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Inference and decision in credal occupancy grids: use case on trajectory planning
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Occupancy grids are common tools used in robotics to represent the robot environment, and that may be used to plan trajectories, select additional measurements to acquire, etc. However, deriving information about those occupancy grids from sensor measurements often induce a lot of uncertainty, especially for grid elements that correspond to occluded or far away area from the robot. This means that occupancy information may be quite uncertain and imprecise at some places, while being very accurate at others. Modelling finely this occupancy information is essential to decide the optimal action the robot should take, but a refined modelling of uncertainty often implies a higher computational cost, a prohibitive feature for real-time applications. In this paper, we introduce the notion of credal occupancy grids, using the very general theory of imprecise probabilities to model occupancy uncertainty. We also show how one can perform efficient, real-time inferences with such a model, and show a use-case applying the model to an autonomous vehicle trajectory planning problem.

Introduction

Occupancy grids are commonly used tools to represent a mobile robot (cars, drones, etc.) environment, especially autonomous ones. Based on a local perception of the vehicle, they are instrumental in solving issues such as obstacle avoidance and shortterm trajectory planning, and are particularly suitable in dynamic environments, for instance environments discovered on the fly by the robots (such as in SLAM problems [START_REF] Dedduwa Pathiranage | T-s fuzzy model adopted slam algorithm with linear programming based data association for mobile robots[END_REF] ) or environments in which moving obstacles evolves [START_REF] Moras | Moving objects detection by conflict analysis in evidential grids[END_REF] . Such grids are composed of multiple cells, which in the most usual settings can be either free or occupied. Those grids are most of the time obtained from sensor readings associated to processing steps that may be peculiar to each sensor, according to their nature (cameras, lasers, . . . ). Such occupancy information is therefore prone to be affected by many sources of uncertainties, such as imprecise sensor readings (camera occlusion, numerical precision, . . . , ), noise due to environmental conditions (rain, . . . ) or faulty sensors. Different frameworks have been proposed to model and reason from such uncertainties, for instance by using probabilistic [START_REF] Moravec | High resolution maps from wide angle sonar[END_REF][START_REF] Coue | Bayesian occupancy filtering for multitarget tracking: an automotive application[END_REF] , fuzzy [START_REF] Saffiotti | The uses of fuzzy logic in autonomous robot navigation[END_REF][START_REF] Oriolo | Fuzzy maps: A new tool for mobile robot perception and planning[END_REF][START_REF] Noykov | Occupancy grids building by sonar and mobile robot[END_REF] or evidential [START_REF] Moras | Credibilist occupancy grids for vehicle perception in dynamic environments[END_REF][START_REF] Yang | Evidential mapping for mobile robots with range sensors[END_REF][START_REF] Pagac | Evidential approach to map-building for autonomous vehicles[END_REF][START_REF] Tanzmeister | Evidential grid-based tracking and mapping[END_REF] occupancy grids.

In this paper, we explore how another uncertainty framework, namely imprecise probabilities, can be used to model uncertainty in occupancy grids. To our knowledge, it is the very first attempt to do so. Imprecise probability consists in extending the classical probabilistic model by considering convex sets of probabilities or equivalent models such as lower expectation. This representation formally includes all the other aforementioned representations [START_REF] Destercke | Special cases[END_REF] (possibilities, probabilities, belief functions), and has the benefit to be fully consistent with classical Bayesian probabilistic modelling, both axiomatically (as it relaxes Bayesian axioms) and formally speaking. It can therefore be interpreted either as an uncertainty theory of its own, or as a robustification of the classical probabilistic models. We refer to [START_REF] Augustin | Introduction to imprecise probabilities[END_REF] for an introduction to various aspects of the framework, and to Walley's book [START_REF] Walley | Statistical reasoning with imprecise probabilities[END_REF] for a full theoretical account. In the case of cells taking values in the binary space X = {x, ¬x} composed of the states occupied (x in our notation) and free (¬x in our notation), imprecise probabilistic models encode uncertainty by explicitly encoding imprecision through the use of two boundary measures, therefore allowing to differentiate between what is commonly called aleatoric uncertainty (due to a possible ambiguity and/or random phenomena) and epistemic uncertainty (due to an absence of information).

The concept of imprecise probabilistic occupancy grids is introduced in Section 2, where we also discuss the associated challenges in terms of inference and decision.

We then consider in Section 3 the specific problem of making inferences for local trajectory planning, proposing a computationally efficient and simple solution to do so. Each step of the method is illustrated using simple examples. Then, in Section 4, for illustrative purposes, we present some results obtained using real occupancy grids coming from PACPUS [START_REF]Plateforme PACPUS[END_REF] , an experimental platform developed in our laboratory, dedicated to researches on autonomous vehicles. 

Introducing credal occupancy grids

In this section, we will introduce the notion of credal occupancy grids, and will discuss the problem of making general inferences with them. Roughly speaking, such inferences come down to make computations over (pseudo-)Boolean functions where the probabilities of literals are imprecisely specified. We will however not treat this very general issue that is encountered in many fields such as data-bases [START_REF] Gatterbauer | Oblivious bounds on the probability of boolean functions[END_REF] , gametheory [START_REF] Owen | Multilinear extensions of games[END_REF] , but will focus on the most common issue in applications using occupancy grids, that is guiding a moving object through it.

