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Occupancy grids are common tools used in robotics to represent the robot environment,21

and that may be used to plan trajectories, select additional measurements to acquire, etc.22

However, deriving information about those occupancy grids from sensor measurements23

often induce a lot of uncertainty, especially for grid elements that correspond to occluded24

or far away area from the robot. This means that occupancy information may be quite25

uncertain and imprecise at some places, while being very accurate at others. Modelling26

finely this occupancy information is essential to decide the optimal action the robot27

should take, but a refined modelling of uncertainty often implies a higher computational28

cost, a prohibitive feature for real-time applications. In this paper, we introduce the29

notion of credal occupancy grids, using the very general theory of imprecise probabilities30

to model occupancy uncertainty. We also show how one can perform efficient, real-time31

inferences with such a model, and show a use-case applying the model to an autonomous32

vehicle trajectory planning problem.33

Keywords: Occupancy grids and Trajectory planning and Imprecision and Imprecise34

probabilities35

1. Introduction36

Occupancy grids are commonly used tools to represent a mobile robot (cars, drones,37

etc.) environment, especially autonomous ones. Based on a local perception of the38

1
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vehicle, they are instrumental in solving issues such as obstacle avoidance and short-39

term trajectory planning, and are particularly suitable in dynamic environments,40

for instance environments discovered on the fly by the robots (such as in SLAM41

problems 27) or environments in which moving obstacles evolves 19. Such grids42

are composed of multiple cells, which in the most usual settings can be either43

free or occupied. Those grids are most of the time obtained from sensor readings44

associated to processing steps that may be peculiar to each sensor, according to45

their nature (cameras, lasers, . . . ). Such occupancy information is therefore prone46

to be affected by many sources of uncertainties, such as imprecise sensor readings47

(camera occlusion, numerical precision, . . . , ), noise due to environmental conditions48

(rain, . . . ) or faulty sensors. Different frameworks have been proposed to model and49

reason from such uncertainties, for instance by using probabilistic 21,6, fuzzy 28,24,23
50

or evidential 20,33,26,30 occupancy grids.51

In this paper, we explore how another uncertainty framework, namely impre-52

cise probabilities, can be used to model uncertainty in occupancy grids. To our53

knowledge, it is the very first attempt to do so. Imprecise probability consists in54

extending the classical probabilistic model by considering convex sets of probabil-55

ities or equivalent models such as lower expectation. This representation formally56

includes all the other aforementioned representations 10 (possibilities, probabilities,57

belief functions), and has the benefit to be fully consistent with classical Bayesian58

probabilistic modelling, both axiomatically (as it relaxes Bayesian axioms) and for-59

mally speaking. It can therefore be interpreted either as an uncertainty theory of60

its own, or as a robustification of the classical probabilistic models. We refer to 2
61

for an introduction to various aspects of the framework, and to Walley’s book 32
62

for a full theoretical account. In the case of cells taking values in the binary space63

X = {x,¬x} composed of the states occupied (x in our notation) and free (¬x in64

our notation), imprecise probabilistic models encode uncertainty by explicitly en-65

coding imprecision through the use of two boundary measures, therefore allowing66

to differentiate between what is commonly called aleatoric uncertainty (due to a67

possible ambiguity and/or random phenomena) and epistemic uncertainty (due to68

an absence of information).69

The concept of imprecise probabilistic occupancy grids is introduced in Section 2,70

where we also discuss the associated challenges in terms of inference and decision.71

We then consider in Section 3 the specific problem of making inferences for local72

trajectory planning, proposing a computationally efficient and simple solution to do73

so. Each step of the method is illustrated using simple examples. Then, in Section 4,74

for illustrative purposes, we present some results obtained using real occupancy grids75

coming from PACPUS 17, an experimental platform developed in our laboratory,76

dedicated to researches on autonomous vehicles.77
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2. Introducing credal occupancy grids78

In this section, we will introduce the notion of credal occupancy grids, and will79

discuss the problem of making general inferences with them. Roughly speaking, such80

inferences come down to make computations over (pseudo-)Boolean functions where81

the probabilities of literals are imprecisely specified. We will however not treat this82

very general issue that is encountered in many fields such as data-bases 13, game-83

theory 25, but will focus on the most common issue in applications using occupancy84

grids, that is guiding a moving object through it.85

For this reason, we will consider from now that our problem concerns a moving86

robot, and that the robot environment is modelled by a large grid of cells, and that87

each cell X can take a binary value, occupied (x) or unoccupied (¬x). We assume88

that when a robot perceives its environment through measurement devices (sensors,89

cameras), it receives uncertain information about whether a given cell is occupied.90

