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. More specifically, we will 5 show from one side the connection between this new detectability notion and the derivation of a criterion for exponential stability in mean square for this class of systems. In the second part, we will show the central role played by exact detectability in Riccati equations arising in linear quadratic (LQ) regulator problems for such stochastic systems: it is a necessary and sufficient condition for the Riccati equation to have a unique positive semi-definite and stabilizing solution.

1 Introduction.

In the literature of control theory, it is well-known that exponential stability and detectability are important concepts, which play a fundamental role in system analysis and synthesis. In the stochastic 15 context we refer to the monographs [START_REF] Mariton | Jump Linear Systems in Automatic Control[END_REF][START_REF] Costa | Discrete-Time Markov Jump Linear Systems[END_REF][START_REF] Costa | Continuous-Time Markov Jump Linear Systems[END_REF] for systems subject to Markovian switching, [START_REF] Damm | Rational Matrix Equations in Stochastic Control[END_REF] for systems affected by state and control multiplicative white noise perturbations and [START_REF] Drăgan | Mathematical Methods in Robust Control of Discrete-Time Linear Stochastic Systems[END_REF][START_REF]Mathematical Methods in Robust Control of Linear Stochastic Systems[END_REF] for the case of the systems simultaneously affected by Markovian jumping and multiplicative white noise perturbations.

Exponential stability in mean square (ESMS) can be viewed as the stochastic version for the deterministic version of exponential stability. On the same line, stabilizability of stochastic linear systems 20 assure existence of closed-loop solutions for quadratic infinite horizon problems. Also, the extension of the concepts of observability and detectability from deterministic context to their stochastic versions has been studied by many researchers during the past decades. Starting from [8, 9, 10] various been derived. Among these results, in [START_REF] Fragoso | A new approach to linearly perturbed Riccati equations arising in stochastic control[END_REF], for example, the notion of stochastic detectability for time-invariant Itô stochastic systems was investigated. The notions of exact detectability and exact observability for Itô stochastic systems have been introduced in [START_REF] Zhang | On stabilizability and exact observability of stochastic systems with their applications[END_REF], [START_REF] Damm | On detectability of stochastic systems[END_REF] and [START_REF] Zhang | Generalized Lyapunov equation approach to statedependent stochastic stabilization/detectability criterion[END_REF]. In [START_REF] Costa | On the observability and detectability of continuous-time Markov jump linear systems[END_REF] and [START_REF]On the detectability and observability of discrete-time Markov jump linear systems[END_REF] the exact detectability for Markov jump continuous-time and discrete-time linear Itô stochastic systems is considered, and in [START_REF] Ni | On the observability and detectability of linear stochastic systems with Markov jumps and multiplicative noise[END_REF] the case with multiplicative noises is discussed. In [START_REF] Drăgan | Exact detectability of discrete-time and continuous-time linear stochastic systems with periodic coefficients: A unified approach[END_REF], we have further extended the notion of exact detectability and the accompanying PBH test for a large class of linear stochastic systems with time varying coefficients simultaneously affected by state multiplicative white noise perturbations and Markovian switching in both discrete and continuous-time cases. We proposed a unified approach which is mainly based on the spectral theory of positive operators on Hilbert spaces, [START_REF] Damm | Newton's method for concave operators with resolvent positive derivatives in ordered banach spaces[END_REF].

A natural, relevant question that arises in this context is how exact detectability can be applied to the class of systems in [START_REF] Drăgan | Exact detectability of discrete-time and continuous-time linear stochastic systems with periodic coefficients: A unified approach[END_REF], and in particular to the optimal control problem that gives rise to a generalized Riccati equation. Riccati equations have a ubiquitous role in systems and control theory [START_REF] Abou-Kandil | Matrix Riccati Equations in Control and Systems Theory[END_REF], which motivated the study of many different topics such as: monotonicity and convergence of the difference/differential Riccati equation [START_REF] Bitmead | Monotonicity and stabilizability properties of solutions of the Riccati difference equation: Propositions, lemmas, theorems, fallacious conjectures and counterexamples[END_REF][START_REF] Nicolao | Difference and differential Riccati equations: a note on the convergence to the strong solution[END_REF], stabilizability of the solution in the context of filtering [START_REF] Sangsuk-Iam | Analysis of discrete-time kalman filtering under incorrect noise covariances[END_REF][START_REF] Costa | Characterization of exponential divergence of the Kalman filter for time-varying systems[END_REF], families of solutions [24,[START_REF] Alpago | Families of solutions of algebraic Riccati equations[END_REF], and utilization in dynamic controllers [START_REF] Dragan | Optimal stationary dynamic output-feedback controllers for discretetime linear systems with markovian jumping parameters and additive white noise perturbations[END_REF], J-lossless factorization linked with H ∞ control [START_REF] Kimura | Chain-Scattering Approach to H-∞ Control[END_REF], and spectral factorization [START_REF] Ferrante | On the state space and dynamics selection in linear stochastic models: A spectral factorization approach[END_REF] appearing in state space realization.