For this reason, we will consider from now that our problem concerns a moving robot, and that the robot environment is modelled by a large grid of cells, and that each cell X can take a binary value, occupied (x) or unoccupied (¬x). We assume that when a robot perceives its environment through measurement devices (sensors, cameras), it receives uncertain information about whether a given cell is occupied.

Imprecise probabilities 32 offer a very generic way to model uncertainty, including most known models of uncertainty such as precise probabilities, belief functions or possibility distributions [START_REF] Destercke | Special cases[END_REF] . It also comes with a fully-fledged theory to reason with such uncertainty and make decisions [START_REF] Walley | Statistical reasoning with imprecise probabilities[END_REF] .

In a binary setting such as the occupancy of cell X, any imprecise probabilistic model can be reduced to an interval [p(x), p(x)] of the probability to be occupied, as we have that p(¬x) = 1 -p(x) and similarly for the upper bound. Note that the fact that any convex probability set can be reduced to such intervals on singletons is only true in the binary case, and is used here as one of the key feature that makes our approach tractable. We can in particular model the following extreme situations:

• certain occupancy: [p(x), p(x)] = [1, 1],
• certain inoccupancy: [p(x), p(x)] = [0, 0],

• unknown occupancy:

[p(x), p(x)] = [0, 1],
as well as all the intermediate ones, with precise probabilities being retrieved when p(x) = p(x). A credal occupancy grid is pictured in Figure 1, where cells are voluntary of very large size for illustrative purposes. Green cells are likely to be unoccupied, red ones occupied, and grey/dark ones are in between (i.e., 0.5 ∈ [p(x), p(x)]).

The darker the shades, the wider are the corresponding intervals.

Let us now consider a set X 1 , . . . , X m of cells. As they are equivalent to Boolean variables, any event A concerning these cells (e.g., "at least one cell is occupied","k consecutive cells are occupied") can be expressed as a Boolean formula, and in particular can be put in Disjunctive Normal Form (DNF). This means that we can express any event in the form of a disjunction A = ∨ j i=1 A i , where each

A i = ∧ k∈A + i x k ∧ k∈A - i ¬x k is a

conjunction of values for the cells (A +

i denotes the set of indices of positive variable, A - i the indices of negative one). Such sets are sometimes called orthopairs 5 in the literature. When the uncertainty over cells is expressed by a precise probability, assessing P (A) then amounts to evaluate P (∪ j i=1 A i ), a potentially difficult task. One common way to do it is to use the following formula a

P (A) =P (∪ j i=1 A i ) = A⊆{A1,...,Aj } -1 |A| P (∩ A∈A A i ) (1) 
where the second equality simply applies the inclusion/exclusion principle. The 110 probability of a conjunctive event A i is 111

P (A i ) = k∈A + i p(x k ) k∈A - i p(¬x k ). (2) 
and likewise for intersection of such events, that remain of the same form. Solving become imprecise, as we then have to solve the equation

P (A) = inf p(xi)∈{p(xi),p(xi)} P (A) (3) 
to get the lower bound of the probability of an event A, which is NP-hard in general, as Equation 1 is a multi-linear form of the p(x i ), each constrained to be in an interval (see for instance [START_REF] Boros | Pseudo-boolean optimization[END_REF] ). Indeed, if it is known [START_REF] Fortin | Gradual numbers and their application to fuzzy interval analysis[END_REF] that the bound given by Equation 3is obtained in such a case on one of the vertices of the hyper-cube

× i [p(x i ), p(x i )],
that is p(x i ) ∈ {p(x i ), p(x i )}, it remains to find which one, hence to check for 2 m combinations if m is the number of cells. The upper bound can be found similarly, replacing inf by sup, with the same difficulties. This means, in particular, that reasoning over an entire imprecise probabilistic grid and for arbitrary events will be computationally prohibitive and infeasible for real-time applications.

Example 1. Let us consider two cells X 1 , X 2 , and the event "one and only one cell is occupied", that corresponds to a XOR logical gate, that is More generally, one may be interested not only in computing the lower and upper bounds of some event probabilities, but to compute the lower and upper expected values of some reward/penalty function f :

A = (x 1 ∧ ¬x 2 ) ∨ (x 2 ∧ ¬x 1 ) = A 1 ∪ A 2 with A 1 ∩ A 2 = ∅,
× m k=1 {x k , ¬x k } → R. Since it
is defined on a discrete space, we can always define a partition B 1 , . . . , B k such that f is constant over elements of this partition, i.e. if we denote by x an assignment vector over cells X i , f (x) = f (x ) whenever x, x ∈ B i for some i ∈ {1, . . . , k}. It then makes sense to denote by f Bi the value of f for all elements included in B i .