Imprecise probabilities 32 offer a very generic way to model uncertainty, including91

most known models of uncertainty such as precise probabilities, belief functions or92

possibility distributions 10. It also comes with a fully-fledged theory to reason with93

such uncertainty and make decisions 32.94

In a binary setting such as the occupancy of cell X, any imprecise probabilistic95

model can be reduced to an interval [p(x), p(x)] of the probability to be occupied,96

as we have that p(¬x) = 1− p(x) and similarly for the upper bound. Note that the97

fact that any convex probability set can be reduced to such intervals on singletons98

is only true in the binary case, and is used here as one of the key feature that99

makes our approach tractable. We can in particular model the following extreme100

situations:101

• certain occupancy: [p(x), p(x)] = [1, 1],102

• certain inoccupancy: [p(x), p(x)] = [0, 0],103

• unknown occupancy: [p(x), p(x)] = [0, 1],104

as well as all the intermediate ones, with precise probabilities being retrieved when105

p(x) = p(x). A credal occupancy grid is pictured in Figure 1, where cells are volun-106

tary of very large size for illustrative purposes. Green cells are likely to be unoccu-107

pied, red ones occupied, and grey/dark ones are in between (i.e., 0.5 ∈ [p(x), p(x)]).108

The darker the shades, the wider are the corresponding intervals.109

Let us now consider a set X1, . . . , Xm of cells. As they are equivalent to Boolean
variables, any event A concerning these cells (e.g., “at least one cell is occupied”,“k
consecutive cells are occupied”) can be expressed as a Boolean formula, and in
particular can be put in Disjunctive Normal Form (DNF). This means that we
can express any event in the form of a disjunction A = ∨ji=1Ai, where each Ai =
∧k∈A+

i
xk

∧
∧k∈A−

i
¬xk is a conjunction of values for the cells (A+

i denotes the set of
indices of positive variable, A−i the indices of negative one). Such sets are sometimes
called orthopairs 5 in the literature. When the uncertainty over cells is expressed
by a precise probability, assessing P (A) then amounts to evaluate P (∪ji=1Ai), a
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Fig. 1. Credal occupancy grid build from sensor data. Certain occupancy: [p(x), p(x)] = [1, 1] in
red, certain inoccupancy: [p(x), p(x)] = [0, 0] in green, unknown occupancy: [p(x), p(x)] = [0, 1] in
black. The intermediate states are represented with lower intensity values.

potentially difficult task. One common way to do it is to use the following formulaa

P (A) =P (∪ji=1Ai) =
∑

A⊆{A1,...,Aj}

−1|A|P (∩A∈AAi) (1)

where the second equality simply applies the inclusion/exclusion principle. The110

probability of a conjunctive event Ai is111

P (Ai) =
∏
k∈A+

i

p(xk)
∏
k∈A−

i

p(¬xk). (2)

and likewise for intersection of such events, that remain of the same form. Solving112

Equation (1), hence making inferences over a probabilistic grid, is then relatively113

straightforward when probabilities are precise, as assessing the probabilities of con-114

junctions is easy. It should however be noted that there are multiple ways to decom-115

pose a given event A into a DNF, such as the use of Binary Decision Diagrams 4 or of116

minimal cuts in reliability theory 16, that can lead to more or less computationally117

friendly decompositions, in the sense that the number of terms in the right-hand118

side of (2) can grow exponentially. Obtaining compact Boolean representations of119

an event A is therefore a whole area research, that is outside of the scope of the120

present paper, which is why we will focus on the second part on specific cases for121

which efficient decompositions do exist.122

However, even when one has obtained a decomposition through some means,123

the task of solving Equation (2) becomes much more difficult when probabilities124

aNote that in this paper, we will use interchangeably ∨ and ∪, or ∧ and ∩, as they have the same
meaning.
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become imprecise, as we then have to solve the equation125

P (A) = inf
p(xi)∈{p(xi),p(xi)}

P (A) (3)

to get the lower bound of the probability of an event A, which is NP-hard in general,126

as Equation 1 is a multi-linear form of the p(xi), each constrained to be in an interval127

(see for instance 3). Indeed, if it is known 12 that the bound given by Equation 3128

is obtained in such a case on one of the vertices of the hyper-cube ×i[p(xi), p(xi)],129

that is p(xi) ∈ {p(xi), p(xi)}, it remains to find which one, hence to check for 2m130

combinations if m is the number of cells. The upper bound can be found similarly,131

replacing inf by sup, with the same difficulties. This means, in particular, that132

reasoning over an entire imprecise probabilistic grid and for arbitrary events will be133

computationally prohibitive and infeasible for real-time applications.134

Example 1. Let us consider two cells X1, X2, and the event “one and only one cell
is occupied”, that corresponds to a XOR logical gate, that is

A = (x1 ∧ ¬x2) ∨ (x2 ∧ ¬x1) = A1 ∪A2

with A1 ∩ A2 = ∅, as each contains opposite values (e.g., x1 for A1, and ¬x1 for
A2). Let us now consider that p(x1) ∈ [0.6, 0.8] and p(x2) ∈ [0.3, 0.6], we have that
P (A) is obtained on a combination of extreme points, i.e.,

P (A) = inf
p(xi)∈{p(xi),p(xi)}

p(x1) (1− p(x2)) + (1− p(x1)) p(x2)

= 0.8 · 0.4 + 0.2 · 0.6 = 0.44

obtained for p(x1) = 0.8 and p(x2) = 0.6 (the upper bounds of p(x1) and p(x2)).135

