
HAL Id: hal-03340975
https://hal.science/hal-03340975v1

Submitted on 10 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lean techniques impact evaluation methodology based
on a co-simulation framework for manufacturing systems

Jalal Possik, Anne Zouggar-Amrani, Bruno Vallespir, Grégory Zacharewicz

To cite this version:
Jalal Possik, Anne Zouggar-Amrani, Bruno Vallespir, Grégory Zacharewicz. Lean techniques
impact evaluation methodology based on a co-simulation framework for manufacturing sys-
tems. International Journal of Computer Integrated Manufacturing, 2022, 35 (1), pp.91-111.
�10.1080/0951192X.2021.1972468�. �hal-03340975�

https://hal.science/hal-03340975v1
https://hal.archives-ouvertes.fr


Lean techniques impact evaluation methodology based on a co-simulation 
framework for manufacturing systems
Jalal Possika,b,c, Anne Zouggar-Amrania, Bruno Vallespira and Gregory Zacharewiczd

aIms Umr Cnrs 5218, University of Bordeaux , Talence CEDEX, France; bDepartment of Computer Science and Mathematics, Lebanese American 
University, Beirut, Lebanon; cAdvanced Disaster, Emergency and Rapid Response Simulation (ADERSIM), York University, Toronto, Canada; 
dLaboratoire Des Sciences Des Risques (LSR), Imt Mines Ales, Alès CEDEX, France

ABSTRACT
Lean implementation plays a major role in optimizing productivity and reducing waste. Applying 
the adequate integration of Lean Techniques (LT) can ensure a higher profitable benefit. Many 
companies face difficulties in choosing the LT that best suit their situations to reach their 
objectives. In this study, we propose the simulation of specific modeled industrial contexts and 
check the impact of implementing LT simultaneously. Market fluctuation, demand diversification, 
and uncertainty of resources contexts are studied to perceive how LT behaves accordingly. Four KPIs 
(Key Performance Indicators) are retained for the analysis: Work in Progress, Lead-time, Production 
Throughput, and Defect Rate. An aeronautical company is modeled and experiments are performed 
to demonstrate the usefulness of a developed co-simulation framework to perceive the sensitivity 
of LT to some industrial contexts. The results showed that Poka Yoke and 5S are context-free LT 
valid in any industrial context. Pull, SMED, and Cross training are contextual and deserve careful 
applicability regarding the simulated context. Cross training, suitable for uncertainty of resources, 
does not show any significant improvements when the company was exposed to market fluctua-
tions and demand diversification contexts.
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1. Introduction

The benefits of Lean implementation and its impact 
on industrial performance is widely studied in the 
literature. These benefits have been explored in var
ious sectors, and the positive impact of Lean manu
facturing on the firms’ operational performances has 
been strongly argued (Fullerton, Kennedy, and 
Widener 2014; Dhiravidamani et al. 2018; Zhu, 
Zhang, and Jiang 2020). The main impacts are stock 
reduction, unnecessary process elimination, productivity 
increase, quality enhancement, lead time reduction, 
cost reduction, and reduction of space used (Capraro 
and Baglin 2002). Nevertheless, an important issue 
remains when managers must address lean imple
mentation. In addition to the experiences and subjec
tive approaches of each author, no guidelines or 
structured methodology exists to delineate the rele
vant lean techniques (LT) to adopt. A review of the 
literature has revealed difficulties in choosing the 
most appropriate LT to adopt during the implementa
tion phase. New approaches and methodologies spe
cific to different contexts are required as stated in 

(Amrani and Ducq 2020). Many authors have identi
fied weaknesses that can hinder the performance: the 
wrong use of Lean practices, the incorrect implemen
tation of LT, or the implementation of Lean tools in 
the wrong order. The misuse of LT induces failures 
and economic losses (Secchi and Camuffo 2019). 
Berger, Tortorella, and Rodriguez (2018) argue that 
dealing with contextual uncertainty and non-routine 
behaviors incites companies to look for solutions, and 
adopt LT that can help. Dora and Gellynck (2015) 
identify Lean implementation approaches. While 
defining what they called ‘step3’, they reinforced the 
importance of preparation at the organizational level, 
and the importance of making alignments with the 
sector-specific factors; managers can choose the 
appropriate Lean practices to implement in order to 
improve their companies’ performances. For instance, 
in the food processing sector, SMEs avoid applying 
the pull system and JIT tools due to the uncertainty of 
demand variation. This finding demonstrates the 
necessity to observe the context prior to choosing 
the most suited tools. Likewise, Ohno (1988) has 
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emphasized that Kanban can only work effectively if 
the demand is constant. The lack of flexible and multi
ple-use equipment in resource-constrained compa
nies, like SMEs, is found to negatively affect the 
implementation of cellular layouts. This correlation is 
perhaps intuitive, but there is a shortage in studies 
when it comes to the relevance of Lean tools. There is 
a basic logical sequence in which these elements 
should generally be implemented. For instance, 
Shingo and Dillon (1989) found that SMED and 
Layout Improvements should be implemented before 
Kanban. A Kanban system implemented within an 
environment of fluctuating demand would be 
regarded as wasteful (Womack and Jones 2003).

2. Literature review

There are different lean tools and techniques that 
could be implemented in the company (Kumar, 
Mangal, and Pandy 2019). However, these tools can
not be implemented randomly. Critical success factors 
must be recognized and taken into consideration 
before Lean implementation process (Sebtaoui, Adri, 
and Rifai 2020). Secchi and Camuffo (2019) consider 
that there is a necessity to implement some Lean 
tools before others. For instance, stability improve
ments should be considered first (manpower, 
machines, materials and methods) during Lean imple
mentation. Standardized work and uninterrupted pro
cess flows are the key foundations of the Toyota 
Production System (Ohno 1988). Easy-to-use practices 
such as workplace organization, visual management, 
and customer involvement should be given more 
weight in the beginning stages of the implementation 
than in the more advanced ones (line balancing, one- 
piece flow, pull, and Kanban). It has been proven, 
especially in SMEs, that early success and quick wins 
help firms sustain quality initiatives (Sony 2019; Grigg, 
Goodyer, and Frater 2020). We subscribe to the idea 
that contextualization is necessary for better under
standing and clarification prior to moving forward. 
There is an interesting notion for prioritizing LT imple
mentation: the techniques are chosen based on the 
managers’ experiences and their intuitive thinking 
(Jadhav, Mantha, and Rane 2014; Amrani and Ducq 
2020). More and more, current literature emphasizes 
the importance of structuring Lean techniques to one 
context rather than another, and to one situation 
prior to another. Shah and Ward (2003) studied the 