Computing the lower expectation of f than amounts to solve the equation

E(f ) = inf p(xi)∈{p(xi),p(xi)} k j=1 f Bj P (B j ) (4) 
with each B j that can be decomposed using (2). As (4) remains a multi-linear form, the problem for solving it is in general not more difficult than the one of finding a lower probability, and its tractability will depend on both the form of f and of the events B i .

Example We now want to know our lower expected reward, should we play this game. We have

Y i X 1 X 2 X 16
B 1 = (x 1 ∧ x 2 ) ∨ (¬x 1 ∧ ¬x 2 ) and B 2 its complement, with f B1 = 2 and f B2 = -1. We must now minimize 2(p(x 1 ) • p(x 2 ) + p(¬x 1 ) • p(¬x 2 )) -(p(¬x 1 ) • p(x 2 ) + p(x 1 ) • p(¬x 2 ))
which gives E(f ) = -0.86, obtained for the values p(x 1 ) = 0.8 and p(x 2 ) = 0.6.

153

In the rest of the paper, we will propose a decision model that focuses on partic-154 ular types of events, that are of practical interest in robot guidance problems and 155 are computationally tractable, in the sense that bound (3) can be computed in a 156 time that is linear in the number of considered cells (or Boolean variables). From now on, we will also be interested in particular states of subgrids of the 162 whole occupancy grid, that we will call metagrids. Such metagrids will describe the 163 successive locations of a robot along a chosen path. Indeed, usually the space occu-164 pied by a robot (be it a vehicle, a drone, etc.) is much bigger than a single cell, whose 165 area is usually related to the smallest zone a robot can perceive with sufficient relia-166 bility. As an example, cells of grids for autonomous vehicles are typically squares of a 167 few decimetres A metagrid Y i will be composed of n cells denoted X 1 , . . . , X n , while 168 a possible path for the robot will always be composed of k metagrids Y 1 , . . . , Y k , 169 representing its successive positions. The concept of metagrid within a grid is shown 170 in the Figure 2 (with a metagrid being made of 16 elementary cells).

171

Given this, our decision model will be based on the following elements, that we 

F i = ∧ i-1
j=1 ¬y j ∧ y i , corresponding to the event that Y i is the first occu-181 pied metagrid.

182

• Pick the trajectory that provides the best expected reward as the robot 183 future path, unless stopping is required because the first metagrids are too 184 likely to be occupied.

185

For each of those steps, we will provide inference tools whose computational com-186 plexity is fixed and linear with the number of states, hence ensuring that real-time 187 applications of the proposed method is doable. Since they also rely on fixed formu-188 las, they can also be easily implemented as hardware components, possibly speeding 189 up computations even further. A first inference we want to do is to know, for each metagrid, what is the likelihood of having at least one cell X i that is occupied, as having one such cell is judged sufficient for the metagrid to be unreachable. In practice, this comes down to assess the probability bounds for the event

Y = x 1 ∨ x 2 ∨ . . . ∨ x n .
One advantage of this event is that it satisfies a monotonicity constraint, i.e., it cannot become false if one variable X i goes from the value ¬x i to x i . It results that the corresponding multi-linear form given by Equation ( 2) is increasing b in each variable p(x i ). Previous results about such multi-linear forms [START_REF] Fortin | Gradual numbers and their application to fuzzy interval analysis[END_REF] , applied for instance in 1 to the case of reliability functions, then indicate that P (Y ) is obtained by computing P (Y ) when p(x i ) = p(x i ). Yet it should be noticed that the form x 1 ∨ x 2 ∨ . . . ∨ x n is not very computationally friendly, as every pair of elements of the disjunction have a non-empty intersection, since no pair of formulas contains opposite values of variables (each formula is only made of positive values). This means that Equation (1) contains a number of terms that factorially increases with n. However, we can re-express Y as a disjunction of non-intersecting events (using, e.g., ordered binary decision diagrams 4 )

Y = x 1 ∨ (¬x 1 ∧ x 2 ) ∨ (¬x 1 ∧ ¬x 2 ∧ x 3 ) ∨ . . . ∨ (∧ n-1 i=1 ¬x i x n )
that counts n different conjunctions that have the advantage to be pairwise disjoint, meaning that we finally get 193 b One can simply consider the partial derivatives ∂P (A)/∂p i to check it. 

X 1 X 2 X 3 X 4 p(x i ) 0.2 0.1 0 0.6 p(x i ) 0.2 1 0.1 0.7
P (Y ) = n i=1   p(x i ) i-1 j=1 p(¬x j )   ,
a sum that has a linear number of terms with respect to n. We can similarly obtain Example 3. Let us consider a metagrid composed of four cells with probability intervals of occupancy given in Table 1. In this case, we have:

P (Y ) =p(x 1 ) + p(x 2 )p(¬x 1 )
+ p(x 3 )p(¬x 1 )p(¬x 2 )

+ p(x 4 )p(¬x 1 )p(¬x 2 )p(¬x 3 ).

