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Abstract 16 

 17 

Glyphosate's primary metabolite (aminomethylphosphonic acid, AMPA) is known to alter 18 

embryonic development at environmentally relevant concentrations in amphibians. 19 

However, we have limited understanding of the physiological mechanisms through which 20 

AMPA affects organisms. In this study, we tested whether alteration of the oxidative status is 21 

one mechanism through which AMPA affects organism performance. To this end, we 22 

analysed several oxidative status markers in hatchling tadpoles that were exposed to 23 

sublethal concentrations of AMPA during embryonic development (~16 days). We compared 24 

the influence of environmentally relevant concentrations of AMPA (from 0.07 to 3.57 µg.l-1) 25 

on the relation between developmental traits (i.e, embryonic development duration, 26 

embryonic mortality and hatchling size) and oxidative status markers known to alter 27 

homeostasis when unbalanced (superoxide dismutase (SOD), glutathione peroxidase (GPx), 28 

catalase (CAT), thiols and ratios thereof).  We included measures of telomere length as an 29 

indicator of physiological state. We found that AMPA concentrations induce non-monotonic 30 

effects on some oxidative status markers with hatchlings displaying elevated antioxidant 31 

responses (elevated thiols and unbalanced SOD/(GPx+CAT) ratio). The lack of effect of 32 

AMPA on the relation between developmental traits, oxidative status and telomere length 33 

suggests that selective mortality of embryos susceptible to oxidative stress may have 34 

occurred prior to hatching in individuals less resistant to AMPA which display lower 35 

hatching success. Future studies are required to disentangle whether oxidative unbalance is a 36 

cause or a consequence of AMPA exposition. This study highlights the need to investigate 37 

effects of the metabolites of contaminants at environmental concentrations to 38 

comprehensively assess impacts of anthropogenic contamination on wildlife.  39 

 40 

Key-words: aminomethylphosphonic acid, Bufo spinosus, oxidative stress, telomere 41 
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Introduction 42 

 43 

Among the numerous sources of environmental contamination (e.g., fossil fuel combustion, 44 

industrial activities, (Kendall et al., 2016), modern agriculture is well-known for the massive 45 

release of toxic substances in the environments (Jayaraj et al., 2016; Solomon and Thompson, 46 

2003). Indeed, pesticides are specifically designed to alter the functioning of diverse 47 

organisms (weeds, fungi, and insects) which are detrimental to crop productivity (Sharma et 48 

al., 2019).  Although traditional toxicology studies have convincingly demonstrated  the 49 

potential toxicity of such compounds on non-target organisms (Crump et al., 2002; de Brito 50 

Rodrigues et al., 2019; Hasenbein et al., 2017), they are not sufficient to assess their impact on 51 

wild animals for several reasons.  First, they often rely on relatively high, environmentally 52 

irrelevant concentrations of agrochemicals in order to assess mortality thresholds (i.e., LD50, 53 

Relyea and Edwards, 2010).  As a consequence, reliance on LD50 limits our ability to identify 54 

more subtle, sublethal effects occurring at lower concentrations (Beiras, 2018). However, 55 

such sublethal effects have been shown to occur at extremely low concentrations and to be 56 

responsible for the disruption of several organismal traits that can affect population 57 

persistence (Cauble and Wagner, 2005; Cheron and Brischoux, 2020; Lenkowski et al., 2010). 58 

 59 

Importantly, field monitoring often reveals that environmental contamination occurs at 60 

concentrations that are well below LD50 (Awkerman and Raimondo, 2018; Egea-Serrano et 61 

al., 2012).  Second, most toxicology studies use laboratory models which can differ from their 62 

wild counterparts in their response to environmental contamination (Hahn and Sadler, 2020; 63 

Patisaul et al., 2018).  Indeed, laboratory conditions simplify the complexity that organisms 64 

face in natural environments and long-term selection of laboratory lineages are likely to 65 

influence the responses of these species to environmental constraints (Hahn and Sadler, 2020; 66 

Segner and Baumann, 2016).  Overall, one of the prominent current challenges is to assess the 67 
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detrimental sublethal effects of contaminants at environmentally relevant concentrations on 68 

non-model organism’s representative of exposure in the wild. This is particularly relevant 69 

for pesticides, because their breakdown after spread in agricultural fields can expose 70 

organisms to concentrations much lower than those originally used or tested in laboratory 71 

experiments (Bonansea et al., 2017; Wang et al., 2019).  72 

 73 

Glyphosate remains one of the most widely used non-selective herbicide (Clapp, 2021; 74 

Helander et al., 2012). Accordingly, the effects of glyphosate on wildlife, including 75 

investigations of commercial formulations and/or of different surfactants have been 76 

relatively thoroughly studied  (Berger et al., 2018; Bókony et al., 2017; Cauble and Wagner, 77 

2005; de Brito Rodrigues et al., 2019; Giaquinto et al., 2017; Gill et al., 2018; Guilherme et al., 78 