More generally, one may be interested not only in computing the lower and136

upper bounds of some event probabilities, but to compute the lower and upper137

expected values of some reward/penalty function f : ×mk=1{xk,¬xk} → R. Since it138

is defined on a discrete space, we can always define a partition B1, . . . , Bk such that139

f is constant over elements of this partition, i.e. if we denote by x an assignment140

vector over cells Xi, f(x) = f(x′) whenever x,x′ ∈ Bi for some i ∈ {1, . . . , k}. It141

then makes sense to denote by fBi
the value of f for all elements included in Bi.142

Computing the lower expectation of f than amounts to solve the equation143

E(f) = inf
p(xi)∈{p(xi),p(xi)}

k∑
j=1

fBj
P (Bj) (4)

with each Bj that can be decomposed using (2). As (4) remains a multi-linear form,144

the problem for solving it is in general not more difficult than the one of finding a145

lower probability, and its tractability will depend on both the form of f and of the146

events Bi.147

Example 2. Let us pursue Example 1, by considering a simple game: we get a148

reward of 2 if the two variables end up with the same value, and suffer a penalty of149
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Yi

X1X2

X16

Fig. 2. The metagrid Yi composed of 16 cells of the credal occupancy grid

1 (equivalently, a reward of −1) if they have different values. Our knowledge about150

the variables X1, X2 remains the same. One may think, for instance, of a game with151

two coins with ill-known probabilities of landing head and tail.152

We now want to know our lower expected reward, should we play this game.
We have B1 = (x1 ∧ x2) ∨ (¬x1 ∧ ¬x2) and B2 its complement, with fB1 = 2 and
fB2

= −1. We must now minimize

2(p(x1) · p(x2) + p(¬x1) · p(¬x2))− (p(¬x1) · p(x2) + p(x1) · p(¬x2))

which gives E(f) = −0.86, obtained for the values p(x1) = 0.8 and p(x2) = 0.6.153

In the rest of the paper, we will propose a decision model that focuses on partic-154

ular types of events, that are of practical interest in robot guidance problems and155

are computationally tractable, in the sense that bound (3) can be computed in a156

time that is linear in the number of considered cells (or Boolean variables).157

3. Moving in credal occupancy grid: model, inference and decision158

Now that we have introduced credal occupancy grids and discussed their main159

aspects regarding inference, let us focus on the problem of guiding a moving robot160

within such an occupancy grid.161

From now on, we will also be interested in particular states of subgrids of the162

whole occupancy grid, that we will call metagrids. Such metagrids will describe the163

successive locations of a robot along a chosen path. Indeed, usually the space occu-164

pied by a robot (be it a vehicle, a drone, etc.) is much bigger than a single cell, whose165

area is usually related to the smallest zone a robot can perceive with sufficient relia-166

bility. As an example, cells of grids for autonomous vehicles are typically squares of a167

few decimetres A metagrid Yi will be composed of n cells denoted X1, . . . , Xn, while168

a possible path for the robot will always be composed of k metagrids Y1, . . . , Yk,169

representing its successive positions. The concept of metagrid within a grid is shown170

in the Figure 2 (with a metagrid being made of 16 elementary cells).171

Given this, our decision model will be based on the following elements, that we172

will detail in different subsections:173

• For each metagrid Yi, assess the uncertainty over the fact that at least174

one cell of the metagrid is occupied: this provides lower/upper bounds175

[p(yi), p(yi)] over a new Boolean state (either at least one cell is occupied,176
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or none), that we consider as probability bounds of the fact that the robot177

can move over Yi.178

• Assess the lower/upper probability of the k mutually exclusive events179

F1, . . . , Fk that the robot can move up to the ith metagrid, that is180

Fi = ∧i−1j=1¬yj ∧ yi, corresponding to the event that Yi is the first occu-181

pied metagrid.182

• Pick the trajectory that provides the best expected reward as the robot183

future path, unless stopping is required because the first metagrids are too184

likely to be occupied.185

For each of those steps, we will provide inference tools whose computational com-186

plexity is fixed and linear with the number of states, hence ensuring that real-time187

applications of the proposed method is doable. Since they also rely on fixed formu-188

las, they can also be easily implemented as hardware components, possibly speeding189

up computations even further.190

3.1. Inference about individual metagrids191

A first inference we want to do is to know, for each metagrid, what is the likelihood
of having at least one cell Xi that is occupied, as having one such cell is judged
sufficient for the metagrid to be unreachable. In practice, this comes down to assess
the probability bounds for the event

Y = x1 ∨ x2 ∨ . . . ∨ xn.