influence of plant size, the unionization status of the 
company, and plant age context-factors on 22 Lean 
practices that were mostly used in Lean manufactur
ing systems. Recently, Bortolotti, Boscari, and Danese 
(2015) stated that it is not only the choice of Lean 
practice that influences Lean manufacturing mea
sures but also the situation and context, the complex
ity of products, the production typology strategy, and 
the demand variability. Angelis et al. (2011) and 
Laureani, Antony, and Setijono (2012) argued that 
any organization willing to implement Lean should 
be careful to prioritize implementing the vital tools: 
Cellular structures, as it is important for efficiency to 
group the elements required to produce products 
(Lee 2007); Kanban methodology needs to be fully 
embraced (Smalley and Harada 2009); Kaizen, which 
pursues the constant quest of improving quality, cost, 
delivery, and design; and Single-piece flow systems 
need to be geared towards adding value (Sharma and 
Gandhi 2018). Based on these findings, we would take 
the opportunity to build a theory on Lean tool rele
vance to specific industrial contexts. These first ele
ments provided by the literature consolidate the 
possible existing gap caused by current methodolo
gical inconsistences. The idea is to build up 
a structured and constant methodology to improve 
the relevance of the chosen Lean techniques.

2.1 Main research interests related to Lean 
research topic

To study the research interests of the Lean com
munity, seven literature reviews that deal with the 
implementation of Lean practices were considered, 
with a total of over 1300 papers being reviewed 
within. The most important findings of each study 
are summarized in Table 1. The analysis of the 
common factors among the references reveals 
some interesting common points. Different sym
bols are used to identify the similarities between 
the suggested research interests: (ω): Factors that 
affect Lean implementation, (λ): New approaches 
and developments, (φ): Development of methods 
to help in the Lean implementation, (Ø): 
Developing measures and metrics, (σ): Expanding 
Lean implementation beyond production to Supply 
chain, (β): Expanding Lean implementation beyond 
production to product development.



The factors that influence Lean implementation are 
evoked in (ω). Those factors can be human or organi
zational aspects (Marodin and Saurin 2013). Panwar 
et al. (2015) studied the external factors that influence 
Lean implementation, such as social, economic, poli
tical, and environmental factors. Cherrafi et al. (2016) 
extended the analysis to the negative factors (bar
riers) that should be considered in order to have 
a successful Lean transformation. In addition, the 
impact of decision-making, risks, services, and strate
gies on lean implementation should be extensively 
studied (Abideen, Mohamad, and Fernando 2020). In 
the samples of (λ), researchers encourage the Lean 
community to commit to the development of new 

conceptual survey-based models (Jasti and Kodali 
2015) and non-conventional approach for lean imple
mentation (Abideen, Mohamad, and Fernando 2020). 
As stated in Panwar et al. (2015), ‘Conducting further 
empirical studies is welcome’. Marshall (2015) indicates 
that more research in Lean sustainability is needed 
and that researchers should focus on the empirical 
method, not only on the research, which mainly leads 
to statistical findings with no solid research hypoth
esis. In the studied samples of (φ), new Lean related 
methods and metrics are expected to measure lean
ness in manufacturing organizations (Antony et al. 
2020). Moreover, developing a Lean implementation 
framework to overcome constraints would be 

Table 1. Main research interests in Lean implementation.
Authors Sample Years Main research interests

(Jasti and Kodali 2015) n = 102 1996– 
2012

● Develop conceptual models related with surveys (λ)
● Extend Lean approach from operation to Lean enterprise (β)
● Extend the research to deal with all types of NVA (wastes) (λ)
● Develop a measure of the model performance (Ø)

(Marshall 2015) n = 546 1988– 
2011

● Extend research about sustainability in Lean(λ)
● Lean in service, non-profit organization (β)
● Supplier and supply chain research (σ)
● Use empirical method other than field research (λ)

(Marodin and Saurin 2013) n = 43 1988– 
2013

● Extend research about factors that affect Lean implementation including investigation factors and 
relationships (ω)

● Involve application of methods to provide generalizability (φ)
● Balance the implementation of Lean with technical emphasis and the practices that have effect on 

human, organizational aspects (ω)
● Extend Lean in other areas, such as product development and services, not only shop floor (β)
● Develop Performance measurement related to different dimensions such as human and financial (Ø)
● Extend research about detailed investigation of Lean implementation that had unexpected results (λ)

(Panwar et al. 2015) n = 104 1989– 
2013

● Develop Lean implementation model for process industry (φ)
● Develop analytical models to quantify the leanness measure of process industries (Ø)
● Extend research to supplier involvement in process industries (σ)
● Develop framework to overcome constraints for continuous process industries (φ)
● Conduct further empirical studies (λ)
● Contribution of external factors such as social economic, political, and environmental factors (ω)

(Cherrafi et al. 2016) n = 118 1990– 
2015

● Develop integrated metrics to measure Lean/Six Sigma from social, environmental, economic aspects 
(Ø)

● Develop integrated model applicable to many sectors (φ)
● Expand research about service industry (β)
● Develop pre-implementation phase (φ)
● Expand study to all functions of the supply chain with an analysis of supplier, customer relationship (σ)
● Extend research to motivation, barriers, negative effects of integration (ω)

(Abideen, Mohamad, and 
Fernando 2020)

n = 93 1996– 
2020

● The research show that there is a considerable scope that should be widened and explored to enhance 
several performance metrics in manufacturing and production (Ø)

● Various research proposals and gaps for future research efforts and developments (λ)
● The impact of decision-making, risks, services, and strategies on lean implementation should be 

extensively studied (ω)
● A non-conventional approach for lean implementation is needed (λ)
● New manufacturing strategies are required (φ)
● Expanding Lean management beyond production (β)

(Antony et al. 2020) n = 403 2010– 
2020

● New avenues for future research about Lean management are required (λ)
● Expanding Lean management to the service business environment as well as the supply chain network 