Using the fact that p(¬x i ) = 1 -p(x i ), we obtain:

P (Y ) = 0.2 + 0.1(1 -0.2) + 0(1 -0.2)(1 -0.1) + 0.6(1 -0.2)(1 -0.1)(1 -0) = 0.712
Similarly,

P (Y ) =p(x 1 ) + p(x 2 )p(¬x 1 ) + p(x 3 )p(¬x 1 )p(¬x 2 ) + p(x 4 )p(¬x 1 )p(¬x 2 )p(¬x 3 ).
Thus, we have:

P (Y ) = 0.2 + 1(1 -0.2) + 0.1(1 -0.2)(1 -1) + 0.7(1 -0.2)(1 -1)(1 -0.1) = 1,
giving a probability interval of occupancy equal to [0.712, 1], what might indicate 199 that the metagrid is not free. Note that the upper bound is equal to 1 which is quite 200 natural because it is totally plausible for the second cell to be occupied. Similarly,

201
the high lower bound is induced by the fact that the fourth cell is probably occupied.

Y 1 Y 2 Y 3 Y 4 P (y i ) 0.1 0.3 0.712 0 P (y i ) 0.2 0.5 1 1
Table 2. Example 3: a trajectory composed of four metagrids

Inferences along a trajectory 203

Having made inferences over the k metagrids Y 1 , . . . , Y k along a given trajectory, we are now concerned about selecting the path that the robot should take. A first step for this is to assess how far we could go along a given trajectory. Indeed, if one of the first metagrid is almost surely occupied, it is not very useful to know that the last ones are surely free, as we will have encountered an obstacle before them.

Hence, what matters is how soon we are likely to encounter an obstacle on a path. With this reasoning in mind, we propose to assess the lower and upper probability bounds over consecutive events F i ="the ith metagrid is the first non-free", or in variable terms,

F i = ∧ i-1 j=1 ¬y j ∧ y i i = 1, k.
The event F i being actually expressible as a Cartesian product of the subspaces {y i , ¬y i }, we have in the probabilistic case that

P (F i ) = p(y i ) i-1 j=1 p(¬y j ).
Getting bounds over this probability is then very easy, since if all the terms are 204 independent, it is enough to just minimize each of them. We thus end up with

205 P (F i ) = p(y i ) i-1 j=1 p(¬y j ) (5) 
and similarly for P (F i ), just switching the bounds. Computing this bound involves These values could correspond to the following situation: the first two metagrids are likely to be free, then the sensor detects almost surely an obstacle on the third metagrid, and does not see anything on the last metagrid because of occlusions. We have: Using Esq. ( 5), we can compute easily the probability bounds of the five events.

F 1 = y 1 × {y 2 , ¬y 2 } × {y 3 , ¬y 3 } × {y 4 , ¬y 4 } F 1 F 2 F 3 F 4 F 5 P (F i ) 0.

213

They are given in Table 3.

214

It should also be noted that the events F 1 , . . . , F k+1 actually form a partition of the space k i=1 {y i , ¬y i } (F i ∩ F j = ∅ for any i, j, and ∪ k+1 i=1 F i = k i=1 {y i , ¬y i }), meaning that they can be interpreted as probability bounds over atoms of a Boolean algebra. This means in particular that the set of intervals [P (F i ), P (F i )], i = 1, k can be interpreted as probability intervals [START_REF] De Campos | Probability intervals: a tool for uncertain reasoning[END_REF] , a well known imprecise probabilistic 215 model for which efficient inference tools do exist. We will use this fact in the next 216 section, when deciding which path a mobile robot should follow in order to maximize 217 its utility. is usable or not. This utility is defined on the basis of the events F i .

223

A first remark is that the states or atoms F i , i = 1, k + 1 of our decision space 224 are naturally ordered in terms of increasing utility, in the sense that F j (the j-th 225 metagrid is the first occupied) happening is worse than F j+1 happening. This means, 226 among other things, that the utility function associated to those states should be 227 increasing, i.e., that u(F i ) ≤ u(F i+1 ) in any case.

228

In the case of precise probabilities (we have a precise value P j (F i ) for each element of a trajectory τ j ), the value of a trajectory would then be its expected utility E(τ j ), i.e. (we refer to [START_REF] De Campos | Probability intervals: a tool for uncertain reasoning[END_REF] for the details of the derivation). Moreover, as the utilities are always 234 ordered in the same way, computing the bounds of the expected utility is simple as 235 we have: Again, due to our assumptions (increasing and ordered utilities along the F i , that 240 form a partition), these formulas are fixed and straightforward to compute.