2010; Herek et al., 2020; Lenkowski et al., 2010; Matozzo et al., 2020; Muñoz et al., 2021; 79 

Solomon and Thompson, 2003).  However, its primary metabolite, aminomethylphosphonic 80 

acid (AMPA) is arguably the most common compound found in surface and groundwater 81 

worldwide (Bonansea et al., 2017; Medalie et al., 2020; Okada et al., 2020; Silva et al., 2018).  82 

The greater occurrence and abundance of AMPA in natural environments is likely linked to 83 

the extensive use of glyphosate and also because AMPA is an organic phosphonate derived 84 

from detergents (Grandcoin et al., 2017). In North American wetland, AMPA occurred at 85 

97% ranging from  0.25 to 10 µg.l-1 (Okada et al., 2020). Environmental concentrations found 86 

in aquatic environments in France range from 0.1 μg l-1 to 6.6 μg l-1 (data from Water 87 

Agencies, “Agence de l’eau Loire Bretagne” and “Agence de l’eau Adour-Garonne”). Despite 88 

its greater environmental occurrence and abundance than glyphosate, studies on the effects 89 

of AMPA at environmental concentrations on wildlife are comparatively fewer (Cheron and 90 

Brischoux, 2020; de Brito Rodrigues et al., 2019; Domínguez et al., 2016; Guilherme et al., 91 

2014; Martinez and Al-Ahmad, 2019; Matozzo et al., 2019, 2018). Importantly, these studies 92 

have revealed sublethal effects on wild species, such as genotoxic effect (Battaglin et al., 2014; 93 
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Medalie et al., 2020; Okada et al., 2020; Silva et al., 2018) and cellular and biochemical 94 

alterations (Matozzo et al., 2019, 2018).  AMPA has been shown to alter embryonic 95 

development in amphibians, increasing embryonic mortality and altering hatchling 96 

phenotype through processes occurring at low concentrations and suggesting 97 

nonmonotonicity (Cheron and Brischoux, 2020).   98 

 99 

Our goal was to identify potential physiological mechanisms that may be responsible for the 100 

alteration of embryonic development due to environmentally relevant concentrations of 101 

AMPA (Cheron and Brischoux, 2020).  In this respect, we focused our investigations on 102 

oxidative stress, as such cellular biochemical process is known to reflect how environmental 103 

stressors affect organismal physiology (Costantini, 2014). The metabolic activity of cells is 104 

responsible for a continuous generation of reactive chemical species (e.g. reactive oxygen 105 

species ROS), which cause oxidation of numerous organic substrates (e.g. lipids, DNA). 106 

Organisms are equipped with a complex array of molecular defence mechanisms, generally 107 

referred to as antioxidants. The cellular oxidative status is, therefore, determined by a 108 

complex network of molecules, including oxidative damages to organic substates, levels of 109 

both enzymatic and non-enzymatic antioxidants, or ROS production (Costantini, 2019). Any 110 

changes in these molecular components of cellular oxidative status provide evidence for 111 

oxidative unbalance. There is growing consensus that oxidative status alteration is one 112 

relevant molecular mechanism that links environmental conditions (including contaminant 113 

exposure) to fitness, through effects on growth, fertility, reproduction and senescence 114 

(Alonso-Alvarez et al., 2004; Beaulieu and Costantini, 2014; Costantini et al., 2014; Stier et al., 115 

2012). In addition to markers of oxidative status, we included in our investigations telomere 116 

length that may reveal complementary effects of AMPA on DNA damage during amphibian 117 

embryonic development (Burraco et al., 2017; Chatelain et al., 2020; Cheron et al., 2021).  118 

Indeed, telomeres are repetitive nucleotide sequences located in each chromosome to ensure 119 
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stability and viability, and telomere length is increasingly suggested to be an integrative 120 

biomarker of organismal, cellular, and molecular damages. Although telomere shortening 121 

occurs normally in cell division, this process can be magnified under stressful conditions 122 

especially when they are associated with oxidative stress (Reichert and Stier, 2017).  123 

Accordingly, stress-induced telomere attrition may be linked to an intense cellular oxidative 124 

stress (Chatelain et al., 2020) because guanine (the main nucleotide of telomeres) is 125 

particularly sensitive to oxidation (Bjelland, 2003) . Finally, telomere length might be seen as 126 

a proxy of individual quality although such relationship is not well establish in ectotherms 127 

species (Burraco et al., 2020a; Olsson et al., 2018) 128 

 129 

Specifically, we hypothesized that environmentally relevant concentrations of AMPA, which 130 

have been shown to induce altered embryonic mortality, development duration and 131 

hatchling phenotype (Cheron and Brischoux, 2020), will induce significant changes in 132 

oxidative status.  We expected that exposition to AMPA concentrations will induce increase 133 

in antioxidant enzymes such as SOD, GPx and CAT and a depletion of thiols levels. 134 