In order to get a grasp on what to expect from exact detectability, next we describe some existing results in the literature. In [START_REF] Zhang | Detectability, observability and Lyapunov-type theorems of linear discrete time-varying stochastic systems with multiplicative noise[END_REF]Theorem 3.3], K N -exact detectability is one condition (of a set of conditions) under which the existence of a solution of a generalized Lyapunov equation implies ESMS; the system considered in [START_REF] Zhang | Detectability, observability and Lyapunov-type theorems of linear discrete time-varying stochastic systems with multiplicative noise[END_REF] is a special case of the one studied in the present paper, in discrete-time with no Markov switch. For a continuous-time version of the class of systems in [START_REF] Zhang | Detectability, observability and Lyapunov-type theorems of linear discrete time-varying stochastic systems with multiplicative noise[END_REF], it is demonstrated in [START_REF] Shen | On the detectability and observability of continuous stochastic Markov jump linear systems[END_REF]Theorem 2] and also in [START_REF] Li | On unified concepts of detectability and observability for continuous-time stochastic systems[END_REF]Theorem 3] that an adaptation of the detectability notion in [8] plays a similar role as before, allowing to conclude that a detectable system is mean square stable whenever a solution for a Lyapunov equation exists. Systems with Markov jump parameters and no noise have been studied in [START_REF]On the detectability and observability of discrete-time Markov jump linear systems[END_REF] and [START_REF] Costa | On the observability and detectability of continuous-time Markov jump linear systems[END_REF], in discrete and continuous time, respectively.

In those papers, more specifically in [START_REF]On the detectability and observability of discrete-time Markov jump linear systems[END_REF]Theorem 13] and [START_REF] Costa | On the observability and detectability of continuous-time Markov jump linear systems[END_REF]Theorem 5], it has been shown that, under detectability, the existence of a solution to an appropriate coupled Riccati equation implies that the associated control gain is stabilizing; if the control gains are set to zero in those theorems, we have again that the existence of the solution of a Lyapunov equation implies stability.

These papers illustrate the usage of detectability as a sufficient condition for linking solutions of a Lyapunov/Riccati equation with stability/stabilization. A stronger result has been developed in [START_REF] Val | Stabilizability and positiveness of solutions of the jump linear quadratic problem and the coupled algebraic Riccati equation[END_REF]Theorem 1] for stabilizable continuous-time systems with Markov jumps and no multiplicative noise, i.e. the minimal and positive semidefinite solution of a coupled Riccati equation is stabilizing if and only if the system is detectable, which can be restated as: the Riccati equation has a unique positive semidefinite solution if and only if the system is detectable. This is in perfect harmony with the theory of linear deterministic systems, see e.g. the discussion in [START_REF] Anderson | Optimal Control: Linear Quadratic Methods[END_REF]Section 3.2].

In summary, detectability ideally should have two prominent characteristics: one, be a necessary and sufficient condition for an appropriate Riccati equation to have a unique and stabilizing solution. Two, under detectability, the existence of a solution to an appropriate Lyapunov equation should assure that the system is ESMS.

In this paper we demonstrate that exact detectability presents both of the above characteristics. In fact, under exact detectability at time instance t 0 = 0, we show in Theorems 3.1 and 3.2 (for continuous-time and discrete-time systems, respectively) that ESMS is equivalent to the existence of a semi-definite positive solution of an adequately defined generalized Lyapunov equation. We point out here that this result has been proved without any additional assumptions. The second result reported in this paper, in Theorems 4.1 and 4.2 (for continuous-time and discrete-time systems, respectively), refers to a certain generalized Riccati equation defined for stochastic stabilizable systems, linked with the solution of stochastic LQ regulator problems; we show that the Riccati has a unique solution if and only if the system is exact detectable at time instant t 0 = 0. description, the definition of the exact detectability notion as well as the related PBH-test. Section 3 is devoted to the problem of ESMS. Existence and uniqueness of the stabilizing solution of a class of stochastic LQ Riccati equation is treated in Section 4. Some numerical experiments are included in Section 5 in order to illustrate the proposed theoretical results.

Preliminaries.

In this section, we will first describe the class of dynamic stochastic systems that we consider in this work. Both the continuous-time and discrete-time cases will be addressed. In a second part, and for the reader convenience, we will recall the definitions of exact detectability as well as exact detectability at time instant t 0 ∈ R + (t 0 ∈ Z + , respectively). We shall provide a Popov-Belevich-Hautus (PBH) type criterion for the characterization of the property of exact detectability of the systems under consideration. More details about the material in this section can be found in [START_REF] Drăgan | Exact detectability of discrete-time and continuous-time linear stochastic systems with periodic coefficients: A unified approach[END_REF].

Models description.

I. The continuous-time case.

Let us consider the stochastic linear systems having the state space representation ), where x(t) ∈ R nx is the state vector and y(t) ∈ R ny is an output.

dx(t) = A c0 (t, η t )x(t)dt + r =1 A c (t, η t )x(t)dw (t) (1a) y(t) = C c (t, η t )x(t) (1b) 
t ∈ R + = [0, +∞
In (1a) {w(t)} t≥0 , w(t) = (w 1 (t) w 2 (t) . . . w r (t)) T is a r-dimensional standard Wiener process defined on a given probability space (Ω, F, P) and {η t } t≥0 is a standard homogeneous right continuous Markov process taking values in the finite set N = {1, 2, . . . , N } and having the transition semigroup P (t) = e Qt , t ≥ 0. The elements q ij of the generator matrix Q have the properties: q ij ≥ 0, i = j and N =1 q i = 0 for all i, j ∈ N . The initial probability distributions of the Markov process {η t } t≥0 will be denoted π η 0 . This means that π η 0 = (π η 0 (1), π η 0 (2), . . . , π η 0 (N )), where π η 0 (i) = P{η 0 = i}, 1 ≤ i ≤ N . We assume that {w(t)} t≥0 , {η t } t≥0 are independent stochastic processes.