E(τ

j ) = k+1 i=1 P j (F i )u(F i ).
236 E(τ j ) = k+1 i=1 (u(F i ) -u(F i-1 )) P ({F i , . . . , F k+1 }),
and 237 P ({F i , . . . , F k+1 }) = max( k+1 l=i p(F l ), 1 - i-1 l=1 p(F l )), with u(F 0 ) = 0. Similarly 238 E(τ j ) = k+1 i=1 (u(F i ) -u(F i-1 )) P ({F i , . . . , F k+1 }),

241

Example 5. Let us consider the utilities given in Table 4. We have chosen to fix negative utilities for the two first metagrids, representing a kind of "security distance" of at least two metagrids, a negative expected utility then corresponding to the fact that if this path is chosen, the mobile robot should preferably brake or stop. If we compute the lower and upper bounds for the trajectory of Example 4, we have

E(τ ) = (-20 -0) • P ({F 1 , . . . , F 5 }) + (-10 -(-20)) • P ({F 2 , . . . , F 5 }) + . . . + (20 -10) • P ({F 5 }) = (-20 -0) • 1 + (-10 -(-20)) • 0.8 + . . . + (20 -10) • 0 = -8.5
and we finally find [-8.5, 1], which corresponds to the fact that the second metagrid is likely to be occupied.

243

As each trajectory is characterized by a lower and an upper expectation, there 

255

The two first rules provide a partial order on the trajectories allowing for incomparabilities, whereas the two last rules provide a linear order. Rule 3 is a pessimistic rule, it consists in retaining the best trajectory in the worst case, i.e. the trajectory associated to the highest lower expected utility. Rule 4 on the contrary gives the preference to the highest upper expected utility, adopting in this way an optimistic behaviour. When the order is partial (rules 1 and 2), one can determine a set of non-dominated trajectories:

T * = {τ j | ∃τ k such that τ k τ j }
If this set is composed of more than one trajectory and that a unique trajectory 256 is mandatory, several strategies can then be applied. It is for example possible 

Illustrative application 267

As a proof of concept, we experiment our approach using real data, issued from the 268 platform PACPUS [START_REF]Plateforme PACPUS[END_REF] developed in our lab. The objective of PACPUS is to provide 4). We refer to the provided references for further details about and trajectories may simply be too costly, even with efficient algorithms at hand. Each trajectory is composed of several metagrids, each of them are defined as a square encompassing a circle of 3 meters diameter (30*30 cells). The security distance is fixed to 15 meters which is equivalent to 5 metagrids along a trajectory. The red circles indicate that the distance of the vehicule to the metagrid is less than the security distance. Each cell X of a metagrid is characterized by a basic belief mass assignment (bba) m on the frame X = {x, ¬x}, where x stand for "occupied" and ¬x for "free", that can be easily transformed into lower/upper probabilistic bounds c . This means that for each cell, we retrieve three masses m({x}), m({¬x}), m(X ).

Each metagrid, initially of size 30*30, was transformed into metagrids of size 6*6 by averaging the masses of adjacent cells.

To have access to a ground truth and to be able to compare methods for choosing the best trajectory, we have used two human "experts" (in this case, experienced drivers from the laboratory) to label the possible trajectories. An example of some evaluations given by one expert is given in Table 6. The instructions given to the experts were to assign a rank to the proposed trajectories, with the convention that 0 means that the trajectory is not at all acceptable (i.e., could lead to an accident), that rank 1 is the best rank, and that the same rank can be given to several trajectories if the expert is not able to distinguish them in terms of drivability. For example, in Table 6, for grid 200, trajectory τ 5 is declared unacceptable by the expert, and τ 3 is preferred to τ 2 , which is in turned preferred to τ 1 and τ 4 , without any preference between these two last trajectories. In image 209, τ 4 and τ 5 are unacceptable, τ 2 and τ 3 are equally preferred, and τ 1 is in the third position.

To apply our method, we convert the evidential grids (which we simply use as an estimation/learning tool) into imprecise probability grids in the following a way: each cell of a metagrid is characterized by an interval of probability [p(x), p(x)] such that:

p(x) = m({x}), c
We consider in this paper only normal bbas so that m(∅) = 0 for any cell of the grid, so we can just treat them as our way to obtain probability bounds, without considering their potential semantic within evidence theory. As a baseline to compare our method, we also convert the evidential grids into binary grids and use them as follows:

(1) A cell is occupied if the middle of the interval [p(x); p(x)] is greater than 0.5.

(2) A metagrid is free if none of the cells that make it up are occupied,

(3) If the rank of the first occupied metagrid is less or equal to 4, then the trajectory is declared unacceptable.

(4) The further away is the first metagrid occupied along a trajectory, the better is the trajectory.

The reason for choosing such a baseline is that it is very simple (hence easily usable by an autonomous car or any mobile robot), but retains very little of our initial, rich information. A key question is therefore to check that retaining such a rich (but computationally more demanding) information does bring some practical advantage. The methods are evaluated according to the two tasks performed during the decision: deciding if a trajectory is acceptable or not and ordering of the remaining trajectories. The methods are thus evaluated according to two different criteria.

For the first task, we use the traditional F β measure which is defined by:

F β = (1 + β 2 )TP (1 + β 2 )TP + β 2 FN + FP ,
where TP stands for the number of true positives, FN for false negatives and FP for false positives. In the task of recognizing acceptable trajectories, the false negative refer to acceptable trajectories which are wrongly classified as unacceptable, whereas the false positives refer to unacceptable trajectories which are wrongly declared as acceptable. The last error being much more serious and dangerous for a driver than the former, we use a value of β = 0.5 which penalizes more the false positives than the false negatives. Two possible rules have been explored in the experiments:

• Rule 1. trajectory τ j is classified as acceptable if E(τ j )>0 ;

• Rule 2. trajectory τ j is classified as acceptable if E(τ j )>0 .