(σ)
● Expanding the implementation of Lean beyond production (β)
● Extend research about the obstacles and key enablers for Lean implementation (ω)
● Extend Lean management to services and product development (β)
● Exploring trends in the research regarding Lean in SMEs (λ)
● Identifying recent developments concerning the factors that affect Lean implementation (ω)
● Identifying methods and metrics to measure leanness in manufacturing organizations (Ø)



a promising idea (Panwar et al. 2015). The involve
ment of method application to provide generalizabil
ity is also highlighted (Marodin and Saurin 2013). The 
need to develop a framework for the pre- 
implementation phase and an integrated model 
applicable to many sectors is argued by Cherrafi 
et al. (2016). In addition, Lean implementation is not 
an isolated activity. Monitoring is necessary to assess 
and evaluate the level of Lean maturity implementa
tion. This concern is an important point indicated by 
Marodin and Saurin (2013) to develop performance 
measurement related to different dimensions, includ
ing human and financial. Other authors consider the 
importance of developing Lean metrics and measures 
to calculate the model’s performance (Jasti and Kodali 
2015), analytical models to quantify the leanness 
measure of process industries (Panwar et al. 2015), 
and integrated metrics to measure Lean/Six Sigma in 
social, environmental, and economical aspects 
(Cherrafi et al. 2016). The degree of Lean achievement 
is a growing interest for the research community 
looking for synthetic and representative methods for 
Leanness degree calculation (Amrani et al. 2018). In 
the samples of (β), authors consider that there is 
a necessity to extend Lean management to services 
and product development and not only to the shop 
floor (Antony et al. 2020; Marodin and Saurin 2013). In 
the studied samples (σ), supply chain aspect is also of 
extreme importance. The Lean community asks for 
more studies and research into the supply chain 
domain (Marshall 2015). Expanding the research to 
all functions of the supply chain whilst analyzing the 
supplier–customer relationship is highlighted by 
Cherrafi et al. (2016). Extending research to supplier 
involvement in the process industries is noted by 
Panwar et al. (2015). The idea of extending the 
research beyond the scope of production is obviously 
stated and confirmed by many authors: extending 
Lean in product development and service areas is 
reminded by Marodin and Saurin (2013); extending 
to the whole enterprise is requested by Jasti and 
Kodali (2015) and expanding the research to the ser
vice industry is stated by Cherrafi et al. (2016) and 
Marshall (2015).

Based on the literature, Hu et al. (2015) conclude 
that there is a need for researchers to go further; the 
authors address the need for research that spans 
beyond the boundaries of a single organization, 
extending to supply chains and network contexts. 

They recommend exploring the differences between 
small, medium, and large organizations to assess how 
a company’s size affects the implementation of Lean.

2.2 Distributed discrete event simulation in 
manufacturing industries

Simulation in manufacturing and supply chain fields 
is still a very commonly used approach due to its 
ability to reproduce a virtual system that simulates 
the real production system (Lu et al. 2019; Lee, Ju, 
and Woo 2020; Vatankhah Barenji et al. 2020). 
Discrete Event Simulation (DES), in particular, is one 
of the preferred research topics nowadays (Bara, 
Gautier, and Giard 2020) for its ability to simulate 
production system and supply chain behaviors. DES 
is suitable for leading the analysis of the dynamics of 
discrete processes such as manufacturing systems 
(Ingemansson and Bolmsjö 2004; Cortes et al. 2020) 
and other environments, such as manufacturing 
plants, queuing systems, distribution systems, inven
tory and delivery, transportation networks, and com
munication networks (Huynh, Akhtar, and Li 2020; 
Zupan and Herakovic 2015). Jeon and Kim (2016) 
note that DES is a frequently used tool for 
Production Planning and Control problems that 
represents more than 45% of the simulation models 
in the studied sample. DES becomes an essential tool 
in healthcare, production, agriculture, aerospace, 
and other domains (Devapriya et al. 2015; Zhang 
2018; Oddson and Aggarwal 1985; Van, Boulanger, 
and Wolff 2020). However, in some cases, DES alone 
is not an effective solution. The simulation system 
must be disassembled into subsystems or nodes in 
order to be parallelized or distributed on 
a multiprocessing environment for performance 
enhancements (Lopez-Novoa, Mendiburu, and 
Miguel-Alonso 2014). In other cases, a collection of 
interacting simulations is needed to form a more 
complex system that offers other functionalities in 
addition to existing ones (Gorecki et al. 2020). There 
are also scenarios where users need to compare 
many different DES. These cannot be run sequen
tially, and also need to be parallelized or distributed 
on a network of processors (Possik, Amrani, and 
Zacharewicz 2018a). For all those scenarios, 
a Distributed DES should be implemented. Time 
management and synchronization mechanisms are 



necessary to avoid timing discrepancies and to 
ensure precise event interconnections and data 
communication between subsystems or simulations 
(Possik, Amrani, and Zacharewicz 2018b). In the 
research study presented here, a Distributed DES 
was developed to dynamically sustain the unfolding 
of an order book over a period of simulation, com
bine, and compare different parallel scenarios and 
possibilities.

3. Research methodology

3.1 Research approach

The research method suggests combining industrial 
contexts and objectives in a single conceptual model 
in order to define a set of cross-situations (Figure 1). 
The conceptual methodology is built around mathe
matical formulas to model the studied economic con
text and a simulation platform which is a necessary 
basis for the development of hypotheses and the 
testing of various scenarios. We argue that in each 
industrial context and depending on the objectives of 
the company, different LT can be tested to check their 
relevance.

The chosen objectives of the company are inspired 
by the authors referenced in Table 2.

The suggested methodology of research aims to 
provide guidelines to gradually implement LT suita
ble for different economic contexts. The context is 
defined as follows: ‘Context is any information that 
can be used to characterize an entity, its condition, or 
its surrounding situation’ (Rosenberger and Gerhard 
2018). In the scope of our research, the entity 

represents the whole manufacturing system, from 
the raw materials going through the assembly line 
until the final product. The manufacturing system 
driven by managerial decisions is undergoing differ
ent contexts. Finally, three industrial contexts are 
considered: Market fluctuation, Diversification of 
Demand and Uncertainty of human and technical 
resources. These contexts are mathematically mod
eled (Table 3). The context of market fluctuation and 
uncertainty of resources represents a situation that 
can be faced by any enterprise with changes in its 
order book. An increase in the demand causes ner
vousness in the production systems and a need for 
a company to review its production schedule. 
A decrease in demand causes a reorganization of 
the production system. In the context of demand 
diversification, diversity representation will be also 
formulated. It is necessary to define all customers 
that might order various products. Each customer 
can order different quantities of various references. 
The number of varieties required by the company 
will always remain less or equal to the total number 
of actual product ranges given by the company.