One advantage of this event is that it satisfies a monotonicity constraint, i.e., it
cannot become false if one variable Xi goes from the value ¬xi to xi. It results
that the corresponding multi-linear form given by Equation (2) is increasingb in
each variable p(xi). Previous results about such multi-linear forms 12, applied for
instance in 1 to the case of reliability functions, then indicate that P (Y ) is obtained
by computing P (Y ) when p(xi) = p(xi). Yet it should be noticed that the form
x1 ∨ x2 ∨ . . . ∨ xn is not very computationally friendly, as every pair of elements of
the disjunction have a non-empty intersection, since no pair of formulas contains
opposite values of variables (each formula is only made of positive values). This
means that Equation (1) contains a number of terms that factorially increases with
n. However, we can re-express Y as a disjunction of non-intersecting events (using,
e.g., ordered binary decision diagrams 4)

Y = x1 ∨ (¬x1 ∧ x2) ∨ (¬x1 ∧ ¬x2 ∧ x3) ∨ . . . ∨ (∧n−1i=1 ¬xi
∧
xn)

that counts n different conjunctions that have the advantage to be pairwise disjoint,192

meaning that we finally get193

bOne can simply consider the partial derivatives ∂P (A)/∂pi to check it.
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X1 X2 X3 X4

p(xi) 0.2 0.1 0 0.6
p(xi) 0.2 1 0.1 0.7

Table 1. Example 2: a metagrid with 4 cells

P (Y ) =

n∑
i=1

p(xi) i−1∏
j=1

p(¬xj)

 ,

a sum that has a linear number of terms with respect to n. We can similarly obtain194

an upper bound P (Y ), just inverting the bounds over p(xi) in the equation. The195

bounds [P (Y c), P (Y c)] over the event Y c=“none of the cells of the metagrid are196

occupied” can then be obtained by complementation, as we have P (Y c) = 1−P (Y )197

and P (Y c) = 1− P (Y ).198

Example 3. Let us consider a metagrid composed of four cells with probability
intervals of occupancy given in Table 1. In this case, we have:

P (Y ) =p(x1) + p(x2)p(¬x1)
+ p(x3)p(¬x1)p(¬x2)
+ p(x4)p(¬x1)p(¬x2)p(¬x3).

Using the fact that p(¬xi) = 1− p(xi), we obtain:

P (Y ) = 0.2 + 0.1(1− 0.2)

+ 0(1− 0.2)(1− 0.1)

+ 0.6(1− 0.2)(1− 0.1)(1− 0) = 0.712

Similarly,

P (Y ) =p(x1) + p(x2)p(¬x1)
+ p(x3)p(¬x1)p(¬x2)
+ p(x4)p(¬x1)p(¬x2)p(¬x3).

Thus, we have:

P (Y ) = 0.2 + 1(1− 0.2)

+ 0.1(1− 0.2)(1− 1)

+ 0.7(1− 0.2)(1− 1)(1− 0.1) = 1,

giving a probability interval of occupancy equal to [0.712, 1], what might indicate199

that the metagrid is not free. Note that the upper bound is equal to 1 which is quite200

natural because it is totally plausible for the second cell to be occupied. Similarly,201

the high lower bound is induced by the fact that the fourth cell is probably occupied.202
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Y1 Y2 Y3 Y4
P (yi) 0.1 0.3 0.712 0
P (yi) 0.2 0.5 1 1

Table 2. Example 3: a trajectory composed of four metagrids

3.2. Inferences along a trajectory203

Having made inferences over the k metagrids Y1, . . . , Yk along a given trajectory,
we are now concerned about selecting the path that the robot should take. A first
step for this is to assess how far we could go along a given trajectory. Indeed, if one
of the first metagrid is almost surely occupied, it is not very useful to know that
the last ones are surely free, as we will have encountered an obstacle before them.
Hence, what matters is how soon we are likely to encounter an obstacle on a path.
With this reasoning in mind, we propose to assess the lower and upper probability
bounds over consecutive events Fi=“the ith metagrid is the first non-free”, or in
variable terms,

Fi = ∧i−1j=1¬yj ∧ yi i = 1, k.

The event Fi being actually expressible as a Cartesian product of the subspaces
{yi,¬yi}, we have in the probabilistic case that

P (Fi) = p(yi)

i−1∏
j=1

p(¬yj).

Getting bounds over this probability is then very easy, since if all the terms are204

independent, it is enough to just minimize each of them. We thus end up with205

P (Fi) = p(yi)

i−1∏
j=1

p(¬yj) (5)

and similarly for P (Fi), just switching the bounds. Computing this bound involves206

at most k products, and is therefore quite efficient again. Note that we compute207

also the bounds for an additional event Fk+1 = ∧kj=1¬yj which represents the event208

“all metagrids are free”.209

Example 4. Let us consider a trajectory composed of 4 metagrids which prob-210

abilities are given in Table 2 (in which the third metagrid could be the one of211

Example 3).212

These values could correspond to the following situation: the first two metagrids
are likely to be free, then the sensor detects almost surely an obstacle on the third
metagrid, and does not see anything on the last metagrid because of occlusions. We
have:

F1 = y1 × {y2,¬y2} × {y3,¬y3} × {y4,¬y4}
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F1 F2 F3 F4 F5

P (Fi) 0.1 0.24 0.28 0 0
P (Fi) 0.2 0.45 0.63 0.18 0.18

Table 3. Example 3: bounds computation for the Fi

F2 = ¬y1 × y2 × {y3,¬y3} × {y4,¬y4}

F3 = ¬y1 × ¬y2 × y3 × {y4,¬y4}

F4 = ¬y1 × ¬y2 × ¬y3 × y4

F5 = ¬y1 × ¬y2 × ¬y3 × ¬y4
Using Esq. (5), we can compute easily the probability bounds of the five events.213

They are given in Table 3.214

It should also be noted that the events F1, . . . , Fk+1 actually form a partition
of the space