Moreover, we expected non monotonic  relationships between oxidative markers and AMPA 135 

concentrations given that some studies showed nonlinear or hormetic effects of AMPA or 136 

glyphosate on organisms (Brito et al., 2018; Cheron and Brischoux, 2020; Domínguez et al., 137 

2016). If exposure to AMPA leads to increased oxidative stress, we also predicted that 138 

exposure to AMPA should be associated with shorter telomeres. 139 

 140 

 141 

Materials and methods 142 

 143 

Study species 144 
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Spined toad (Bufo spinosus) is a widespread amphibian species that persists in agricultural 145 

landscapes (Gagné and Fahrig, 2007; Guillot et al., 2016).  Breeding pond (46°090N, 0°240W, 146 

France) was monitored every day during the reproductive period.  All eggs strings (N=10) 147 

were collected during a single day in January 2018 immediately after laying in order to avoid 148 

development in the natural environment. A subset of each string containing 120 eggs was 149 

randomly selected and kept for our experiment (see below), while the remaining eggs (i.e., 150 

3000-5000) were released at their site of origin.  151 

 152 

Treatment concentrations and chemical solutions  153 

Environmental concentrations found in aquatic environments in France range from 0.1 μg l-1 154 

to 6.6 μg l-1 (data from Water Agencies, “Agence de l’eau Loire Bretagne” and “Agence de 155 

l’eau Adour-Garonne”) and are similar to concentrations found in aquatic environments in 156 

Northern America and Europe (Bonansea et al., 2017; Coupe et al., 2012; Grandcoin et al., 157 

2017). Because our goal was to mimic the range of concentrations found in the wild, we 158 

aimed at three nominal concentrations spanning from low to relatively high concentrations 159 

(0.1 µg.l-1; 0.30µg.l-1 and 3.00 µg.l-1,Table 1). Stock solutions (0.1 g/L) of AMPA were obtained 160 

by dissolving commercial crystalline powder (aminomethylphosphonic acid, 99% purity, 161 

ACROS ORGANICSTM) in dechlorinated tap water. These stock solutions were further 162 

diluted with dechlorinated tap water to reach the selected concentration for each treatment 163 

group (Table 1). We produced additional water samples for each treatment in order to 164 

perform analytical verifications of the concentrations. These analytical verifications of the 165 

actual concentrations were performed by an independent accredited analytical laboratory 166 

(QUALYSE, Champdeniers-Saint-Denis, France).  Determination of AMPA in water samples 167 

was assessed using liquid chromatography-mass spectrometry (LC/MS/MS) with 9-168 

fluorenylmethyl chloroformate (FMOC-Cl) used as derivatization agent.  The limit of 169 

quantification was  0.1 µg.l-1  for the determination of AMPA in water samples. Overall, these 170 
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verifications showed that actual concentrations were similar to concentrations found in 171 

aquatic environments (see above) and that the differences between “low” (0.07±0.01 µg.l-1), 172 

“medium”(0.32±0.052 µg.l-1) and “high”(3.57±0.153 µg.l-1) treatments were significant (Table 173 

1).  174 

For clarity, we will refer to the treatments as Low, Medium and High hereafter.  175 

 176 

 177 

Experimental design  178 

Each subset of each clutch (containing 120 eggs) was further separated into segments 179 

containing 30 eggs (i.e., 120/4 treatments) that were randomly placed in different glass-180 

molded aquariums containing 2 L of water and one of our experimental treatments (i.e., 181 

Control, Low, Medium or High) and monitored until hatching (total N = 4 treatments * 10 182 

clutches representing 60 tanks containing 30 eggs each).  183 

Eggs were subjected to different concentrations of AMPA (Low, Medium and High) and a 184 

control during the whole embryonic development until hatching. To maintain relatively 185 

constant exposure levels throughout the experiment but to avoid excessive mechanical 186 

disturbances to developing eggs, water was changed once a week according to the half-life of 187 

AMPA in water (Battaglin et al., 2014). Our procedures did not alter egg jelly matrix 188 

surrounding the developing embryos throughout the experiment. We determined the stage 189 

of development according to the developmental table of Gosner (1960). Eggs were exposed 190 

from laying to hatching and hatching occurred at Gosner stage 22 (hereafter GS 22) after 191 

16.10±0.16 days (see Table 2). All experiments took place in a thermal-controlled room with 192 

air and water temperature set at 17°C and with a natural day/night photoperiod (9h/15h). 193 

We monitored egg segments and counted all the individuals that hatched (GS22) which we 194 

considered a metric of hatching success. Development duration was assessed as the time 195 

elapsed between the date of egg collection (egg laying) and the date of hatching. We took 196 
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pictures of all live hatchlings using a camera (Panasonic Lumix DC-TZ55) in order to assess 197 

the length of individuals (N=80).  Morphological measurements were performed with the 198 

software ImageJ (Schneider et al., 2012). 199 

Upon hatching, for each clutch and within each treatment, we randomly collected 2 200 

hatchlings that were pooled to assess oxidative status (because a single individual did not 201 

yield enough tissue for these assays) and 2 hatchlings that were used for telomere analyses.  202 