In the context of unreliability of resources, the enter
prise faces a situation where it will not meet its produc
tion target. At the operational level, the resources 
considered are the workstation machines for the pro
duction/assembly line responsible for the progress of 
the flow, as well as the operators in charge of operating 
the line. The model must be able to represent the 
occurrence of a machine malfunction or an operator- 
related malfunction (absence, accident, etc.) at a given 
period (t). The machine malfunction represents an 
inability to run at a stable rate or to produce the 

Figure 1. Combining industrial contexts and industrial objectives for Lean tool evaluation.



expected quantity. An operator-related malfunction 
denotes a blockage at the workstation caused by the 
unavailability of the operator. Both cases can co-exist 
where machine and human dysfunctions appear in the 
production system.

The steps of the methodology are presented in 
Figure 2. After defining the objectives, the input 
data should be provided to the developed 
Graphical User Interface (GUI) simulation platform; 
this platform allows users to run the co-simulation 

framework in order to test the LT efficiency imple
mented in their production system. The aforemen
tioned tools do not affect our simulation process 
and are considered successfully met at simulation 
time (t = 0). Next step would be to start the 
simulation run in order to test the operational 
Lean tools’ efficiency and relevance in the consid
ered context. At each stage, analyses are con
ducted to choose the most reliable LT that can 
be adapted for each of the studied contexts.

Table 2. Summary of industrial objectives adapted from Okoshi, De Lima, and Da Costa (2019).
Objectives Requirements/ Target Authors Objectives Requirements/ Target Authors

Quality 
Obj.1 
Reactivity 
Obj.2

(1) To not make mistakes.
(2) Products in conformity with design specifications.
(3) Manufacturer offers capability to the production 

process.
(1) Keep delivery promises, increase service level.
(2) Correctly estimate the delivery dates.
(3) Able to meet the clients’ deadlines.
(4) Clearly communicate dates to the client.
(5) Lead time should be lower than the competitors.
(6) Lead time: the total amount of time between the 

placing of an order and the receiving of the goods 
ordered.

(Wheelwright 
1978) 
(Okoshi, De 
Lima, and Da 
Costa 2019)

Flexibility 
Obj.3 
Cost 
Obj.4

(1) Adapt or reconfigure the 
production system/produc
tion process.

(2) Able to address changing 
demands.

(3) Able to reconfigure the 
operations due to changes.

(4) Manufacturing system is 
able to change at the right 
pace.

(1) Manufacturing the products 
at low cost.

(2) Being more efficient than 
the competitors.

(3) Negotiation of low-cost 
resources.

(4) Efficiently running the pro
duction process.

(Longoni, Golini, 
and Cagliano 
2014) 
(Franco- 
Santos et al. 
2007)

Table 3. Mathematical modeling of the chosen contexts.
Contexts Mathematical Modeling

Ctx.1 
Market 
Fluctuation

● Jalal Joseph Possik is considered as the set of products.
● Each reference is denoted by Jalal Joseph Possik where Jalal Joseph Possik.
● Jalal Joseph Possik.
● Jalal Joseph Possik: Demand of the product Jalal Joseph Possik at a period of time Jalal Joseph Possik.
● Jalal Joseph Possik: Demand fluctuation.
● Fluctuation of the market at time t is relative to the initial value given in Jalal Joseph Possik with an increase or decrease of (Jalal 

Joseph Possik).
"i ¼ 1 . . . n; 9t 2 0 . . .mf g/D̂XRFi tð Þ ¼ DXRFi0 � αi tð Þ%

Ctx.2 
Diversification 
of Demand

● (k): Maximum number of clients per company.
● Cu: Client profile.
● A set of clients is defined by: SC ¼ Cuju ¼ 1 . . . kf g:
● Du

XRFi
: Demand of product XRFi by client Cuð Þ:

● DCu : Variety of demand required by client Cuð Þ.
● f: Number of varieties required (f � nÞ.

"u ¼ 1 . . . k; "i ¼ 1 . . . n; 9t 2 0; . . . ;mf g/DCut ¼
Pf�n

i¼1
Du
XRFit

Ctx.3 
Uncertainty of 
resources

● Set of Machines: SM ¼ Mpjp ¼ 1 . . . U
� �

.
● U: Maximum number of machines.
● Set of operators: SH ¼ Hvjv ¼ 1 . . . Vf g.
● V: Maximum number of operators.
● λvt; λvt 2 0; 1f g: Operator Hv disturbance event (error or absence).
● θpt; θpt 2 0; 1f g: Machine Mp disturbance event (failure, unavailability, or defect).
● Qti: Quantity of products of type (i) produced at period (t).
● Qpti: Quantity of products of type (i) produced at period (t) by the machine (Mp).
● Qvti: Quantity of products of type (i) produced at period (t) by the operator (Hv).
● μpti: Percentage of damage on the production system caused by machine (Mp) at the period of time (t) impacting product type (i).
● ωvti: Percentage of damage on the production system caused by human (Hv) at time period (t) impacting product type (i).

"i ¼ 1; . . . ; n; "t 2 0; . . . ;mf g; λvt 2 0; 1f g ^ θpt 2 0; 1f g; p ¼ 1 . . .U: Qti ¼ min
t

P

p
Qpti 1 � θpt �μpti
� �

;
P

v
Qvti 1 � λvt � ωvtið Þ

" #



(1) LPk ¼ Pkjk ¼ 1 . . . pf g: set of Lean tools tested
(2) LPa ¼ Paja ¼ 1 . . . qf g: set of adapted tools such 

as LPa � LPk

3.2 Framework architecture

A co-simulation framework has been developed 
based on the HLA standard. The HLA protocol is 
a standard that helps in the development of distrib
uted simulations. HLA 1.3 standard was first devel
oped by the US DoD (Department of Defense). In 
the year 2000, it was adopted by IEEE and named 
HLA IEEE 1516–2000. Then, it was modified and 
updated in 2010 to encompass improvements; this 
last version is known as HLA Evolved (1516–2010). 
This framework is developed based on the HLA 
evolved version. HLA operates through the creation 
of a federation that is composed of different simula
tion components. These components are called ‘fed
erates’. HLA is used in this project to solve the time 
synchronization and interoperability issues between 
heterogeneous running components. Moreover, 
based on the time management mechanism of HLA, 
this framework synchronizes the simulation time of 
the seven DES models to make them running simul
taneously in parallel. During the simulation run, each 
federate asks for time advancement to send new 
events. However, no federate can advance in time 
without having the time advance grant from the Run- 
Time Infrastructure (RTI). Furthermore, Objects/ 

attributes and interactions/parameters exchange, 
between the running models and an external Java 
application, is required. The Java application is 
referred to as ‘Master’ federate responsible for send
ing/updating input data to all running models and 
receiving the output results from the models running 
in parallel to show the parallel results in a real time 
appealing graphical presentation. Data collaboration 
between the external Java application (Master) and 
the running models is implemented based on the 
publish/subscribe mechanism of HLA.