For the second task, we need a criterion to judge the relevance of the trajectory ordering. As explained before, the order relations on the set of trajectories obtained using our method are either total preorders (orders 3 and 4) or partial orders (orders 1 and 2). On the other hand, the evaluations of the experts, expressing their preference about the trajectories with possible indifference, lead to total preorders. A first way to compare the results is to use a general measure to evaluate the discrepancy between preorders, as partial or total orders are special cases of preorders. For this purpose, we use a distance measure between preorders proposed in [START_REF] Jabeur | A distance-based collective preorder integrating the relative importance of the group's members[END_REF] . Let us use the following notations: τ j τ k denotes the fact that τ j is strictly preferred to τ k , τ j ≈ τ k that τ j and τ k are indifferent, and τ j ?τ k means that τ j and τ k are incomparable. The distance between two preorders is defined as the sum of the distances between all pairs of trajectories, using the values indicated in Table 7. These values have been arbitrarly chosen in a set of values respecting axiomatic and common sense rules.

For Orders 3 and 4, and for the binary method, as they lead to total preorders, there is a second way of comparing the results: if indecision is not allowed, each

τ j ≈ τ k τ j τ k τ j ?τ k τ k τ j τ j ≈ τ k 0 1 4/3 1 τ j τ k 1 0 4/3 5/3 τ j ?τ k 4/3 4/3 0 4/3 τ k τ j 1 5/3 4/3 0 Table 7.
Values of the distance between two preorders method can be forced to select a best trajectory i.e. a trajectory which is ranked first (there may be multiple ones in case of indifference) in the preorder. We propose in this case to evaluate each method by an accuracy score computed as follows. Let τi denote the prediction of a method. For each predicted trajectory, the individual accuracy is obtained as:

acc i =    1 r i if τi is acceptable for the expert 0 else,
where r i denote the rank of τi in the expert order. The total accuracy Acc is obtained as the mean of the individual accuracies.

It must be noticed that, in contrast with the IP method, the binary method often provides several trajectories equally ranked at the first place because the order depends only on the number of metagrids on the trajectories supposed to be free. In case of a tie, we propose thus two strategies: either to retain the best rank among the set of best trajectories (which gives clearly an advantage to the binary method) or to break the tie by randomly choosing a trajectory in the best trajectories, which seems fairer for the comparison, as in principle we do not have access to the expert "ground truth".

Results are presented in Table 8,9, and 10. In Table 8 is presented the value of F β averaged on the 40 images for the two rules and the binary approach. We can see that the best score for F β is achieved using Rule 2. This rule consists in eliminating trajectories for which the utility is for sure less than zero. This confirms that using negative utilities for the first metagrids is a useful feature, as it is an efficient filter.

Note that results of our method and the binary one are not very different. As future works, we could try to optimize/change utilities so that they provide optimal F β on a training set, yet this would significantly increase the method complexity, with an unclear benefit.

Much more differences are found in the second task. Table 9 presents the results obtained for the ordering task (after using Rule 2 for selecting the acceptable trajectories). It gives the average distance between the expert orders and the automatic orders. It can be seen that, for both experts, the order obtained using Order 4 leads to a smallest distance with respect to the expert order and that it outperforms the December 4, 2020 10:57 WSPC/INSTRUCTION FILE Vehicle_IP_revised_ijufks simple binary method. Interestingly, this indicates that once the undesirable (unac-389 ceptable) trajectories have been removed from the possible choices, the optimistic 390 behaviour seems to be in very good accordance with the observed expert behaviours.

391

Order 1 seem to be too conservative, as could be reasonably expected, while orders 392 2 and 3 end up in similar distances. It should however be emphasized that we are 393 systematically comparing all orders to total preorders, meaning that it is hard, from 394 our experimental setting, to assess the utility of the incomparabilities induced by 395 orders 1 and 2, in particular the refine an imprecise selection. Exploring this aspect 396 is the matter of future methodological and experimental work, for example to allow 397 experts to express such incomparabilities.

398

In Table 10, we compare the results of the task consisting in choosing only one 399 trajectory. We report three results for the simple binary method: the maximum ac- 

Conclusion

In this article, we have introduced the notion of credal occupancy grids, that to the best of our knowledge was never studied before. The advantage of such grids is their flexibility in terms of uncertainty modelling, as well as their consistency with traditional probabilistic models, that they extend. To show how such grids could be used in practice, we have proposed a model to make cautious inferences for robot trajectory planning from uncertain information provided in the form of such credal occupancy grids. The proposed model allows one to accurately represent the available information while controlling the computational complexity by the use of particular events of the decision space. In particular, the proposed method is relatively simple and makes very clear assumptions about the uncertainty modelling and reasoning parts, as well as about the decision process. This has in our opinion two key advantages: it makes the whole method more acceptable and explainable to third parties, and it is easy to revisit, question, or modify the different components of the method.