Hence, we measured clutch levels of oxidative status parameters.  203 

 204 

 205 

Oxidative status markers 206 

We randomly selected 80 hatchlings (20/experimental group), including two hatchlings that 207 

hatched from each single clutch.  We pooled together these two hatchlings because a smaller 208 

portion did not provide enough tissue for the analyses. Thus, we had 10 pools per 209 

experimental group (i.e. 40 samples in total). We homogenized hatchlings in Dulbecco’s 210 

Phosphate Buffered Saline (Sigma-Aldrich, France) supplemented with 1 mM of 211 

phenylmethylsulfonyl fluoride (Sigma-Aldrich, France) as an inhibitor of proteases using a 212 

TissueLyser II (Qiagen) at 30 Hz for 4 minutes. Afterwards, we centrifuged tubes for 10 213 

minutes at 4°C to obtain clean supernatants to be used for the assays. We measured the 214 

concentration of thiols using the -SHp test (Diacron International, Grosseto, Italy); the 215 

activity of the antioxidant enzyme superoxide dismutase (SOD) using the Ransod assay 216 

(RANDOX Laboratories, France); the activity of the antioxidant enzyme glutathione 217 

peroxidase (GPx) using the Ransel assay (RANDOX Laboratories, France); the activity of 218 

CAT using the OxiSelect CAT Activity Assay (Euromedex, France). We ran all analyses in 219 

duplicate and an average value of each duplicate was used for the statistical analyses 220 

(coefficients of variation < 10%). We normalized values of markers to the amount of proteins 221 

as quantified using the Bradford protein assay with albumin as reference standard (Sigma-222 
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Aldrich, France). All assays were run according to manufacturer’s instructions and have 223 

been validated in amphibian species (Liparoto et al., 2020). 224 

 225 

In addition to markers alone we chose to show balanced or unbalanced ratio of markers 226 

activities following de Haan et al. studies (1992, 1996) (de Haan et al., 1996, 1992). An 227 

unbalanced ratio of superoxide dismutase and glutathione peroxidase (SOD/GPx) can lead 228 

to a proliferation of H2O2 leading to accelerated cellular senescence and altered morphology 229 

(de Haan et al., 1996). Moreover, since both GPx and catalase convert H2O2 into H2O, an 230 

unbalanced ratio of superoxide dismutase on GPx and catalase activities (SOD/(GPx+CAT) 231 

can lead to a proliferation of deleterious pro-oxidants (de Haan et al., 1992). 232 

 233 

Relative telomere length 234 

Similarly to sampling for oxidative stress markers, we randomly selected two hatchlings 235 

among the embryos that hatched of each clutch for telomere analysis (N=20 hatchlings from 236 

10 clutches). Although, smaller portions of individuals (e.g., head, tail, muscle) can be used 237 

for telomere assays (Burraco et al., 2017; Sánchez-Montes et al., 2020), hatchling spined toads 238 

were too small to provide enough tissue for these analyses and we used whole individuals 239 

(Cheron et al. 2021). We used quantitative PCR (qPCR; BioRad CFX 96, Bio-Rad, USA) to 240 

determine telomere length using an established protocol (McLennan et al., 2019), which was 241 

adapted for spined toad (Cheron et al. 2021). Whole hatchlings were digested with 242 

proteinase K and DNA was extracted using the Nucleospin Tissue Kit (Macherey-Nagel), 243 

following the manufacturer’s instructions. DNA concentration and purity were assessed 244 

with a Nanodrop ND1000 spectrophotometer (Thermo Scientific). Universal telomere 245 

primers were used, and the control single-copy gene Recombination Activating Gene 1 246 

(RAG-1) was selected and amplified using specific primers designed for the spined toad: 247 

RAG1-F 5’- GGGTCCTCTGATAGCCGAAA-3’ and RAG1-R 5’-248 
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CATCATAACCTGTACCCCGGA-3’. This single-copy gene has previously been successfully 249 

used in multiple species (birds (Sebastiano et al., 2020); fish (Dupoué et al., 2020; McLennan 250 

et al., 2019; Petitjean et al., 2020)) including amphibians (Canestrelli et al., 2020). All qPCRs 251 

were performed on three plates for each gene (RAG-1 and telomere) using 7.5 ng of DNA per 252 

reaction. The telomere and single-copy gene primers were respectively used at a 253 

concentration of 800 nM and 300 nM. To generate a six-point standard curve (from 50.0 ng to 254 