Using this platform, the user can choose the LT to 
load-specific inputs: the market demand for each type 
of product needed, the setup time and processing 
time of each machine, the travel time between 
machines, the planned/unplanned down time of 
each machine, and the defects rate. All data are sent 
or received as objects/attributes or interactions/para
meters. There exists a common Federation Object 
Model (FOM) XML file that lists all shared objects/ 
attributes and interactions/parameters. Input data 
are filled into the external Java application able to 
interact with all connected simulation components 
(Figure 3). Simulation models’ federates are designed 
in JaamSim (King and Harrison 2013), a Java-based 
DES (Discrete Event Simulation) software. This simu
lator is used in this research instead of other simula
tors, because of its transparency, reliability, capability, 
and, most importantly, because it is an open-source 
software. Jaamsim runs by default as a black box 

Figure 2. Methodology of Lean simulation according to context.



simulator; a substantial effort was made to convert 
Jaamsim to a distributed HLA-compatible simulator. 
With the HLA developed module, Jaamsim can now 
interact, collaborate, and exchange data with external 
simulations. In our research, these functionalities were 
essential to make all Lean tools running simulta
neously in parallel in order to experiment the respon
siveness of each Lean tool regarding an industrial 
context change.

3.3 Simulations can run on a network of processes, 
on different machines and different operating 
systems

Moreover, heterogeneous data are exchanged, pro
cessed, and synchronized between different simula
tions, without interpretation. The detailed technical 
implementation can be found in (Possik et al. 2019). 
Aeronautic Case Study: AeroComp

The case study used is an adaptation of an aero
nautic company (Amrani 2017). The product designed 
and manufactured by AeroComp is an aeronautic 
fastener composed of a metallic cylinder part, over 
which bearings are added on the right and left sides. 
Gears are then welded and screwed into the back of 
the metallic cylinder. The cylinder has a specific 
length and diameter provided by the client in 
a specification sheet (Figure 4, right side). Based on 
the order book, raw materials are sent to the cutting 
shop where the metallic cylinder is cut to the exact 
dimensions specified by the client. Goods in process 
are then sent to the treatment shop where a layer of 
zinc is added to the product. The product is then sent 
to the assembly shop where four workstations (noted 

WS) manufacture the semi-finished axis, add the bear
ings and then fix the gears. It is finally sent to the 
machining shop where two workstations place the 
pins and send the final aeronautic fastener to the 
warehouse for delivery.

As presented in Figure 4 (left side), one operator 
works on each workstation to efficiently complete 
the job and operate at capacity. Each machine has 
a Processing Time and a Setup/changeover Time. 
Processing Time is the time each machine takes to 
complete a prescribed job or procedure. Setup/ 
Changeover Time is the time needed for the 
machine to switch from the last processed good 
of the previous batch to the first good of the new 
batch to be processed. In this study, we define 
ΔCOMpXRFi as being the changeover time needed 
for machine ‘Mp’ to switch to a new product refer
ence ‘XRFi’. AeroComp has a catalog of 12 different 
references of finished products. Four diameters 
exist (12 mm, 24 mm, 32 mm, and 41 mm). For 
each diameter, length can vary regarding the cli
ent’s order. So, ΔCOMpXRFi ¼ ΔCODMpXRFi þ ΔCOL, 
where ΔCODMpXRFi is considered as the ‘Diameter’ 
changeover time needed for machine Mpto switch 
from one reference to another, and ΔCOL is the 
‘Length’ changeover time needed by machine Mpto 
switch. ΔCODMpXRFi is defined for each machine Mp 

and each reference XRFi. As there is no specific or 
standard length, ΔCOL is calculated based on 
a triangular probability distribution (Gest et al. 
1995). These data are sufficient to develop the 
production system virtualization in the framework 
simulation (nomenclature, processing time, operat
ing range, product type, type of components).

Figure 3. Framework architecture.



4. Experimentation and results

4.1 Initial conditions

The retained LT for experimentation are: Pull, Cross train
ing, SMED, 5S, Poka Yoke, and Ucell. The Pull production 
method strives to minimize and eliminate overproduc
tion. In Pull scenario’s configuration, each machine sends 
a signal to the upstream one when its WIP (Work In 
Progress) exceeds a predefined number of units to stop 
sending products in process. In cross-training model, 
workers are configured as multi skilled to operate on 
any of the existing machines. SMED model minimizes 
the waste resulting from lack of material, to ensure tools 
and machine cleanness and to organize the workshop 
place associated with setup/changeover processes. 5S 
tool aims to make a self-explaining, ordering and 
improving workplace. It is a set of principles that improve 
the workplace environment which in turn improve the 
quality and the production efficiency. This model 
reduces the production time and the defect rate of the 
workstations/machines. Poka Yoke means ‘mistake- 
proofing’. This tool is a simple tool that prevents defec
tive good in process from being delivered to the next 
process. The main concept of this approach is to detect, 
eliminate, and correct errors at their current source 
before reaching the customer. Ucell focuses on the 
flow of the product. Machines are placed close to each 
other in order to minimize the transport time between 
them.

We have identified four KPIs (Key Performance 
Indicators): lead-time, WIP, production throughput, and 
defect rate to check the efficiency of the configured 
situation. Lead-time is the time needed to provide the 
customer’s request; from the moment the order is 
received until the finished product is delivered. WIP 
represents the partially finished products in the 

production process. Production throughput refers to the 
quantity of products that can be produced within 
a period of time. Defect rate is the percentage of items 
or products that failed the quality tests. Neutral scenario 
is defined as being context variation free. Actual model 
is defined as a scenario where no LT has been 
applied yet.

4.2 Statistical sensitivity analysis

While running the simulation, KPI values are saved to 
a log file and then statistically analyzed using the 
ANOVA test (one-way analysis of variance). This test 
enhances the reliability of findings and helps to deter
mine statistically significant differences between the 
means of the running models’ results related to the 
LT simulated. The KPI mean of each LT will be com
pared to others to perceive the variation of the results 
under each context run. The null hypothesis ‘H0’ is 
defined as the case where the means of two samples 
obtained remain the same [µSample1 = µSample2] with the 
specificity that samples are taken from equivalent 
populations. In H0, no variation is observed from differ
ent samples. The alternative hypothesis is defined as 
the situation where the means obtained from samples 
are different (< or >), creating variation and sensitivity 
in results [µSample1 ≠ µSample2]. In statistics, we use 
a confidence level of 95%. The results are more accu
rate when the confidence level is higher. The p-value is 
directly related to the confidence level, it represents 
the probability of the null hypothesis being correct. 
A p-value less than or equal to 0.05 is considered 
statistically significant. A p-value higher than 0.05 is 
not statistically significant and indicates weak evidence 
against the null hypothesis. This results in rejection of 
the null hypothesis, and rejecting the alternative 

Figure 4. AeroComp production Line (left side) and product (right side).



hypothesis. In this simulation, the different means of 
KPIs that underwent different contexts will be 
monitored.