We have illustrated the behaviour of the proposed approach using simple examples, and have tested it using real data, in the context of autonomous vehicles, comparing it favourably with a simple baseline approach. These first results indeed show that the approach is interesting thanks to a greater flexibility in the decision process. To completely validate the approach, a greater number of experts and a larger number of grids and situations in the experimental part would be needed.

Future research could include also the automatic learning of the utility function and the integration of other criteria in the decision process like the similarity to a reference trajectory.

We also plan to augment the expressivity of the method, for example by better differentiating cell occupancy information, distinguishing between completely usable cells, not-fully usable cells (e.g. for vehicles, side-walks, emergency lines) and completely unusable cells (with obstacles). Such distinctions could be important elements to deal with complex situations possibly leading to accidents, but would increase the method complexity. Another important avenue of research is how dependence information could be embedded in the inferences. Indeed, so far we have considered the cells and their uncertainty model to be independent, which is an acceptable simplifying assumption in first approximation, but is not true in general. Finally, while we considered here the problem of making real-time inferences on a pre-selected number of trajectories by using DNF Boolean formulas, it would be interesting to investigate other ways to handle either the planning problem or to obtain the normal forms of the formulas, that could prove useful in those cases where computational time should remain acceptable but is not constrained by realtime and by physical constraints induced by velocity and limiting the number of trajectories one could consider (e.g., slow moving robots in risky environments). For instance, one could consider finding an arbitrary optimal sequence of cells as a trajectory from point A to point B, taking inspiration from recent works on inferences in HMM 8 or from works extending PODMP 14 to the imprecise framework. Concerning Boolean formulas, we mainly used DNF formulas and mentioned BDDs as another way to obtain compact representations of Boolean functions, but it would interesting to make a general exploration of the interplay between different ways of compiling semantically equivalent Boolean formulas [START_REF] Darwiche | A knowledge compilation map[END_REF] and their corresponding computational complexity, notably those compilations that have an efficient imprecise counterpart such as the recent Sentential Decision Diagrams 18 .

Fig. 1 .

 1 Fig. 1. Credal occupancy grid build from sensor data. Certain occupancy: [p(x), p(x)] = [1, 1] in red, certain inoccupancy: [p(x), p(x)] = [0, 0] in green, unknown occupancy: [p(x), p(x)] = [0, 1] in black. The intermediate states are represented with lower intensity values.

Fig. 2 .

 2 Fig. 2. The metagrid Y i composed of 16 cells of the credal occupancy grid
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157 3 .

 3 Moving in credal occupancy grid: model, inference and decision 158 Now that we have introduced credal occupancy grids and discussed their main 159 aspects regarding inference, let us focus on the problem of guiding a moving robot 160 within such an occupancy grid.

  161

172 will detail in different subsections: 173 •

 173 For each metagrid Y i , assess the uncertainty over the fact that at least 174 one cell of the metagrid is occupied: this provides lower/upper bounds 175 [p(y i ), p(y i )] over a new Boolean state (either at least one cell is occupied, , that we consider as probability bounds of the fact that the robot 177 can move over Y i . F 1 , . . . , F k that the robot can move up to the ith metagrid, that is 180

190 3 . 1 .

 31 Inference about individual metagrids191

  194an upper bound P (Y ), just inverting the bounds over p(x i ) in the equation. The 195 bounds [P (Y c ), P (Y c )] over the event Y c ="none of the cells of the metagrid are 196 occupied" can then be obtained by complementation, as we have P (Y c ) = 1 -P (Y ) 197 and P (Y c ) = 1 -P (Y ).

  198

206 at most kExample 4 .

 4 products, and is therefore quite efficient again. Note that we compute 207 also the bounds for an additional event F k+1 = ∧ k j=1 ¬y j which represents the event 208 "all metagrids are free".209 Let us consider a trajectory composed of 4 metagrids which prob-210 abilities are given in Table2(in which the third metagrid could be the one of 211Example 3).

  212

F 2 =F 3 =F 4 = 4 F 5 =

 23445 ¬y 1 × y 2 × {y 3 , ¬y 3 } × {y 4 , ¬y 4 } ¬y 1 × ¬y 2 × y 3 × {y 4 , ¬y 4 } ¬y 1 × ¬y 2 × ¬y 3 × y ¬y 1 × ¬y 2 × ¬y 3 × ¬y 4

218 3 . 3 .

