that there are several
basic LSTM networks which are required to be trained in our
proposed ensemble recognition framework Fig.1.



8

(1) Subject 1 (2) Subject 2

(3) Subject 3 (4) Subject 4

(5) Subject 5 (6) Subject 6

(7) Subject 7 (8) Subject 8

(9) Subject 9 (10) Subject 10

AC ALA ARLA Fused LSTM
0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu
rac

y

 25%~75%
 Range within 1.5IQR
 Median

AC ALA ARLA Fused LSTM

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu
rac

y

 25%~75%
 Range within 1.5IQR
 Median

AC ALA ARLA Fused LSTM

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu
rac

y

 25%~75%
 Range within 1.5IQR
 Median

AC ALA ARLA Fused LSTM
0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu
rac

y

 25%~75%
 Range within 1.5IQR
 Median

AC ALA ARLA Fused LSTM
0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu
rac

y

 25%~75%
 Range within 1.5IQR
 Median

AC ALA ARLA Fused LSTM
0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

Ac
cu
rac

y
 25%~75%
 Range within 1.5IQR
 Median

AC ALA ARLA Fused LSTM
0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

Ac
cu
rac

y

 25%~75%
 Range within 1.5IQR
 Median

AC ALA ARLA Fused LSTM

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu
rac

y

 25%~75%
 Range within 1.5IQR
 Median

AC ALA ARLA Fused LSTM
0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

Ac
cu
rac

y

 25%~75%
 Range within 1.5IQR
 Median

AC ALA ARLA Fused LSTM
0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

Ac
cu
ra
cy

 25%~75%
 Range within 1.5IQR
 Median

Fig. 6: Violin box-plot showing the dispersion of accuracy of the basis LSTM and fused LSTM (IQR: Inter Quartile
Range).
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Fig. 7: The impacts of the number of hideen nodes for the performance of LSTM network.
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Fig. 8: The impacts of the number of MaxEpochs for the performance of LSTM network.
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As shown in the framework of our proposed model in Fig.1,
we essentially integrates multiple basic LSTMs into the fused
model. Thus, we further compare the performances of basic
LSTMs and fused LSTM, which was shown in Fig.6. Consid-
ering the mHealth dataset, we can observe a plot containing
10 violin box-plots representing the variation/dispersion of the
accuracy per model in Fig.6. In this figure, we notice that fused
LSTM network (yellow) has less dispersion in accuracy that
other basic LSTMs for all ten individuals. And the median
accuracy (white circle) of fused LSTM is obviously better
than all mentioned basic LSTMs. This shows, once again,
the superiority and effectiveness of our proposed fused LSTM
with MCASR.

E. Impacts of hidden nodes and MaxEpochs in LSTM

1) Number of hidden nodes in LSTM network: For the
LSTM network, the number of hidden layer nodes in the
network is directly related to the performance of the recog-
nition model. Here, we focus our discussions on the impact
of this key parameter on the recognition accuracy for three
basic LSTMs trained by raw data collected from AC, ALA,
ARLA, and the proposed fused LSTM network with MCASR
using the mHealth dataset. We can clearly find in Fig.7 that the
accuracies of all basic LSTM models and also fused LSTM
network increases with more hidden nodes (from 10 to 90).
However, when the number of hidden nodes is greater than a
certain number, the accuracies become stable. Thus, the default
value (70) of epochs for our proposed fused LSTM network
is proper. Our proposed fused LSTM network with MCASR
achieves the best performance by taking the advantages of
MCASR and ensemble framework.

2) Number of MaxEpochs in LSTM network: In addition to
the number of hidden nodes, another important hyperparameter
is the number of epochs in the training process of LSTM
network. Here, we further explore the impact of this parameter
on recognition accuracy for three basic LSTMs trained by
raw data collected from AC, ALA, ARLA, and the proposed
fused LSTM network with MCASR using the mHealth dataset.
The recognition accuracies for all the approaches with the
number of epochs from 10 to 50 are shown in Fig.8. We can
find that the accuracies of all the approaches increase with
more epochs. Similar to the previous experimental results, our
proposed fused LSTM network also performs better than basic
LSTM models, which indicates the merits of MCASR and our
framework of activity recognition. As we all know that the
use of higher numbers of epochs will lead to longer training
time, thus, the selection of this parameter is a tradeoff between
training time and recognition accuracy. Taking training time
into consideration, the default value (50) of epochs for our
proposed fused LSTM network is proper.

VI. CONCLUSION

In this paper, we have proposed a novel analysis of sensor
reliability coupled with multi-criteria support. Besides, a new
framework for activity recognition based on the proposed
MCASR has also been described and tested. At first, we use
BF-TOPSIS to assess the reliability of sensors according to

multi-criteria. In this paper, two common used criteria are
conflict between sensor readings and imprecision degree of
sensor readings. Then, in our application section, we also
propose a novel ensemble framework for activity recognition
using basic LSTM network with MCASR. Finally, we have
verified the validity of the proposed method by classifying
twelve daily activities in UCI mHealth dataset. The simulation
results show that our proposed fused LSTM network can give
the highest accuracy compared with state-of-art approaches.
In our future works, more complex activity recognition prob-
lems will be also considered with different decision-making
strategies in BF theory. Besides, in order to realize the detailed
analysis of misclassification, we will further study and discuss
the interpretability of our proposed activity recognition model
[36, 37].
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