1.5 ng) for controlling the amplifying efficiency of the reactions, serial dilutions of DNA from 255 

a pooled sampled of 10 tadpoles were included on the plate (in triplicates). For both telomere 256 

and RAG-1 amplification, the melt curves displayed single sharp curves, validating 257 

amplification specificity of these primers. A reference toad sample was run in triplicate in all 258 

plates to account for inter-plate variation. All samples were run in duplicates and were 259 

randomly distributed across the PCR plates. Amplification efficiencies reached Mean ± SE: 260 

RAG-1, 87.48 ± 5.92; TEL, 92.60 ± 6.00 and all R² were always very high (>0.99). The relative 261 

telomere length (expressed as T/S ratio) was calculated as the telomere copy number (T) 262 

relative to single-copy gene (S; RAG1), according to Cawthon (2002). Intra-plate variation for 263 

telomere and RAG1 were 2.07% and 2.53% respectively. Intra-plate variation for the T/S 264 

ratio was 3.46%. Inter-plate variations for telomere and RAG-1 were 2.07% and 1.89%, 265 

respectively. Inter-plate variation for the T/S ratio was 5.62%.  266 

 267 

Statistical analysis  268 

All statistical analyses were conducted with R statistical software v.4.0.0 (R Core Team, 2020) 269 

and RStudio v 1.2.5042 (RStudio, Inc.). 270 

All data were tested for homogeneity of variance and normality with the Barlett's test and 271 

the Shapiro-Wilks test, respectively. We also checked the normality of the residuals using 272 

diagnostic plots. We checked which distribution fitted the best the model using Cullen & 273 

Frey plot (bootstrap at 500, "fitdistplus" package (Delignette-Muller and Dutang, 2015)). We 274 
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computed z-scores in all predictor variables (scaled to mean of 0 and standard deviation of 1) 275 

to avoid multicollinearity between treatment when we tested interaction or relation with 276 

developmental-related traits but also to avoid large differences in scale in the model. We 277 

checked for multicollinearity using the variance inflation factor (VIF, non-multicollinearity 278 

when below 2. "car" package). Clutch identity was used as random effect in all our models. 279 

Each clutch was assigned with the value of average telomere length ratio of the two tadpoles 280 

sampled. Because we did not measure oxidative status markers and telomere length on the 281 

same individual instead, we pooled individuals of the same family or used average values 282 

for telomere length, correlations between the two parameters were at clutch levels.  283 

We used η2 to measure the magnitude of the main effect (package "effect size").  284 

η 2: <0.01 considered negligible, between 0.01 and 0.06 considered small, between 0.06 and 285 

0.14 considered medium and >0.14 considered large effect.  286 

 287 

First to assess whether our AMPA treatment had an effect on oxidative status markers we 288 

fitted six linear mixed-effect models (LMERs, package lme4, (Bates et al., 2015) with 289 

"Treatment" as fixed effect and "SOD", "GPx", "CAT", thiols", "SOD/GPX" 290 

"SOD/(GPx+CAT)" as dependent variables. Four individuals displayed disproportionally 291 

elevated CAT (tested with "rosnertest" and "EnvStats" packages) and were excluded from the 292 

analyses.    We calculated 95% confidence intervals, p value and coefficient for each levels of 293 

fixed effect factor from 1000 bootstraps iterations ("parameters", packages, Appendix A, table 294 

S1).). When p<0.05, the magnitude of the main effect was measured using η2 (package 295 

"effectsize").  296 

 297 

 298 

Second, to test whether developmental-related traits differed between AMPA treatment 299 

groups, we fitted three linear mixed-effect models ("lmer" function, "lme4" package (Bates et 300 
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al., 2015)) with "Treatment" as fixed effect and "embryonic development duration", "total 301 

length" and "telomere length" as dependent variables. Because hatching success followed 302 

binomial distribution, we fitted one generalized linear mixed models ("glmer", "lme4" 303 

package(Bates et al., 2015) with "hatching success" as dependent variable.  304 

 305 

Finally, to test if there was a relation between developmental-related traits and oxidative 306 

status and if this relation differed between treatment, we fitted LMER models with 307 

development-related trait ("embryonic development duration", "total length" and "telomere 308 

length") as dependent variables and z_scored oxidative status markers ("SOD", "GPx", 309 

"CAT", thiols", "SOD/GPX" "SOD/(GPx+CAT)") as fixed effect in interaction with 310 

"Treatment". We ran GLMER for binomial data (“hatching success”). To compare the trends 311 

and regression slopes we used “emtrends” function in “emmeans” package. Due to high 312 

correlation between oxidative status markers (SOD, GPx, CAT) and ratios, we performed 313 

statistical models separately (Appendix A, table S2). 314 

 315 

 316 

Results 317 

 318 

All oxidative status and developmental-related traits at each AMPA concentrations are 319 

summarized in Table 2. 320 

 321 

Effect of AMPA treatment on oxidative status markers 322 

 323 

 CAT, SOD and GPx were not influenced by AMPA treatment (respectively: F3,25=2.05, 324 

p=0.125; F3,27=0.92 p=0.439; F3,27=0.24, p=0.869, Table 3). When including four outlier values 325 

for CAT, AMPA did not influence enzymatic activities (F3,27=0.70, p=0.560). AMPA treatment 326 
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influenced concentration of thiols (F3,26=3.66, p=0.021, η2=0.21, Table 3). Hatchlings from low 327 