For precise definitions and properties of the standard Wiener processes and continuous-time standard Markov processes we refer to ( [START_REF] Chung | Markov Chains with Stationary Transition Probabilities[END_REF], [START_REF]Mathematical Methods in Robust Control of Linear Stochastic Systems[END_REF], [START_REF] Freedman | Markov Chains[END_REF], [START_REF]Stochastic Differential Equations[END_REF]). As usual, we shall write A c (t, i) and C c (t, i)

instead of A c (t, η t ), C c (t, η t ), respectively, whenever η t = i ∈ N .
In this work, we assume that the coefficients of the system (1) satisfy the following assumption:

(H 1c ). t → A c (t, i) : R + → R nx×nx , 0 ≤ ≤ r, and t → C c (t, i) : R + → R ny×nx , i ∈ N are
continuous matrix valued functions which are assumed periodic functions of period τ c > 0.

For each (t 0 , x 0 ) ∈ R + × R n the stochastic linear differential equation (SLDE) (1a) has a unique solution x c (t; t 0 , x 0 ), t ≥ t 0 which satisfies x c (t 0 ; t 0 , x 0 ) = x 0 . For more details regarding the properties of the solution x c (t; t 0 , x 0 ) we refer, for example, to Section 1.12 from [START_REF]Mathematical Methods in Robust Control of Linear Stochastic Systems[END_REF].
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Let us consider the discrete-time linear stochastic system having the state space representation described by

x(t + 1) = A d0 (t, θ t ) + r =1 w d (t)A d (t, θ t ) x(t) (2a) 
y(t) = C d0 (t, θ t ) + r =1 w d (t)C d (t, θ t ) x(t) (2b) 
t ∈ Z + = {0, 1, . . .}. As in the case of system (1), in the case of system (2), x(t) ∈ R nx denotes the vector of the state variables and y(t) ∈ R ny stands for an output of the considered system. In ( 2 Regarding the coefficients of the system (2) we make the assumption:

(H 1d ). (a) {A d (t, i)} t∈Z+ ⊂ R nx×nx , {C d (t, i)} t∈Z+ ⊂ R ny×nx , 0 ≤ ≤ r, i ∈ N , {P t } t∈Z+ ⊂ R N ×N are periodic sequences with period τ d ≥ 1.
(b) For each t ∈ Z + , P t are nondegenerate stochastic matrices, that is, their elements satisfy

p t (i, j) ≥ 0, N =1 p t (i, ) = 1, N =1
p t ( , j) > 0 for all (i, j) ∈ N × N .

Exact detectability

Let φ c (t, t 0 ), t ≥ t 0 ≥ 0 be the fundamental matrix solution of SLDE (1a). This means that for each 1 ≤ j ≤ n x , the j-th column of the matrix φ c (t, t 0 ) coincides to x c (t; t 0 , e j ) a.s. t ≥ t 0 , where e j ∈ R nx is the j-th column of the identity matrix I nx . Based on the uniqueness of the solution with given initial values of an SLDE of type (1a) one obtains that

x c (t; t 0 , x 0 ) = φ c (t, t 0 )x 0 (3a) y c (t; t 0 , x 0 ) = C c (t, η t )φ c (t, t 0 )x 0 (3b) a.s. t ≥ t 0 ≥ 0, x 0 ∈ R n . Definition 2.1. (a)
The continuous-time linear stochastic system (1) is called exact detectable at time instant

t 0 ∈ R + if lim t→∞ E[|φ c (t, t 0 )x 0 | 2 ] = 0
for any x 0 ∈ R nx and any initial probability distribution π η 0 of the Markov process for which y c (t; t 0 , x 0 ) = 0 a.s. for all t ≥ t 0 ∈ R + (b) The system (1) is named exact detectable if it is exact detectable at any time instants t 0 ∈ R + .

Throughout the paper E[•] stands for the mathematical expectation and | • | denotes the Euclidean norm.
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4/21 0 , x 0 ∈ + × x x d ; 0 , x 0 x d (t 0 ; t 0 , x 0 ) = x 0 . The corresponding output is y d (t; t 0 , x 0 ) = C d0 (t, θ t ) + r =1 w d (t)C d (t, θ t ) x d (t; t 0 , x 0 ).
We set

φ d (t, t 0 ) = A(t -1, θ t-1 )A(t -2, θ t-2 ) • • • A(t 0 , θ t0 ), if t > t 0 I nx , if t = t 0 , where A(s, θ s ) = A d0 (s, θ s ) + r =1 w d (s)A d (s, θ s ). One shows inductively that x d (t; t 0 , x 0 ) = φ d (t, t 0 )x 0 (4a) y d (t; t 0 , x 0 ) = C(t, θ t )φ d (t, t 0 )x 0 (4b) with C(t, θ t ) = C d0 (t, θ t ) + r =1 w d (t)C d (t, θ t ) (5) 
for all t ≥ t 0 ∈ Z + , x 0 ∈ R nx . Definition 2.2. (a)
We say that the discrete-time linear stochastic system (2) is exact detectable at time instant

t 0 ∈ Z + if lim t→∞ E[|φ d (t, t 0 )x 0 | 2 ] = 0
for any x 0 ∈ R nx and any initial probability distribution π θ 0 of the Markov chain for which y d (t; t 0 , x 0 ) = 0 a.s. for all t ≥ t 0 ∈ Z + .

(b) The system ( 2) is exact detectable if it is exact detectable at any time instant t 0 ∈ Z + .