∏k
i=1{yi,¬yi} (Fi ∩ Fj = ∅ for any i, j, and ∪

k+1
i=1 Fi =

∏k
i=1{yi,¬yi}),

meaning that they can be interpreted as probability bounds over atoms of a Boolean
algebra. This means in particular that the set of intervals

[P (Fi), P (Fi)], i = 1, k

can be interpreted as probability intervals 9, a well known imprecise probabilistic215

model for which efficient inference tools do exist. We will use this fact in the next216

section, when deciding which path a mobile robot should follow in order to maximize217

its utility.218

3.3. Deciding the best trajectory219

We now consider that we have to choose between several paths τ , each moving220

over a fixed number of k metagrids whose states are uncertain. To choose the best221

trajectory, we propose to use a utility function quantifying the fact that a trajectory222

is usable or not. This utility is defined on the basis of the events Fi.223

A first remark is that the states or atoms Fi, i = 1, k + 1 of our decision space224

are naturally ordered in terms of increasing utility, in the sense that Fj (the j-th225

metagrid is the first occupied) happening is worse than Fj+1 happening. This means,226

among other things, that the utility function associated to those states should be227

increasing, i.e., that u(Fi) ≤ u(Fi+1) in any case.228

In the case of precise probabilities (we have a precise value Pj(Fi) for each
element of a trajectory τj), the value of a trajectory would then be its expected
utility E(τj), i.e.

E(τj) =
k+1∑
i=1

Pj(Fi)u(Fi).
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When the P (Fj)’s become imprecise and are only known to belong to some inter-229

vals [P (Fj), P (Fj)], this expectation becomes interval-valued for each trajectory τj .230

Given the fact that our uncertainty model is expressed as intervals on singletons,231

the upper and lower probabilities are 2-monotone and thus we can compute the232

lower and upper expected utilities of each trajectory thanks to a Choquet integral233

(we refer to 9 for the details of the derivation). Moreover, as the utilities are always234

ordered in the same way, computing the bounds of the expected utility is simple as235

we have:236

E(τj) =
k+1∑
i=1

(u(Fi)− u(Fi−1))P ({Fi, . . . , Fk+1}),

and237

P ({Fi, . . . , Fk+1}) = max(

k+1∑
l=i

p(Fl), 1−
i−1∑
l=1

p(Fl)),

with u(F0) = 0. Similarly238

E(τj) =
k+1∑
i=1

(u(Fi)− u(Fi−1))P ({Fi, . . . , Fk+1}),

and239

P ({Fi, . . . , Fk+1}) = min(

k+1∑
l=i

p(Fl), 1−
i−1∑
l=1

p(Fl)).

Again, due to our assumptions (increasing and ordered utilities along the Fi, that240

form a partition), these formulas are fixed and straightforward to compute.241

Example 5. Let us consider the utilities given in Table 4. We have chosen to
fix negative utilities for the two first metagrids, representing a kind of “security
distance” of at least two metagrids, a negative expected utility then corresponding
to the fact that if this path is chosen, the mobile robot should preferably brake or
stop. If we compute the lower and upper bounds for the trajectory of Example 4,
we have

E(τ) = (−20− 0) · P ({F1, . . . , F5}) + (−10− (−20)) · P ({F2, . . . , F5}) + . . .

+ (20− 10) · P ({F5})
= (−20− 0) · 1 + (−10− (−20)) · 0.8 + . . .+ (20− 10) · 0 = −8.5

and we finally find [−8.5, 1], which corresponds to the fact that the second metagrid242

is likely to be occupied.243

As each trajectory is characterized by a lower and an upper expectation, there244

are several possibilities to make a decision about the best trajectory, as we must now245
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u(F0) u(F1) u(F2) u(F3) u(F4) u(F5)

0 -20 -10 0 10 20

Table 4. Example 3 continuation: utility values

compare intervals and no longer point-valued evaluations. Some classical ways 31 to246

do so are the following:247

• Order 1. We can say that a trajectory τj is better than a trajectory τk248

(τj � τk) if and only if E(τj) ≥ E(τk).249

• Order 2. We can say that a trajectory τj is better than a trajectory τk if250

and only if E(τj) ≥ E(τk) and E(τj) ≥ E(τk).251

• Order 3. We can say that a trajectory τj is better than a trajectory τk if252

and only if E(τj) ≥ E(τk).253

• Order 4. We can say that a trajectory τj is better than a trajectory τk if254

and only if E(τj) ≥ E(τk).255

The two first rules provide a partial order on the trajectories allowing for incompa-
rabilities, whereas the two last rules provide a linear order. Rule 3 is a pessimistic
rule, it consists in retaining the best trajectory in the worst case, i.e. the trajectory
associated to the highest lower expected utility. Rule 4 on the contrary gives the
preference to the highest upper expected utility, adopting in this way an optimistic
behaviour. When the order is partial (rules 1 and 2), one can determine a set of
non-dominated trajectories:

T ∗ = {τj | 6 ∃τk such that τk � τj}

If this set is composed of more than one trajectory and that a unique trajectory256

is mandatory, several strategies can then be applied. It is for example possible257

to postpone the decision by asking complementary information on the navigable258

space. It is also possible to use additional criteria in the decision process, like the259

proximity to a reference trajectory (using in this case what is commonly known as260

lexicographic orders 11).261

Example 6. Let us suppose that we have 5 possible trajectories, whose lower and262

upper expected utilities are given in Table 5 and represented in Figure 3. Using Rule263

1, there are three maximal elements in the partial order induced by the intervals264

(τ2, τ4, and τ5). Two maximal elements are found using Rule 2 (τ4 and τ5). The265

pessimistic rule 3 leads to the choice of τ4, whereas Rule 4 chooses τ5.266

4. Illustrative application267

As a proof of concept, we experiment our approach using real data, issued from the268

platform PACPUS 17 developed in our lab. The objective of PACPUS is to provide269
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Fig. 3. Representation of the expected utilities of the trajectories

τ1 τ2 τ3 τ4 τ5

E(τj) -8.5 5 -5 7 6

E(τj) 1 10 3 11 12

Table 5. Bounds of expected utilities of the trajectories

tools and resources for experimenting on intelligent vehicles. We use a Lidar as a270

perception sensor. This sensor can distinguish between free and occupied space and271

model it in 2D (x,y coordinates) with respect to the vehicle bodyframe. We used the272

credal grids generated by a C++ code 19 with data acquired on our experimental273

vehicle (cf Figure 4). We refer to the provided references for further details about274

the grid acquisition. We consider a set of 40 different grids (or images). Each grid275

of 20*50 meters is built with uniform cells of size 0.1*0.1 meters. Each grid is repre-276

sented as an image in which one pixel corresponds to one cell, the green color shows277

the free cells (usable), the red one shows the occupied cells, while the black repre-278

sents unexplored cells (unknown). The color intensity reflects the certainty degree.279

For each image (or grid), we generated n possible trajectories, as represented in280

Figure 5. The shapes of the trajectories are clothoids, that are generated following281

the approach proposed by Mouhagir et al. 22. The number of generated trajectories282

depends on internal states of ego-vehicle (speed and yaw rate). This type of trajec-283

tory called “tentacle” is indeed well suited to local planning. The final aim is then to284

automatically select the best trajectory, or “tentacle”. In the following we consider285

n = 5 trajectories. Generating such a finite set of pre-computed trajectories is quite286

common when needing real-time decision for objects having a high velocity (rockets,287

cars, etc.), as it speeds up the decision process. In this case, exploring all solutions288
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Fig. 4. Experimental vehicle

and trajectories may simply be too costly, even with efficient algorithms at hand.289

Each trajectory is composed of several metagrids, each of them are defined as a290

square encompassing a circle of 3 meters diameter (30*30 cells). The security dis-291

tance is fixed to 15 meters which is equivalent to 5 metagrids along a trajectory. The292

red circles indicate that the distance of the vehicule to the metagrid is less than the293

security distance. Each cell X of a metagrid is characterized by a basic belief mass294

assignment (bba)m on the frame X = {x,¬x}, where x stand for “occupied” and ¬x295

for “free”, that can be easily transformed into lower/upper probabilistic boundsc.296

This means that for each cell, we retrieve three masses m({x}),m({¬x}),m(X ).297

Each metagrid, initially of size 30*30, was transformed into metagrids of size 6*6298

by averaging the masses of adjacent cells.299

To have access to a ground truth and to be able to compare methods for choosing300

the best trajectory, we have used two human “experts" (in this case, experienced301

drivers from the laboratory) to label the possible trajectories. An example of some302

evaluations given by one expert is given in Table 6. The instructions given to the303

experts were to assign a rank to the proposed trajectories, with the convention304

that 0 means that the trajectory is not at all acceptable (i.e., could lead to an305

accident), that rank 1 is the best rank, and that the same rank can be given to several306

trajectories if the expert is not able to distinguish them in terms of drivability. For307

example, in Table 6, for grid 200, trajectory τ5 is declared unacceptable by the308

expert, and τ3 is preferred to τ2, which is in turned preferred to τ1 and τ4, without309

any preference between these two last trajectories. In image 209, τ4 and τ5 are310

unacceptable, τ2 and τ3 are equally preferred, and τ1 is in the third position.311

To apply our method, we convert the evidential grids (which we simply use as
an estimation/learning tool) into imprecise probability grids in the following a way:
each cell of a metagrid is characterized by an interval of probability [p(x), p(x)] such
that:

p(x) = m({x}),

cWe consider in this paper only normal bbas so that m(∅) = 0 for any cell of the grid, so we
can just treat them as our way to obtain probability bounds, without considering their potential
semantic within evidence theory.
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Fig. 5. A credal grid and five possible trajectories

Grid τ1 τ2 τ3 τ4 τ5

200 3 2 1 3 0
209 2 1 1 0 0

Table 6. Example of trajectory evaluation by an expert

and

p(x) = m({x}) +m({x,¬x}).