AMPA group displayed higher thiols than all other treatment groups (all p<0.028, Tukey 328 

HSD, Fig.1). 329 

AMPA treatment significantly influenced SOD/(GPx+CAT) ratio (F3,25=3.93, p=0.017, 330 

η2=0.27, Table 3). When including four outlier values for CAT, we found a marginal effect of 331 

AMPA in SOD/(GPx+CAT) ratio (F3,27=2.92, p=0.052). Ratios at Low and Medium 332 

concentrations were significantly lower compared to High concentration (respectively: -333 

0.16[-0.30, -0.01], p=0.029; -0.21[-0.35, -0.06], p=0.006, Fig.1). In Medium treatment, 334 

SOD/(GPx+CAT) ratio decreased compared to Control treatment (-0.13[-0.24, -0.02], 335 

p=0.026). 336 

Finally, treatment did not affect SOD/GPx ratio (F3,36=2.02, p=0.127, Table 3) nor telomere 337 

length (F3,36=0.51, p=0.673) 338 

 339 

Effect of AMPA treatment on developmental-related traits 340 

Hatching success varied among treatments (χ23=25.168, p<0.001); Low and Medium 341 

treatment yielded lower hatching success than Control or High treatment of AMPA (all 342 

p>0.003). 343 

AMPA treatment did not influence embryonic development duration (F3,67=1.15, p=0.33). 344 

However, total length of hatchlings differed between treatments (F3,67=5.57, p=0.002). 345 

Hatchlings were larger at Low treatment compared to individuals from Control and High 346 

treatments (respectively, p=0.004, p=0.002). 347 

 348 

Relationships among oxidative status markers and developmental-related traits 349 

We did not find any relationships among any oxidative status marker and telomere length 350 

(all interaction p>0.26). Total length of hatchlings was not related to any oxidative status 351 

markers (p>0.25). Relation between total length of hatchlings and oxidative status markers in 352 
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interaction with treatment was never significant (all p>0.201). We did not find any relation 353 

between oxidative status markers and embryonic development duration across or among 354 

groups (all p>0.186) 355 

Finally, although we found a significant interaction between SOD/GPx and 356 

SOD/(CAT+GPx) ratios, and hatching success, after close examination of the plots and 357 

removals of outliers, such interactions were no longer supported.  358 

 359 

Discussion 360 

Our study shows that the primary metabolite of glyphosate – AMPA - alters oxidative status, 361 

but not telomere length, during embryonic development in an amphibian species that occurs 362 

in agricultural landscapes.  Interestingly, these physiological effects occurred at 363 

environmentally relevant-concentrations representative of actual concentrations of this 364 

contaminant in the wild.  Furthermore, our results suggest non-monotonicity for some 365 

markers of oxidative status such as thiols and SOD/(CAT+GPx) ratio as shown for 366 

developmental-related traits in a related study (Cheron and Brischoux, 2020). 367 

SOD/(CAT+GPx) ratio is likely driven by CAT levels considering the trend for CAT to 368 

increase at Low and Medium level while GPx remained steady.  369 

 370 

Exposure to low concentrations of AMPA influenced the levels of thiols but did not influence 371 

CAT levels, although both markers showed similar trends.  For these markers, levels were 372 

higher at the lowest or the intermediate AMPA concentrations tested which suggest low 373 

concentration responses and non-monotonicity (Hill et al., 2018; Shi et al., 2016; Vandenberg 374 

et al., 2012).  Interestingly, although we did not detect any influence of AMPA concentrations 375 

on SOD and GPx, we found that relevant ratios of these antioxidant enzymes (i.e., 376 

SOD/(GPx+CAT)) were influenced by AMPA treatments.  Moreover, since both GPx and 377 

CAT convert H2O2 into H2O, an unbalanced ratio of superoxide dismutase on GPx and CAT 378 
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activities (SOD/(GPx+CAT) can lead to a proliferation of deleterious pro-oxidants (de Haan 379 

et al., 1992). SOD/(GPx+CAT) ratios showed low concentration responses and non-380 

monotonicity, with the lowest values obtained for the lower and intermediate AMPA 381 

concentrations. These results suggest a possible low-concentration stimulatory effect of 382 

AMPA with upregulation of both CAT and thiols.  One important feature of the regulation of 383 

oxidative status involves, first the dismutation by superoxide dismutase (SOD) of .O2– into 384 

H2O2 and then the conversion of H2O2 to H2O catalysed by CAT and/or GPx. However, 385 

when H2O2 is produced at high concentrations, CAT is more efficient in the conversion of 386 