4.3. Initial experimentation: neutral scenario

To carry out the experiments, the neutral scenario 
was designed to correspond to the situation where 
the company is free of economic context variation. 
Called neutral scenario, it is performed with no 
context changes to the initial order book trans
mitted to the company. It is considered as the 
‘Benchmark’. The graphs of Figure 5 display the 
four KPI (WIP, the lead-time, the production 
throughput, and the defect rate) of the neutral 
scenario during a simulation over a duration of 
one year. It can be qualified as a ‘silent’ scenario 
as there are no disruptions and no inductions 
performed.

In the ANOVA test (Table 4), for the production 
throughput, the difference between the results (µ. 
Throughput) using different LT is not statistically 
significant (p > 0.05). There is a significant differ
ence between the WIP means, Leadtimes and 
Defect rate. With p < 0.05 for each of the three 
KPIs mentioned, a closer look is necessary in statis
tics using the Tukey–Kramer post hoc analysis 
(Greenhalgh 1997).

In Figure 6, multiple comparisons of all models of 
the neutral scenario are shown for the WIP, lead-time, 
and defect rate KPIs.

For the WIP dependent variable, the mean of the 5S 
model (µ.WIP)5S is significantly different from that of 
all other models, with p ≤ 0.003. For the lead-time 
dependent variable, the mean of 5S, Poka Yoke, and 
SMED models are significantly different from those of 
all remaining models and to each other (p ≤ 0.0001). 
(µ.Leadtime)Actual does not have a significant 

Figure 5. Simulation results of the neutral scenario.

Table 4. One-way ANOVA test of the default simulation run.
Sum of Squares df Mean Square F p-value

WIP Between Groups 946.144 6 157.69 57.159 <0.0001
Within Groups 5542.410 2009 2.759
Total 6488.554 2015

Lead 
time

Between Groups 13.409 6 2.235 305.393 <0.0001
Within Groups 14.701 2009 0.007
Total 28.110 2015

Defect 
rate

Between Groups 28,835.35 6 4805.8 477.226 <.0001
Within Groups 20,231.56 2009 10.070
Total 49,066.91 2015

Production 
throughput

Between Groups 30.603 6 5.101 0.372 0.897
Within Groups 27,531.55 2009 13.704
Total 27,562.15 2015



difference compared to (µ.Leadtime)CrossTraining and 
(µ.Leadtime)Pull, with p < = 1. This means that the 
actual model (Lean free model) behaves the same as 
a model where cross training has been implemented 
or a pull system has been established. It is clear in the 
defect rate’s Tukey post hoc analysis that 
(µ.Defect)PokaYoke and (µ.Defect) 5S have significant 
differences in comparison to other models 
(p < 0.0001). All other models do not have significant 
differences in mean to each other. They can be con
sidered as similar generated results without any inter
esting potential improvements. The test of Tukey 
revealed a significant variation in results regarding 
three KPIs among the four KPIs chosen to lead the 
study.

Figure 7 highlights the variation of means to 
better perceive the relevance of some LT com
pared to others. In this scenario, cross training, 
pull, and Ucell models have almost the same 
WIP value (~6.5) as the actual model. SMED, 
Poka yoke, and 5S have smaller WIP values (~5.6, 
5.2, and 4.8 respectively). As for the lead-time 
mean result, cross training, and pull had almost 
the same value (~1.37 h) as the actual model’s 
lead-time mean. However, Poka Yoke, 5S and 
SMED decreased this value to ~1.32 h, 1.19 h 
and 1.17 h, respectively. The defect rate of the 

cross training, pull, SMED and Ucell models 
remained almost at the same level (~11% of 
daily defect rate) to the actual model’s rate. 5S 
and Poka Yoke models decreased this rate to ~7% 
and 1%, respectively.

Finding.1  5S and Poka Yoke are linked to the 
‘quality’ objective and ‘WIP reduction’. They are 
required to improve production quality indepen
dently to the demand variation and internal 
equipment disturbances, so they are valid even 
in the Actual model. Moreover, whatever the 
demand is, both LT will reduce defects, thus redu
cing the cost associated with materials, rejects, 
rework and rescheduling. We highlight the neces
sity of considering both LT as pre-requisites 
regardless of the context.

Finding.2 As per the neutral scenario study, when 
no fluctuation arises, Ucell and 5S are found to be 
good tools to use. Both tools decrease the lead- 
time. The KPI targets the ‘reactivity’ sustaining the 
delivery. Indeed, Ucell helps to ensure sequence in 
production flow evolution by doing the operation 
(n + 1) as soon as (n) is ended. 5S enables a quick 
identification of the required tools, components in 
workstations ensuring accelerated processing time 
on workstation. Both tools are essential to acceler
ate production flow.

Figure 6. Multiple comparisons (Tukey) for the neutral scenario.

Figure 7. Group means (µ.WIP), (µ.Leadtime), and (µ.Defect) of the Neutral Simulation Scenario.



5. Context variation scenarios

5.1. Market demand fluctuation context Ctx.1

In this section, the core hypothesis is checked: 
How may the context influence the choice of the 
relevant LT? In this context, industrial system beha
vior is tested whilst undergoing the rise or fall of 
the market demand (D̂XRFi tð Þ ). The demand fluctua
tion may be slight or huge depending on the 
market. The first fluctuation is a 15% increase to 
the market demand. At simulation time 100 h, we 
returned the market demand to its initial state. 
Second demand fluctuation is 30%. At time 
190 h, we put back the market demand to its initial 
state. Third fluctuation is 15% demand decrease 
then back to its initial state at time 450 h. 
Figure 8 displays the KPIs’ graphs of the Market 
fluctuation scenario undergone, with different LT 
possibilities.

In the ANOVA test (Figure 9), all output results’ 
means are significantly different. It means that the 
KPIs of the different applied LT have significant 
differences.