In the next subsection we provide the statement of the PBH type criterion for exact detectability which will be used in the developments from the next sections.

A PBH type criterion for exact detectability

Throughout the paper, S p ⊂ R p×p stands for the linear subspace of symmetric matrices of size p × p. We set

S N p = S p × S p × • • • × S p . Also, S N + p = S + p × S + p × • • • × S + p
, where S + p ⊂ S p is the subset of positive semidefinite matrices. Based on the coefficients of the SLDE (1a) we introduce the linear operator L c (t) :

S N nx → S N nx defined by L c (t)X = (L c1 (t)X, . . . , L c N (t)X) with L c i (t)X = A c0 (t, i)X i + X i A T c0 (t, i) + r =1 A c (t, i)X i A T c (t, i) + N j=1 q ji X j (6) for all X = (X 1 , X 2 , . . . , X N ) ∈ S N nx . Let T c (t, t 0 ) : S N nx → S N
nx be the linear evolution operator defined by the linear differential equation

Ẋc (t) = L c (t)X c (t) (7) 
where

X c (t) = (X c1 (t), . . . , X cN (t)) ∈ S N nx . More precisely, X 0 → T c (t, t 0 )X 0 = X(t; t 0 , X 0 ) where X(•; t 0 , X 0 ) is the solution of the linear differential equation (7) satisfying X(t 0 ; t 0 , X 0 ) = X 0 .
Using the coefficients of (1b) we introduce the operator Γ Γ Γ c (t) : S N nx → S N ny defined by:

Γ Γ Γ c (t)X = C c (t, 1)X 1 C T c (t, 1), C c (t, 2)X 2 C T c (t, 2), . . . , C c (t, N )X N C T c (t, N ) (8) 
September 11, 2021

5/21 1 2 N
nx . Further, based on the coefficients of the discrete-time linear equation (2a) we define the linear operator

L d (t) : S N nx → S N nx by L d (t)X = (L d1 (t)X, L d2 (t)X, . . . , L d N (t)X)
with

L d i (t)X = r =0 N k=1 p t (k, i)A d (t, k)X k A T d (t, k) (9) 
for all X ∈ S N nx . Let T d (t, t 0 ) : S N nx → S N nx be defined by

T d (t, t 0 ) = L d (t -1)L d (t -2) • • • L d (t 0 ), if t > t 0 I S N nx , if t = t 0 . ( 10 
)
where I S N nx is the identity operator on S N nx . T d (t, t 0 ) is the linear evolution operator on S N nx , defined by the equation:

X d (t + 1) = L d (t)X d (t). (11) 
Employing the coefficients of (2b) we introduce the linear operator Γ Γ Γ d (t) :

S N nx → S N n defined by Γ Γ Γ d (t)X = Ĉ(t, 1)X 1 ĈT (t, 1), Ĉ(t, 2)X 2 ĈT (t, 2), . . . , Ĉ(t, N )X N ĈT (t, N ) (12) 
with n = (r + 1)n y and

Ĉ(t, i) = C T 0 (t, i) C T 1 (t, i) . . . C T r (t, i) T ∈ R n×nx .
The next result was proved in [START_REF] Drăgan | Exact detectability of discrete-time and continuous-time linear stochastic systems with periodic coefficients: A unified approach[END_REF]. (i) the continuous-time linear stochastic system (1) is exact detectable at t 0 = 0;

(ii) for any eigenvalue µ ≥ 1 of the operator T c (τ c , 0), if there exists Y ∈ S N + nx satisfying T c (τ c , 0)Y = µY (13a) Γ Γ Γ c (s)T(s, 0)Y = 0, (13b) 
for all s ∈ [0, τ c ], then Y = 0.

(b) Under the Assumption (H 1d ) the following are equivalent:

(i) the discrete-time linear stochastic system (2) is exact detectable at t 0 = 0;

(ii) for any eigenvalue µ ≥ 1 of the linear operator

T d (τ d , 0), if there exists Y ∈ S N + nx satisfying T d (τ d , 0)Y = µY (14a) Γ Γ Γ d (s)T(s, 0)Y = 0, (14b) 
for all s ∈ {0, 1, . . . , τ d -1}, then Y = 0.

Mean square stability and exact detectability

The aim of this section is the derivation of a criterion for exponential stability in mean square sense of the considered class of stochastic systems where exact detectability plays a central role.
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Based on the coefficients of the system (1) we introduce the following backward differential equation named generalized Lyapunov differential equation (GLDE):

-Żc (t, i) = A T c0 (t, i)Z c (t, i) + Z c (t, i)A c0 (t, i) + r =1 A T c (t, i)Z c (t, i)A c (t, i) + N j=1 q ij Z c (t, j) + C T c (t, i)C c (t, i), (15) 
t ∈ R + , i ∈ N .
The equation ( 15) may be written in a compact form

-Żc (t) = L c * (t)Z c (t) + Γ Γ Γ * c (t)[J ny ] (16) 
where L c * (t) is the adjoint of the operator defined in [START_REF] Drăgan | Mathematical Methods in Robust Control of Discrete-Time Linear Stochastic Systems[END_REF] with respect to the inner product:

< X, Y >= N i=1 T r[X i Y i ], for all X, Y ∈ S N p , (17) 
where T r[•] is the trace operator. The norm induced by the inner product ( 17) is

|X| = (< X, X >) 1/2 .
In ( 16), Γ Γ Γ * c (t) : S N ny → S N nx is the adjoint of the linear operator introduced by (8) and J ny = (I ny , . . . , I ny ), I ny being the identity matrix of size n y × n y . The solutions of the GLDE ( 16) have the following representation

Z c (t) = T * c (τ c , t)Z c (τ c ) + τc t T * c (s, t)Γ Γ Γ * c (s)[J ny ]ds, 0 ≤ t ≤ τ c , (18) 
where T * c (s, t) is the adjoint operator of the linear evolution operator T c (s, t) defined by the linear differential equation [START_REF]Mathematical Methods in Robust Control of Linear Stochastic Systems[END_REF].