312

The decision is based on 12 metagrids per trajectory which corresponds in av-313

erage to what can be visually evaluated by the expert. As it is partly outside of314

what can be seen by the Lidar, the first metagrid is not taken into account in the315

decision process. We have fixed arbitrarily the values of the utility function to -5316

for the first four metagrids, and to values linearly spaced between 10 and 70 for the317

following ones.318

As a baseline to compare our method, we also convert the evidential grids into319

binary grids and use them as follows:320

(1) A cell is occupied if the middle of the interval [p(x); p(x)] is greater than321
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0.5.322

(2) A metagrid is free if none of the cells that make it up are occupied,323

(3) If the rank of the first occupied metagrid is less or equal to 4, then the324

trajectory is declared unacceptable.325

(4) The further away is the first metagrid occupied along a trajectory, the326

better is the trajectory.327

The reason for choosing such a baseline is that it is very simple (hence easily usable328

by an autonomous car or any mobile robot), but retains very little of our initial, rich329

information. A key question is therefore to check that retaining such a rich (but330

computationally more demanding) information does bring some practical advan-331

tage. The methods are evaluated according to the two tasks performed during the332

decision: deciding if a trajectory is acceptable or not and ordering of the remaining333

trajectories. The methods are thus evaluated according to two different criteria.334

For the first task, we use the traditional Fβ measure which is defined by:

Fβ =
(1 + β2)TP

(1 + β2)TP+ β2FN+ FP
,

where TP stands for the number of true positives, FN for false negatives and FP for335

false positives. In the task of recognizing acceptable trajectories, the false negative336

refer to acceptable trajectories which are wrongly classified as unacceptable, whereas337

the false positives refer to unacceptable trajectories which are wrongly declared as338

acceptable. The last error being much more serious and dangerous for a driver than339

the former, we use a value of β = 0.5 which penalizes more the false positives than340

the false negatives. Two possible rules have been explored in the experiments:341

• Rule 1. trajectory τj is classified as acceptable if E(τj)>0 ;342

• Rule 2. trajectory τj is classified as acceptable if E(τj)>0 .343

For the second task, we need a criterion to judge the relevance of the trajec-344

tory ordering. As explained before, the order relations on the set of trajectories345

obtained using our method are either total preorders (orders 3 and 4) or partial346

orders (orders 1 and 2). On the other hand, the evaluations of the experts, express-347

ing their preference about the trajectories with possible indifference, lead to total348

preorders. A first way to compare the results is to use a general measure to evaluate349

the discrepancy between preorders, as partial or total orders are special cases of350

preorders. For this purpose, we use a distance measure between preorders proposed351

in 15. Let us use the following notations: τj � τk denotes the fact that τj is strictly352

preferred to τk, τj ≈ τk that τj and τk are indifferent, and τj?τk means that τj and353

τk are incomparable. The distance between two preorders is defined as the sum of354

the distances between all pairs of trajectories, using the values indicated in Table355

7. These values have been arbitrarly chosen in a set of values respecting axiomatic356

and common sense rules.357

For Orders 3 and 4, and for the binary method, as they lead to total preorders,358

there is a second way of comparing the results: if indecision is not allowed, each359
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τj ≈ τk τj � τk τj?τk τk � τj
τj ≈ τk 0 1 4/3 1
τj � τk 1 0 4/3 5/3
τj?τk 4/3 4/3 0 4/3
τk � τj 1 5/3 4/3 0

Table 7. Values of the distance between two preorders

method can be forced to select a best trajectory i.e. a trajectory which is ranked360

first (there may be multiple ones in case of indifference) in the preorder. We propose361

in this case to evaluate each method by an accuracy score computed as follows. Let362

τ̂i denote the prediction of a method. For each predicted trajectory, the individual363

accuracy is obtained as:364

acci =


1

ri
if τ̂i is acceptable for the expert

0 else,

where ri denote the rank of τ̂i in the expert order. The total accuracy Acc is obtained365

as the mean of the individual accuracies.366

It must be noticed that, in contrast with the IP method, the binary method367

often provides several trajectories equally ranked at the first place because the368

order depends only on the number of metagrids on the trajectories supposed to369

be free. In case of a tie, we propose thus two strategies: either to retain the best370

rank among the set of best trajectories (which gives clearly an advantage to the371

binary method) or to break the tie by randomly choosing a trajectory in the best372

trajectories, which seems fairer for the comparison, as in principle we do not have373

access to the expert “ground truth”.374

Results are presented in Table 8,9, and 10. In Table 8 is presented the value of375

Fβ averaged on the 40 images for the two rules and the binary approach. We can see376

that the best score for Fβ is achieved using Rule 2. This rule consists in eliminating377

trajectories for which the utility is for sure less than zero. This confirms that using378

negative utilities for the first metagrids is a useful feature, as it is an efficient filter.379

Note that results of our method and the binary one are not very different. As future380

works, we could try to optimize/change utilities so that they provide optimal Fβ381

on a training set, yet this would significantly increase the method complexity, with382

an unclear benefit.383

Much more differences are found in the second task. Table 9 presents the results384

obtained for the ordering task (after using Rule 2 for selecting the acceptable trajec-385

tories). It gives the average distance between the expert orders and the automatic386

orders. It can be seen that, for both experts, the order obtained using Order 4 leads387

to a smallest distance with respect to the expert order and that it outperforms the388
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simple binary method. Interestingly, this indicates that once the undesirable (unac-389

ceptable) trajectories have been removed from the possible choices, the optimistic390

behaviour seems to be in very good accordance with the observed expert behaviours.391