Figure 10 allows us to perceive at a glance the 
relevance of LT regarding the expected indicators. 
5S has the smallest WIP mean (WIP = 5), SMED and 
pull have also interesting WIP means almost equal 
to 9, and Poka Yoke has a WIP mean that is almost 

equal to 13. Cross training and Ucell models have 
the same WIP mean of the actual model (~ 44). As 
for the lead-time mean results, cross-training and 
Ucell maintain almost the same value (~5 h) as the 
actual model’s lead-time mean. However, Poka 
Yoke, pull, SMED, and 5S decreases this value to 
~2 h, 1.6 h, 1.5 h, and 1.1 h, respectively. It is 
interesting to observe the same tendency for WIP 
and lead-times in the context of market fluctua
tion. The production throughput was only affected 
by the pull model that decreases the throughput 
(from ~67.5 to ~65.5). 5S and Poka Yoke models 
decreased the defect rate by 36% and 90%, 
respectively.

Finding.ctx.1.1 5S and Poka Yoke are more suitable. 
They can be considered as relevant LT when the 
decider is inducing a market increase. Regarding the 
previous finding about 5S and Poka Yoke, these LT 
seem to be context free and are suitable in any case, 
including as here during an increase of market 
fluctuation.

Finding.ctx.1.2 PULL and SMED are interesting to 
reduce WIP and lead-times when the industrial sys
tem is undergoing market fluctuation.

Finding.ctx.1.3 Ucell and Cross training were found 
to be without significant improvements on WIP nor 
lead-times when the company is confronted by mar
ket fluctuations.

Figure 8. Simulation of the market fluctuation context.



Finding.ctx.1.4 Pull has been found to not influence 
the improvement of manufacturing throughput. 
Increasing the market demand and using Pull will 
not help the clients’ demands.

5.2. Demand diversification context Ctx.2

The simulation process is fed with real-time input and 
updated data regarding the product portfolio that will 
increase or decrease over the horizon of simulation. 
Each black dashed line in Figure 11 represents 
a specific scenario of product portfolio diversification. 
The company with two types of products (references) 

was simulated first. After 50 h of production, the first 
change is induced where four product references are 
required. The overall demand quantity remained the 
same. At t = 150 h, we returned the number of pro
ducts to its initial state (02). At 300 h, we tested the 
variety increase to eight references. At time 450 h, we 
put back the number of references to two then 
switched to 16 at time 650 h, and finally reset back 
to two at time 800 h.

The group means are represented in Figure 12. 
The lead-time mean results showed that Cross 
training and Ucell had almost the same value 
(~14 h) as the actual model’s lead-time mean. 

Figure 9. Multiple comparisons (Tukey) for the market fluctuation scenario.

Figure 10. KPIs behavior according to the market fluctuation scenario.



However, Poka Yoke and SMED reduced it to ~6 h. 
5S decreased the lead-time to ~3 h, and pull 
model reduced it to 1.9 h. The production 
throughput was only affected by the pull model 
that decreased the throughput (from ~72.4 to 
~67.5 products per day). The defect rate of the 
cross training, pull, SMED, and Ucell models 
remained almost at the same level (11% of daily 
defect rate) as the actual model’s rate. 5S and 
Poka Yoke models decreased this rate to 7% and 
1%, respectively.

Finding.ctx2.1 When there is a minor variety of 
products, SMED results in additional implementation 
costs without bringing interesting improvements to 
the operational process.

Finding.ctx2.2 When there is a high demand for 
diversification, 5S would help to decrease the WIP 
and lead-time KPIs. However, 5S alone would not be 
able to control the WIP and remove the high over
capacity from the production line. At this level, intro
ducing a pull technique would be more efficient in 
terms of WIP and lead-time KPIs. Using Pull and 5S 
together in order to have a higher throughput and 
better WIP and lead-time would be better.

Finding.ctx2.3 Combining different tools would 
produce powerful improvements. 5S, SMED, Poka 
Yoke, and pull together would help the company 
to tackle the cost, quality, and flexibility targets by 

controlling its WIP, decreasing its lead-time, 
increasing the production throughput, and 
decreasing the defect rate.

5.3. Uncertainty of resources ctx.3

The third and final change to which the company 
may be confronted is the context of non-reliability 
of its resources. Uncertainty of resources can be 
related to operator absence or machine disruption. 
Three disruptions are simulated and occurred dur
ing this scenario: at t = 25 h, one operator from the 
treatment shop was absent for one day; at t = 75 h, 
the first machine of the assembly shop stopped for 
two hours due to a maintenance issue; and at 
t = 100 h, the first machine of the machining 
shop had an unexpected machine error for a 
whole day of production (8 hours). Figure 13 
shows the four KPIs results.

We can see below the elements that correspond to 
operator or machine disturbance. If a disturbance 
exists, the value assigned is 1. Otherwise, the value 
is 0.

(1) λvt; λvt 2 0; 1f g: Operator Hv disturbance event 
(error or absence)

(2) θpt;θpt 2 0; 1f g: Machine Mp disturbance event 
(failure, unavailability, or defect)

Figure 11. Simulation of the demand diversification context.



Fi
gu

re
 1

2.
 G

ro
up

 m
ea

ns
 o

f t
he

 d
em

an
d 

di
ve

rs
ifi

ca
tio

n 
sc

en
ar

io
.



The different stages of disturbance are described 
below.

For t = 0,"i ¼ 1 . . . 4,λvt ¼ θpt ¼ 0
No interesting improvements to comment. This 

period is very similar to the first scenario studied 
where no context or disruptions exist.

For t = 25 h,"i ¼ 1 . . . 4,λvt ¼ 1; θpt ¼ 0
In this scenario, the cross-training model signifi

cantly changed its behavior compared to the other 
models. In this simulation period, λvt is equal to 1, the 
employee of the treatment shop was absent for eight 
working hours. Cross training was the only tool to 
make its production throughput almost stable and 
its WIP and lead-time values stable (Figure 14). All 
other tools except the pull technique had a high 
uptrend in their WIPs and lead-times. Pull does not 
lead to this increase because it does not accept the 

overcapacity in its production process. After the 
8 hours of employee disturbance, 5S appeared as 
the tool leading to the fastest return to a stable state.

For t = 75 h,"i ¼ 1 . . . 4,λvt ¼ 0; θpt ¼ 1
At t = 75 h, an unplanned machine disturbance 

occurred. The first machine of the assembly line 
stopped unexpectedly. It took 2 h to fix this dis
turbance and return to the production process. In 
this type of disturbance, production stopped for 
2 hours. Pull then 5S were shown to be the most 
reliable tools to return to a stable production state.