We recall that the zero solution of the SLDE (1a) is named exponentially stable in mean square (ESMS) if there exist β ≥ 1, α > 0, such that

E[|x c (t; t 0 , x 0 )| 2 ] ≤ βe -α(t-t0) |x 0 | 2 ,
for all t ≥ t 0 ≥ 0, x 0 ∈ R nx and any initial probability distribution π η 0 of the Markov process. Remark 3.1. Based, for example, on Theorem 3.2.2 a) and Theorem 3.2.5 from [START_REF]Mathematical Methods in Robust Control of Linear Stochastic Systems[END_REF] one obtains that under the assumption (H 1c ), the zero solution of the SLDE (1a) is ESMS if and only if the zero solution of the equation ( 7) is exponentially stable. Now, we prove a result that provides a criterion for ESMS of the zero solution of the system (1a). (b) the system (1) is exact detectable at t 0 = 0. Under these conditions, the following are equivalent:

(i) the GLDE (15) has a solution Zc (t) = Zc (t, 1), . . . , Zc (t, N ) , t ∈ R + , which is periodic of period τ c and Zc (t, i) ≥ 0, for all (t, i) ∈ R + × N ; September 11, 2021
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Proof. The implication (ii) =⇒ (i) follows directly employing Remark 3.1 from above together with Theorem 2.7.5 (ii) from [START_REF]Mathematical Methods in Robust Control of Linear Stochastic Systems[END_REF] in the case of the equation [START_REF] Costa | On the observability and detectability of continuous-time Markov jump linear systems[END_REF]. Now we prove the implication (i) =⇒ (ii). We write [START_REF] Damm | Newton's method for concave operators with resolvent positive derivatives in ordered banach spaces[END_REF] for Zc (t), take t = 0 and use the fact that Zc (0) = Zc (τ c ), then we obtain:

Zc (0) = T * c (τ c , 0) Zc (0) + τc 0 T * c (s, 0)Γ Γ Γ * c (s)[J ny ]ds. (19) 
Since Γ Γ Γ * c (s)[J ny ] ∈ S N + ny and T * c (s, 0) is a positive operator, it follows that

Ψ c ∆ = τc 0 T * c (s, 0)Γ Γ Γ * c (s)[J ny ]ds (20) 
lies in S N + nx . Let ρ τc be the spectral radius of the operator T c (τ c , 0). To prove the implication (i) =⇒

(ii) it is sufficient to show that ρ τc < 1. We assume by contrary that ρ τc ≥ 1. Applying Theorem 2.6 from [START_REF] Damm | Newton's method for concave operators with resolvent positive derivatives in ordered banach spaces[END_REF] in the case of the linear operator T * c (τ c , 0) defined on the ordered Hilbert space S N nx , S N + nx we deduce that there exists 0 = Y 0 ∈ S N + nx such that

T c (τ c , 0)Y 0 = ρ τc Y 0 . (21) 
Having in mind that both Ψ as well as Y 0 lie in S N + nx and employing [START_REF] Abou-Kandil | Matrix Riccati Equations in Control and Systems Theory[END_REF] and ( 20) we may write

0 ≤ Ψ, Y 0 = Zc (0), Y 0 -T * c (τ c , 0) Zc (0), Y 0 = Zc (0), Y 0 -Zc (0), T c (τ c , 0)Y 0 = (1 -ρ τc ) Zc (0), Y 0 . (22) 
Since ρ τc ≥ 1 then (20) and ( 22) yield

0 = τc 0 T * c (s, 0)Γ Γ Γ * c (s)[J ny ]ds, Y 0 = τc 0 T * c (s, 0)Γ Γ Γ * c (s)[J ny ], Y 0 ds = τc 0 J ny , Γ Γ Γ c (s)T c (s, 0)Y 0 ds. (23) 
Further, we remark that J ny , Γ Γ Γ c (s)T c (s, 0)Y 0 ≥ 0. So, [START_REF] Costa | Characterization of exponential divergence of the Kalman filter for time-varying systems[END_REF] allows us to conclude that

J ny , Γ Γ Γ c (s)T c (s, 0)Y 0 = 0, for all s ∈ [0, τ c ).
Using the properties of the inner product [START_REF] Ni | On the observability and detectability of linear stochastic systems with Markov jumps and multiplicative noise[END_REF] we obtain finally that

Γ Γ Γ c (s)T c (s, 0)Y 0 = 0, for all s ∈ [0, τ c ). (24) 
From ( 21) and (24) it follows that (µ, Y) = (ρ τc , Y 0 ) satisfies the equalities (51a) in [START_REF] Drăgan | Exact detectability of discrete-time and continuous-time linear stochastic systems with periodic coefficients: A unified approach[END_REF]. Based on the implication (i) =⇒ (ii) from part a) of the Proposition 2.1, it follows that Y 0 = 0. This contradicts the fact that in (21) Y 0 = 0. Hence, ρ τc < 1 which complete the proof.
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Based on the coefficients of the system (2), we construct the following backward discrete-time linear equation named generalized discrete-time Lyapunov equation (GDTLE)