Order 1 seem to be too conservative, as could be reasonably expected, while orders392

2 and 3 end up in similar distances. It should however be emphasized that we are393

systematically comparing all orders to total preorders, meaning that it is hard, from394

our experimental setting, to assess the utility of the incomparabilities induced by395

orders 1 and 2, in particular the refine an imprecise selection. Exploring this aspect396

is the matter of future methodological and experimental work, for example to allow397

experts to express such incomparabilities.398

In Table 10, we compare the results of the task consisting in choosing only one399

trajectory. We report three results for the simple binary method: the maximum ac-400

curacy which corresponds to breaking ties in choosing systematically the trajectory401

associated to the best result (the one ranked highest by the expert), the minimum402

accuracy which corresponds to choosing systematically the worst result and, finally,403

a random guess among the possible best trajectories. Without surprise, the results404

of the binary method in which the maximum accuracy is retained gives the best405

results but it may be seen that Order 4 outperforms the random guess and pro-406

vides results which are close to maximum accuracy. Another thing is that the span407

between the minimum and maximum accuracies can be quite large, thus indicating408

that a refined modelling of uncertainty may be helpful ot better discriminate the409

trajectories.410

Expert Fβ (rule 1) Fβ (rule 2) Fβ (binary)

1 0,8934 0,9118 0,9034
2 0,8768 0,9460 0,9429

Table 8. Classification unacceptable/acceptable: average Fβ for the three methods

Expert Order 1 Order 2 Order 3 Order 4 Binary

1 9,7 6,31 6,85 2,81 6,84
2 9,86 6,4 6,2 3,61 7,32

Table 9. Ordering results: mean distance between the expert and the proposed order
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Expert Order 3 Order 4 Binary (min) Binary (random) Binary (max)

1 0,6995 0.9125 0,5372 0.7855 0.9251
2 0,6663 0,8792 0,4422 0,6446 0,9625

Table 10. Best trajectory results: accuracy of the methods

5. Conclusion411

In this article, we have introduced the notion of credal occupancy grids, that to412

the best of our knowledge was never studied before. The advantage of such grids is413

their flexibility in terms of uncertainty modelling, as well as their consistency with414

traditional probabilistic models, that they extend. To show how such grids could415

be used in practice, we have proposed a model to make cautious inferences for416

robot trajectory planning from uncertain information provided in the form of such417

credal occupancy grids. The proposed model allows one to accurately represent418

the available information while controlling the computational complexity by the419

use of particular events of the decision space. In particular, the proposed method is420

relatively simple and makes very clear assumptions about the uncertainty modelling421

and reasoning parts, as well as about the decision process. This has in our opinion422

two key advantages: it makes the whole method more acceptable and explainable to423

third parties, and it is easy to revisit, question, or modify the different components424

of the method.425

We have illustrated the behaviour of the proposed approach using simple ex-426

amples, and have tested it using real data, in the context of autonomous vehicles,427

comparing it favourably with a simple baseline approach. These first results indeed428

show that the approach is interesting thanks to a greater flexibility in the decision429

process. To completely validate the approach, a greater number of experts and a430

larger number of grids and situations in the experimental part would be needed.431

Future research could include also the automatic learning of the utility function432

and the integration of other criteria in the decision process like the similarity to a433

reference trajectory.434

We also plan to augment the expressivity of the method, for example by bet-435

ter differentiating cell occupancy information, distinguishing between completely436

usable cells, not-fully usable cells (e.g. for vehicles, side-walks, emergency lines)437

and completely unusable cells (with obstacles). Such distinctions could be impor-438

tant elements to deal with complex situations possibly leading to accidents, but439

would increase the method complexity. Another important avenue of research is440

how dependence information could be embedded in the inferences. Indeed, so far441

we have considered the cells and their uncertainty model to be independent, which442

is an acceptable simplifying assumption in first approximation, but is not true in443

general.444
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Finally, while we considered here the problem of making real-time inferences445

on a pre-selected number of trajectories by using DNF Boolean formulas, it would446

be interesting to investigate other ways to handle either the planning problem or447

to obtain the normal forms of the formulas, that could prove useful in those cases448

where computational time should remain acceptable but is not constrained by real-449

time and by physical constraints induced by velocity and limiting the number of450

trajectories one could consider (e.g., slow moving robots in risky environments). For451

instance, one could consider finding an arbitrary optimal sequence of cells as a tra-452

jectory from point A to point B, taking inspiration from recent works on inferences453

in HMM 8 or from works extending PODMP 14 to the imprecise framework. Con-454

cerning Boolean formulas, we mainly used DNF formulas and mentioned BDDs as455

another way to obtain compact representations of Boolean functions, but it would456

interesting to make a general exploration of the interplay between different ways of457

compiling semantically equivalent Boolean formulas 7 and their corresponding com-458

putational complexity, notably those compilations that have an efficient imprecise459

counterpart such as the recent Sentential Decision Diagrams 18.460
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