H2O2  in H2O than GPx, which might explain why we observed upregulation of CAT but not 387 

of GPx (Halliwell and Gutteridge, 2015).  It is important to stress that antioxidants play an 388 

important role in protecting early development and, accordingly, their levels are known to 389 

increase during embryonic development in amphibians (Dandapat et al., 2003; Anguiano et 390 

al., 2001).  Moreover, during early development, CAT levels are high while GPx levels are 391 

low which show the important role of CAT in removing toxic hydrogen peroxide (Aceto et 392 

al., 1994), and GPx activities tend to gradually increase during growth (Pašková et al., 2011).   393 

 394 

To our knowledge, only few studies investigated relevant concentration of AMPA on 395 

biochemical parameters (Guilherme et al., 2014; Matozzo et al., 2019, 2018) and most studies 396 

have investigated its parent compound, glyphosate (de Brito Rodrigues et al., 2019).  397 

Guilherme et al. (2014) found DNA and chromosomal damage when Anguilla Anguilla were 398 

exposed for 1 or 3 days at sublethal concentration (11.8 and 23.6 µg.l-1). In marine 399 

invertebrates, AMPA exposure altered oxidative status and enzymatic activities in Mytilus 400 

galloprovincialis when exposed for 7, 14 or 21 days to 1, 10 and 100 µg.l-1 (Matozzo et al., 2019, 401 

2018).  In tadpole of another amphibian species (Pelobates cultripes), exposure to sublethal 402 

concentration of glyphosate induced altered antioxidant activity by decreasing glutathione 403 

reductase activity but did not affect SOD nor CAT levels (Burraco and Gomez-Mestre, 2016).  404 



 17

In Oncorhynchus mykiss , glyphosate-based formulations altered energy metabolism (Le Du-405 

Carrée et al., 2021) when exposed to 1 µg.l-1and in Anguilla Anguilla increased CAT levels in 406 

gills when exposed for 1 or 3 days at 58 and 116 µg.l-1(Guilherme et al., 2012).  Focusing on 407 

glyphosate’s primary metabolite, our study reinforces the potential of this widely used 408 

herbicide and of its metabolite AMPA (the main contaminants detected in surface waters 409 

worldwide, Battaglin et al., 2014; Medalie et al., 2020; Okada et al., 2020; Silva et al., 2018) to 410 

alter oxidative status in wildlife. 411 

  412 

Interestingly, given the lower hatching success in Low and Medium groups, selective 413 

mortality of embryos susceptible to oxidative stress may have occurred in these two groups 414 

prior to hatching.  According to this hypothesis, surviving embryos may be the individuals 415 

that are more resistant to both AMPA and AMPA-mediated oxidative stress. Such 416 

hypothesis dovetails with the lack of relationship between developmental traits and 417 

oxidative status markers. Indeed, embryonic development can be constrained by oxidative 418 

stress thought oxidation of the thiol group of proteins (Goto, 1992), and accelerated 419 

development might enhance metabolism and induced cellular oxidative stress (Burraco et al., 420 

2020b; Smith et al., 2016).    421 

This process might also explain why we did not detect any correlation between telomere 422 

length and oxidative status parameters at clutch level. Telomere dynamics are influenced by 423 

environmental conditions and telomere length generally shortens under environmental 424 

stress (Chatelain et al., 2020). We expected that a reduction in telomere length because prior 425 

work showed that exposure to environmentally relevant concentrations of AMPA may 426 

damage DNA (de Brito Rodrigues et al., 2019; Guilherme et al., 2014).  In our context, 427 

telomere length may be influenced by increased production of pro-oxidants or decreased of 428 

antioxidant defences (Chatelain et al., 2020; Reichert and Stier, 2017). However, if surviving 429 

embryos were more able to cope with oxidative stress, damages to their DNA may be 430 
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reduced (Coluzzi et al., 2014). Since the proliferation of H2O2  induces cellular senescence (de 431 

Haan et al., 1996) or telomere attrition in human primary fibroblasts (Coluzzi et al., 2014), 432 

selective mortality might select coping individuals with preserved telomere length. Early 433 

development constitutes a phase where oxidative stress levels are high because of the 434 

presumed high metabolic needs. However, our results on AMPA exposure suggest an 435 

alteration of the trade-off between oxidative stress and developmental traits, thus the 436 

potential for AMPA to affect expression of life-history traits.  437 

 438 

Conclusions 439 

Our results provide rare evidence for physiological effects of environmentally-relevant 440 