Z d (t, i) = r =0 N j=1 p t (i, j)A T d (t, i)Z d (t + 1, j)A d (t, i) + r =0 C T d (t, i)C d (t, i), (25) 
for all (t, i) ∈ Z + × N . The GDTLE (25) may be rewritten in a compact form as:

Z d (t) = L d * (t)Z d (t + 1) + Γ Γ Γ * d (t)[J n] (26) 
where L * d (t) is the adjoint of the linear operator L d (t) defined in [START_REF] Ji | Controllability, stabilizability, and continuous-time markovian jump linear quadratic control[END_REF], Γ Γ Γ * d (t) is the adjoint of the linear operator of Γ Γ Γ d (t) : S N nx → S N n defined by [START_REF] Zhang | On stabilizability and exact observability of stochastic systems with their applications[END_REF] and J n = (I n, . . . , I n). The solutions of the equation ( 26) have the representation

Z d (t) = T * d (τ d , t)Z d (τ d ) + τ d -1 j=t T * d (j, t)Γ Γ Γ * d (j)[J n], 0 ≤ t ≤ τ d -1, (27) 
where T * d (j, t) is the adjoint of the linear evolution operator T d (t, t 0 ) defined in [START_REF] Morozan | Optimal stationary control for dynamic systems with Markov perturbations[END_REF]. We say that the zero solution of the discrete-time linear equation (2a

) is ESMS if there exist β ≥ 1, δ ∈ (0, 1) such that E[|x d (t; t 0 , x 0 )| 2 ] ≤ βδ t-t0 |x 0 | 2 ,
for all t ≥ t 0 ∈ Z + , x 0 ∈ R n and any initial probability distribution π θ 0 of the Markov chain.

Remark 3.2. One may show that under the assumption (H 1d ) the zero solution of (2a) is ESMS, if and only if the zero solution of the deterministic linear equation ( 11) is exponentially stable.

The discrete-time counterpart of Theorem 3.1 is: Theorem 3.2. Assume:

(a) the Assumption (H 1d ) is fulfilled;

(b) the system (2) is exact detectable at t 0 = 0.

Under these assumptions, the following are equivalent:

(i) the GDTLE (25) has a solution Zd (t) = Zd (t, 1), . . . , Zd (t, N ) , which is a periodic sequence of period τ d and Zd (t, i) ≥ 0, for all (t, i) ∈ Z + × N ;

(ii) the zero solution of (2a) is ESMS.

Proof. Is similar to the proof of Theorem 3.1. In this case the equation ( 26) is involved instead of the equation ( 16) and part b) of Proposition 2.1 is used. The details are omitted.

4 Generalized Riccati differential and difference equations.

The aim of this section is to show the connection between exact detectability and the existence of the stabilizing solution of generalized Riccati equations arising in stochastic linear quadratic regulator problems. Both the continuous-time and the discrete-time cases will be again treated.
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We consider the system of nonlinear matrix differential equations

-Ẋc (t, i) = A T c0 (t, i)X c (t, i) + X c (t, i)A c0 (t, i) + r =1 A T c (t, i)X c (t, i)A c (t, i) + N j=1 q ij X c (t, j) -(X c (t, i)B c0 (t, i) + r =1 A T c (t, i)X c (t, i)B c (t, i) + L c (t, i))( r =1 B T c (t, i)X c (t, i)B c (t, i) + R c (t, i)) -1 • (X c (t, i)B c0 (t, i) + r =1 A T c (t, i)X c (t, i)B c (t, i) + L c (t, i)) T + M c (t, i), t ∈ R + , (28) 
whose coefficients

(A c (•, i), B c (•, i)) : R + → R nx×nx × R nx×nu , 0 ≤ ≤ r, (M c (•, i), L c (•, i), R c (•, i)) :
R + → S nx × R nx×nu × S nu are continuous matrix valued functions and q ij ∈ R have the properties:

q ij ≥ 0, if i = j and N =1 q j = 0, i, j ∈ {1, 2, . . . , N }.
The system (28) may be regarded as a nonlinear differential equation on the space S N nx with the unknown function X c (•) = (X c (•, 1), . . . , X c (•, N )). Since (28) contains as special cases various kinds of Riccati differential equations from the deterministic and stochastic framework, we shall call this equation generalized Riccati differential equation (GRDE). The GRDE ( 28) is closely related to the linear quadratic control problems described by a controlled system of the form

dx(t) = (A c0 (t, η t )x(t) + B c0 (t, η t )u(t))dt + r =1 (A c (t, η t )x(t) + B c (t, η t )u(t))dw (t) (29) 
t ≥ t 0 , x(t 0 ) = x 0 ∈ R nx and by the performance criterion

J c (t 0 , x 0 ; u) = E   ∞ t0 x u (t) u(t) T M c (t, η t ) L c (t, η t ) L T c (t, η t ) R c (t, η t ) x u (t) u(t) dt   (30) 
where x u (t) is the solution of the IVP (29) corresponding to the control u(•). We consider the set of admissible controls U(t 0 , x 0 ) containing all controls u(•) which are stochastic processes adapted to the filtration generated by the stochastic processes {η t } t≥0 and {w k (t)} t≥0 for which the corresponding performance criterion is convergent, as well as the set of stabilizing controls Ũ(t 0 , x 0 ) ⊂ U(t 0 , x 0 ) having the property that

lim t→∞ E[|φ c (t, t 0 )x 0 | 2 ] = 0.
We recall that a solution t → Xc (t) : R + → S N nx is named stabilizing solution of the GRDE (28) if the zero solution of the closed-loop system

dx(t) = (A c0 (t, η t ) + B c0 (t, η t ) Fc (t, η t ))x(t)dt + r =1 (A c (t, η t ) + B c (t, η t ) Fc (t, η t ))x(t)dw (t) (31)
is ESMS, where