 33 Deciding the best trajectory 219 We now consider that we have to choose between several paths τ , each moving 220 over a fixed number of k metagrids whose states are uncertain. To choose the best 221 trajectory, we propose to use a utility function quantifying the fact that a trajectory 222

11

 11 When the P (F j )'s become imprecise and are only known to belong to some inter-229 vals [P (F j ), P (F j )], this expectation becomes interval-valued for each trajectory τ j . 230 Given the fact that our uncertainty model is expressed as intervals on singletons, 231 the upper and lower probabilities are 2-monotone and thus we can compute the 232 lower and upper expected utilities of each trajectory thanks to a Choquet integral
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and 239 P

 239 ({F i , . . . , F k+1 }) = min(
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  are several possibilities to make a decision about the best trajectory, as we must now December 4, 2020 10:57 WSPC/INSTRUCTION FILE Vehicle_IP_revised_ijufksu(F 0 ) u(F 1 ) u(F 2 ) u(F 3 ) u(F 4 ) u(F 5 )

257Example 6 .(τ 2 ,

 62 to postpone the decision by asking complementary information on the navigable 258 space. It is also possible to use additional criteria in the decision process, like the 259 proximity to a reference trajectory (using in this case what is commonly known as 260 lexicographic orders 11 ). 261 Let us suppose that we have 5 possible trajectories, whose lower and 262 upper expected utilities are given in Table 5 and represented in Figure 3. Using Rule 263 1, there are three maximal elements in the partial order induced by the intervals 264 τ 4 , and τ 5 ). Two maximal elements are found using Rule 2 (τ 4 and τ 5 ). The 265 pessimistic rule 3 leads to the choice of τ 4 , whereas Rule 4 chooses τ 5 .

  266

Fig. 3 . 1 τ 2 τ 3 τ 4 τ 5 E

 315 Fig. 3. Representation of the expected utilities of the trajectories

274Figure 5 . 14 Fig. 4 .

 5144 Figure 5. The shapes of the trajectories are clothoids, that are generated following 281

Fig. 5 .Table 6 .

 56 Fig. 5. A credal grid and five possible trajectories

  400 curacy which corresponds to breaking ties in choosing systematically the trajectory 401 associated to the best result (the one ranked highest by the expert), the minimum 402 accuracy which corresponds to choosing systematically the worst result and, finally, 403 a random guess among the possible best trajectories. Without surprise, the results 404 of the binary method in which the maximum accuracy is retained gives the best 405 results but it may be seen that Order 4 outperforms the random guess and pro-406 vides results which are close to maximum accuracy. Another thing is that the span 407 between the minimum and maximum accuracies can be quite large, thus indicating 408 that a refined modelling of uncertainty may be helpful ot better discriminate the 409 trajectories. 410 Expert F β (rule 1) F β (rule 2) F β (binary)

  as each contains opposite values (e.g., x 1 for A 1 , and ¬x 1 for

	A 2 ). Let us now consider that p(x 1 ) ∈ [0.6, 0.8] and p(x 2 ) ∈ [0.3, 0.6], we have that
	P (A) is obtained on a combination of extreme points, i.e.,
	P (A) =	inf p(xi)∈{p(xi),p(xi)}	p(x 1 ) (1 -p(x 2 )) + (1 -p(x 1 )) p(x 2 )
	= 0.8 • 0.4 + 0.2 • 0.6 = 0.44
	obtained for p(x 1 ) = 0.8 and p(x 2 ) = 0.6 (the upper bounds of p(x 1 ) and p(x 2 )).

Table 1 .

 1 Example 2: a metagrid with 4 cells

Table 3 .

 3 Example 3: bounds computation for the F i

Table 4 .

 4 Example 3 continuation: utility values compare intervals and no longer point-valued evaluations. Some classical ways 31 to

	246
	do so are the following:

247

• Order 1. We can say that a trajectory τ j is better than a trajectory τ k 248 (τ j τ k ) if and only if E(τ j ) ≥ E(τ k ).

249

• Order 2. We can say that a trajectory τ j is better than a trajectory τ k if 250 and only if E(τ j ) ≥ E(τ k ) and E(τ j ) ≥ E(τ k ).

251

• Order 3. We can say that a trajectory τ j is better than a trajectory τ k if 252 and only if E(τ j ) ≥ E(τ k ).

253

• Order 4. We can say that a trajectory τ j is better than a trajectory τ k if 254 and only if E(τ j ) ≥ E(τ k ).

Table 5 .

 5 Bounds of expected utilities of the trajectories tools and resources for experimenting on intelligent vehicles. We use a Lidar as a

270

perception sensor. This sensor can distinguish between free and occupied space and 271 model it in 2D (x,y coordinates) with respect to the vehicle bodyframe. We used the 272 credal grids generated by a C++ code

[START_REF] Moras | Moving objects detection by conflict analysis in evidential grids[END_REF] 

with data acquired on our experimental 273 vehicle (cf Figure

Table 8 .

 8 Classification unacceptable/acceptable: average F β for the three methods

	Expert Order 1 Order 2 Order 3 Order 4 Binary
	1	9,7	6,31	6,85	2,81	6,84
	2	9,86	6,4	6,2	3,61	7,32

Table 9 .

 9 Ordering results: mean distance between the expert and the proposed order

	December	4,	2020 10:57 WSPC/INSTRUCTION	FILE
	Vehicle_IP_revised_ijufks				
	Expert Order 3 Order 4 Binary (min) Binary (random) Binary (max)
	1	0,6995	0.9125	0,5372	0.7855	0.9251
	2	0,6663	0,8792	0,4422	0,6446	0,9625

Table 10 .

 10 Best trajectory results: accuracy of the methods
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