AMPA concentrations on amphibian embryos (Cheron and Brischoux, 2020). Interestingly, 441 

the integration of markers of oxidative status in our investigations allows to suggest 442 

potential physiological mechanisms responsible for the effects on developmental related 443 

traits detected in a previous study (Cheron and Brischoux, 2020).  Our results also strengthen 444 

the idea that AMPA may also induce non-monotonic effects. These effects might indicate 445 

stimulation of the antioxidant machinery to buffer any pro-oxidant effect of AMPA, but also 446 

selected embryos that were more resistant to oxidative stress, two hypotheses which are not 447 

mutually exclusive. Further experiments using non-lethal concentration of AMPA are 448 

required in order to disentangle whether AMPA acts directly on the antioxidant machinery 449 

of tadpoles or if surviving individuals have higher ability to cope with oxidative stress.    If 450 

our hypothesis on selective mortality holds true, it is possible that the long-term use of 451 

glyphosate may have acted as a potent selective pressure, thereby explaining why our study 452 

species can persist in agricultural landscapes (Guillot et al. 2016, but see Renoirt et al. 2021).  453 

In light of our findings, we urge for regulatory toxicology to investigate effects of parent 454 

compounds but, more importantly, also of their metabolites at environmentally relevant 455 
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concentrations on non-model species in order to comprehensively assess impacts of 456 

anthropogenic contaminants on the environment. 457 

 458 

  459 
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Tables 770 

 771 

Table 1. Concentrations (µg.l-1) measured in the experimental tanks (Mean± SD) 772 

Treatment  Actual AMPA 
concentrations 

Control  0.00±0.00 

Low  0.07±0.01 

Medium 0.32 ±0.052 

High  3.57 ±0.153 

 773 

  774 
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Table 2: Mean values of oxidative status markers and developmental-related traits amongst 775 

treatment groups of aminomethylphosphonic acid (AMPA) 776 

 777 

 Treatment 
 Control  

(n=10) 
Low 

(n=10)  
Medium  
(n=10) 

High 
(n=10)  

Oxidative stress markers     
SOD* 3.822±0.447 3.139±0.360 2.835±0.386 3.277±0.509 
Thiols* 0.075±0.002 0.082±0.002 0.072±0.002 0.070±0.002 
CAT* 13.813±1.436 16.943±2.347 18.728±2.612 11.212±2.702 
GPx* 0.110±0.013 0.106±0.009 0.114±0.008 0.118±0.012 
SOD/(GPx+CAT) 0.307±0.048 0.204±0.039 0.175±0.035 0.352±0.067 
SOD/GPx 39.274±6.419 30.239±2.896 25.1453.355 28.077±3.514 
     

Developmental-related traits     
Total length (cm) 0.842±0.016 0.896±0.016 0.864±0.020 0.837±0.013 
Hatching success  0.997±0.002 0.963±0.020 0.953±0.032 0.997±0.003 
Telomere length (T/S ratio) 0.951±0.041 0.942±0.020 0.928±0.042 0.972±0.044 
Development duration (days) 16.10±0.233 16.30±0.213 16.30±0.163 16.45±0.221 
Values are Mean±SE 778 

SOD: Superoxide dismutase; GPx: Glutathione peroxidase; CAT: CAT 779 

*: (units/mg protein) 780 

 781 

 782 

  783 
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Table 3: Comparisons of outputs of linear mixed models (LMER, "lmerTest" package) of 784 

oxidative stress markers amongst treatment of aminomethylphosphonic acid (AMPA). 785 

Clutch identity was used as random factor in all our models 786 

     Clutch identity 

Variable Effect df F-value p-value Variance Residuals 
variance 

SOD* Intercept 1,9 79.21 <0.001 0.365 1.401 

 Treatment 3,36 0.92 0.439   

Thiols* Intercept 1,9 727.65 <0.001 <0.001 <0.001 
 Treatment 3,36 3.66 0.02   

CAT* Intercept 1,9 37.38 <0.001 4.11 44.35 
 Treatment 3,36 2.05 0.125   

GPx* Intercept 1,9 103.99 <0.001 <0.001 <0.001 
 Treatment 3,36 0.24 0.869   

SOD/(GPX+CAT) Intercept 1,9 44.85 <0.001 0.0012 0.019 
 Treatment 3,36 3.93 0.017   

SOD/GPx Intercept 1,9 84.28 <0.001 23.08 157.44 
 Treatment 3,36 2.03 0.127   

SOD: Superoxide dismutase; GPx: Glutathione peroxidase; CAT: CAT 787 

Values in bold are considered significant P<0.05 788 
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 790 

 791 

 792 
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Caption to figures 794 

 795 

Figure 1: A/ Superoxide dismutase activity (units SOD/mg proteins), B/ Glutathione 796 

peroxidase activity (units GPx/mg proteins) C/ Thiols (mmol-1 of -SH groups/mg proteins,) 797 

D/ CAT activity (units CAT/mg proteins) E/ SOD/(GPx+CAT) ratio F/ SOD/GPx ratio 798 

relative to AMPA treatments in Bufo spinosus tadpoles. Data represent mean ± SE. Letters 799 

indicate significant differences. 800 
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 802 

  803 



 32

Figures 804 

 805 

Figure 1: 806 
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