Fc (t, i) = - r =1 B T c (t, i) Xc (t, i)B c (t, i) + R c (t, i) -1 • B T c0 (t, i) Xc (t, i) + r =1 B T c (t, i) Xc (t, i)A c (t, i) + L T c (t, i) , (32) 
for all (t, i) ∈ R + × N . Regarding the weights matrices from [START_REF] Shen | On the detectability and observability of continuous stochastic Markov jump linear systems[END_REF] we make the assumptions .

R c (t, i) > 0 (33a) M c (t, i) -L c (t, i)R -1 c (t, i)L T c (t, i) ≥ 0, (33b) 
In order to study the role that detectability plays in characterizing the solution of a GRDE of the type (28), we shall consider the following auxiliary system

dx(t) = Ǎc0 (t, η t )x(t)dt + r =1 Ǎc (t, η t )x(t)dw (t) y(t) = Čc (t, η t )x(t), (34) 
where

255 Ǎc (t, i) = A c (t, i) -B c (t, i)R -1 c (t, i)L T c (t, i), 0 ≤ ≤ r, Čc (t, i) = (M c (t, i) -L c (t, i)R -1 c (t, i)L T c (t, i)) 1/2 . ( 35 
)
Theorem 4.1. Assume:

(a) the coefficients of the GRDE ( 28) are continuous and periodic functions of period τ c > 0;

(b) the weights matrices M c (•, i), L c (•, i), R c (•, i) satisfy the constraints ( 33);

(c) the system ( 29) is stochastic stabilizable.

Under these conditions, the following are equivalent: 260 (i) the auxiliary system ( 34) is exact detectable at t 0 = 0;

(ii) the GRDE ( 28) has a unique τ c -periodic and positive semidefinite solution and it is the stabilizing solution.

Proof. First we prove the implication (i) =⇒ (ii). Based on Theorem 5.5.1 from [START_REF]Mathematical Methods in Robust Control of Linear Stochastic Systems[END_REF] we deduce that under the assumptions (a) -(c) from the statement, that the GRDE (28) has at least two positive semidefinite solutions which are τ c -periodic. Let Xc (•) = ( Xc (•, 1), . . . , Xc (•, N )) be any of the positive semidefinite and τ c -periodic solution of [START_REF] Ferrante | On the state space and dynamics selection in linear stochastic models: A spectral factorization approach[END_REF]. We show that Xc (•) is a stabilizing solution. By direct calculation, involving [START_REF] Costa | On the observability and detectability of continuous-time Markov jump linear systems[END_REF] and (33a) we rewrite [START_REF] Ferrante | On the state space and dynamics selection in linear stochastic models: A spectral factorization approach[END_REF] satisfied by Xc (•) as

- d dt Xc (t, i) = (A c0 (t, i) + B c0 (t, i) Fc (t, i)) T Xc (t, i) + Xc (t, i)(A c0 (t, i) + B c0 (t, i) Fc (t, i)) + r =1 (A c (t, i) + B c (t, i) Fc (t, i)) T Xc (t, i)(A c (t, i) + B c (t, i) Fc (t, i)) (36) 
+ N j=1 q ij Xc (t, j) + M c (t, i) -L c (t, i)R -1 c (t, i)L T c (t, i) + ( Fc (t, i) + R -1 c (t, i)L T c (t, i)) T R c (t, i)( Fc (t, i) + R -1 c (t, i)L T c (t, i)),
for all (t, i) ∈ R + × N . One sees that ( 36) is the GLDE of type ( 15) associated to the following system

dx(t) = (A c0 (t, η t ) + B c0 (t, η t ) Fc (t, η t ))x(t)dt + r =1 (A c (t, η t ) + B c (t, η t ) Fc (t, η t ))x(t)dw (t) (37a) y(t) = Čc (t, η t )x(t) (37b) 
where