For t = 100 h,"i ¼ 1 . . . 4,λvt ¼ 0; θpt ¼ 1
We repeat the machine disturbance at t = 100 h. 

This time, the disturbance lasted 8 h. During this 
disturbance, production stops. It is true that Pull 
does not allow the WIP overcapacity and that its 
maximum WIP allowed is ~25 products in the 

Figure 13. Simulation of the uncertainty of resources context.

Figure 14. Group of means during employee disturbance.



production process. However, 5S almost gets 65 
products in its WIP and returns faster to its initial 
stable state of production.

Finding.ctx.3.1 When there is an employee dis
turbance, cross training is a crucial tool to use. 
When an unexpected operator unavailability 
occurs, other operators can cover if they are famil
iar with the equipment. This keeps the manufactur
ing process going strong and helps to cover 
operator shortages due to sick days, annual leaves, 
and so on.

Finding.ctx.3.2 When a machine disturbance occurs, 
the production process stops during the disturbance 
time. Thus, a fast and reliable tool should be applied 
to overcome this issue. 5S as shown to be the fastest 
tool to stabilize the production process after 
a machine disruption.

6. Discussion

A summary of simulation results by LT and KPI is given 
for each of the studied contexts (Figure 15).

Starting with the neutral scenario where no con
text or disruption occurs, all LT results are covered, 
and SMED and 5S show the lowest WIP values. In the 
neutral scenario, four product references exist, by 
reducing machine setup time, SMED will definitely 
decrease the WIP due to its ability to more quickly 
introduce the products into the production process. 
As for 5S, by reducing the defect rate and improving 
the processing time of machines, 5S contributed to 
decreasing the WIP value. When the market demand 
decreases by 15%, all tools’ results are similar, and no 
interesting outcomes can be determined. The expla
nation for this is that decrease of the market relaxes 
the constraints on the system and all implemented 

Lean tools behave neutrally as low demand does not 
create a rush, and no reaction through LT seems 
necessary. When increasing the demand by 15%, 
Poka Yoke, SMED, and 5S were the most effective. 
However, after 30% of demand increase, Poka Yoke 
and SMED were not able to handle the increase. 
Overcapacity in their WIPs is noticed. With such an 
increase, 5S and Pull are more suitable. As for the 
demand diversification context, with 4 to 8 product 
references, SMED, Poke Yoke, 5S are good performers. 
When the variety of products becomes high (e.g. 16 
references), those tools are not able to control the 
WIP’s overcapacity, and pull production is the only 
solution to keep the WIP at a low level. For the context 
of uncertainty of resources, cross training and pull are 
the only tools capable of reducing the WIP if an 
operator disruption occurs. However, when 
a machine disturbance occurs, 5S was shown to be 
the most reliable tool.

As for the lead-time results, when the variety of 
products is low and no contexts are taken into con
sideration, Ucell and 5S are the best in terms of lead- 
time. For a 15% market increase, SMED, Poka Yoke, 
and 5S are the best. In the demand diversification 
context (less than 8 references), Pull and 5S, SMED 
are classified as more suitable. However, when 
increasing the number of references to 16, 5S is not 
able to control the WIP overcapacity which can lead 
to an increase in the lead-time. In the uncertainty of 
resources context, cross training and Pull were shown 
to be the most suitable techniques to use when there 
is an operator disruption. For machine disruption, the 
test considers the tool’s reliability to return to the 
stable initial state following the disruption. 5S was 
shown to be the most relevant tool, it has the highest 
downward slope in lead-time. Poka Yoke and 5S are 
the most relevant tools, whatever the context, to 

Figure 15. Lean Tools influence regarding the different contexts applied.



significantly decrease the daily defect rate. Both tools 
behave efficiently, and are required as pre-requisites 
to improve the quality of production independently 
to the industrial context.

7. Limitations

Some limitations must be noted. To perform this 
study, a choice was made to test the most common 
and technically configurable LT. Then, LT related to 
human aspect (Culture, Kaizen, involvement, top 
management, leadership, etc.) are assumed to be 
acquired. They are considered as pre-requisites in 
this study: without human aspects, the results of the 
simulations are obviously not valid. The product simu
lated in this research is validated and no design or 
development of new products is considered. The 
results obtained through this study remain contextual 
to the configuration of the platform simulation. The 
authors don’t claim to generalize the findings of rele
vancy of those LT of this study. Nevertheless, the 
simulation system of the case study allows the per
ception of the obvious sensitivity of some LT to some 
contexts and not to others. The quantitative analysis 
is among the first steps to confirm the hypothesis that 
Lean implementation cannot be deployed whilst dis
regarding the industrial contexts. The idea is to 
demonstrate that LT impact is context-sensitive (com
pany’s objectives, situations). The statistical analysis 
increased the reliability of the evaluation of the LT 
impact on KPI. Careful statistical analysis combined 
with the analysis led to an increase in the reliability of 
the research results.

8. Conclusion

This research study contributes to the comparison of 
different LT impacts in various contexts based on 
simulation. Many manufacturing companies use 
Lean tools inefficiently, considering that Lean brings 
benefits despite the nature of implemented tools. 
Most of these companies are experiencing failures. 
An increasing number of authors subscribe to the 
idea of considering the industrial context, the sector, 
and the environment in order to choose the right 
Lean tools or techniques that should be implemen
ted. The aim of this study is to consolidate this notion 
through simulation results showing different LT beha
viors according to the industrial contexts that the 

company confronts. HLA standard is used to develop 
a co-simulation framework to enable time synchroni
zation, data exchange, and interoperability between 
heterogeneous components. A case study was chosen 
to represent the environment within which the com
bination among LT, contexts, and KPI is possible in 
a dynamic setting. Different contexts were studied to 
identify LT impacts regarding the context in which the 
company was evolving. Market fluctuation, demand 
diversification, and uncertainty of resources were mod
elled and implemented in the co-simulation frame
work. This enabled the experimentation of multiple 
scenarios, and the introduction of modifications and 
disruptions in many variables from design to commer
cialization. Future works will expand the built co- 
simulation framework to gradually integrate other LT 
and create a configurable decision aided tool to help 
practitioners to test LT relevance. So far, the frame
work has supported up to eight machines or work
stations in the simulation models, an increase of this 
number can be possible to depict the impact of 
higher disruption simulations. A new module to 
experiment the company’s typology of production is 
under development. The typology of production is an 
interesting context where the company has to change 
the organization according to whether a Make To 
Stock (MTS) or Make To Order (MTO) strategy is 
adopted.
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