Čc (t, i) = Čc (t, i) R 1/2 c (t, i)( Fc (t, i) + R -1 c (t, i)L T c (t, i)) . ( 38 
)
September 11, 2021 11/21 rem 3.1 in the case of the GLDE (36) and of the system [START_REF]Stochastic Differential Equations[END_REF]. To this end, we have to show that the system (37) is exact detectable at t 0 = 0. Reasoning as in the proof of the Proposition 6.3 from [START_REF] Drăgan | Exact detectability and exact observability of discrete-time linear stochastic systems with periodic coefficients[END_REF] and using [START_REF] Drăgan | Exact detectability and exact observability of discrete-time linear stochastic systems with periodic coefficients[END_REF] we may reduce the problem of exact detectability at t 0 = 0 of the system (37) to the exact detectability at t 0 = 0 of the auxiliary system [START_REF] Anderson | Optimal Control: Linear Quadratic Methods[END_REF]. Finally, employing Theorem 5.6.5 from [START_REF]Mathematical Methods in Robust Control of Linear Stochastic Systems[END_REF] we deduce that Xc (•) is the unique positive semidefinite and τ c -periodic solution of the GRDE [START_REF] Ferrante | On the state space and dynamics selection in linear stochastic models: A spectral factorization approach[END_REF] which confirms the validity of the implication (i) =⇒ (ii). Now we prove the implication (ii) =⇒ (i). We have to show under the hypothesis (a) -(c), and assuming (ii) is true, that lim t→∞ E[|x(t; t 0 , x 0 )| 2 ] = 0, ∀x 0 , π 0 : y(t; t 0 , x 0 ) = 0 a.s. , t ≥ t 0 [START_REF] Oliveira | Digital implementation of a magnetic suspension control system for laboratory experiments[END_REF] where x(t; t 0 , x 0 ) and y(t; t 0 , x 0 ) refer to the auxiliary system [START_REF] Anderson | Optimal Control: Linear Quadratic Methods[END_REF]. First, using Lemma 5.1.1 from [START_REF]Mathematical Methods in Robust Control of Linear Stochastic Systems[END_REF] in the case of the GRDE [START_REF] Ferrante | On the state space and dynamics selection in linear stochastic models: A spectral factorization approach[END_REF] we obtain that the unique positive semidefinite and τ c -periodic solution Xc (•) = ( Xc (•, 1), . . . , Xc (•, N )) satisfies the equation

- d dt Xc (t, i) = ǍT c0 (t, i) Xc (t, i) + Xc (t, i) Ǎc0 (t, i) + r =1 ǍT c (t, i) Xc (t, i) Ǎc (t, i) + N j=1 q ij Xc (t, j) -F T c (t, i)( r =1 B T c (t, i) Xc (t, i)B c (t, i) + R c (t, i)) Fc (t, i) (40) 
+ ČT c (t, i) Čc (t, i), t ∈ R + where Fc (t, i) = -( r =1 B T c (t, i) Xc (t, i)B c (t, i)+R c (t, i)) -1 (B T c0 (t, i) Xc (t, i)+ r =1 B T c (t, i) Xc (t, i) Ǎc (t, i)) = Fc (t, i) + R -1 c (t, i)L T c (t, i) with Fc (t, i) is computed as in (32).
Moreover, Xc (•) is the stabilizing solution of the GRDE (40) because the related closed-loop SLDE

dx(t) = ( Ǎc0 (t, η t ) + B c0 (t, η t ) Fc (t, η t ))x(t)dt + r =1 ( Ǎc (t, η t ) + B c (t, η t ) Fc (t, η t ))x(t)dw (t) (41) 
coincides with [START_REF] Li | On unified concepts of detectability and observability for continuous-time stochastic systems[END_REF], hence it is ESMS. Furthermore, Xc (•) is also the minimal positive semidefinite solution of the GRDE (40), because (ii) holds.

Consider the optimal control problem described by

dx(t) = ( Ǎc0 (t, η t )x(t) + B c0 (t, η t )u(t))dt + r =1 ( Ǎc (t, η t )x(t) + B c (t, η t )u(t))dw (t), (42) 
x(t 0 ) = x 0 , J ca (t 0 , x 0 ; u) = E   ∞ t0 x T (t) ČT c (t, η t ) Čc (t, η t )x(t) + u T (t)R c (t, η t )u(t) dt   (43) 
and the set of admissible controls U(t 0 , x 0 ). Applying Theorem 6.3.2 from [START_REF]Mathematical Methods in Robust Control of Linear Stochastic Systems[END_REF] we deduce that the minimal solution Xc (•) and the associated control

u (t) = Fc (t, η t )x(t; t 0 , x 0 ), (44) 
provides the solution for the above control problem. Now we are able to show that u (t) = 0 a.s., t ≥ t 0 , for any x 0 , π 0 as in [START_REF] Oliveira | Digital implementation of a magnetic suspension control system for laboratory experiments[END_REF]. To show this, we consider the control ǔ(t) = 0, t ≥ t 0 , and the related September 11, 2021
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x ; 0 , x 0 from the uniqueness of the solution of an IVP we deduce that x(t; t 0 , x 0 ) = x(t; t 0 , x 0 ) a.s., t ≥ t 0 , which implies that y(t; t 0 , x 0 ) = Č(t, η t )x(t; t 0 , x 0 ) = y(t; t 0 , x 0 ) = 0 a.s. t ≥ t 0 . Now it is easy to check that J ca (t 0 , x 0 ; ǔ) = 0 and J ca (t 0 , x 0 ; u ) = min u∈U (t0,x0) J ca (t 0 , x 0 ; u) ≤ J ca (t 0 , x 0 ; ǔ) = 0 Under (b) 1 , we deduce that u (t) = 0 a.s., t ≥ t 0 . If we denote x (t; t 0 , x 0 ) the corresponding solution of the IVP (42), then similarly as above we have x (t; t 0 , x 0 ) = x(t; t 0 , x 0 ) a.s., t ≥ t 0 . Finally, if we denote as x(t; t 0 , x 0 ) the solution of the IVP (41), by the definition of u (•) in (44) we have that x (t; t 0 , x 0 ) = x(t; t 0 , x 0 ) a.s., t ≥ t 0 . Recalling that (41) is ESMS and applying the obtained equalities

lim t→∞ E[|x(t; t 0 , x 0 )| 2 ] = lim t→∞ E[|x (t; t 0 , x 0 )| 2 ] = lim t→∞ E[| x(t; t 0 , x 0 )| 2 ] = 0.
This shows that the system (34) is exact detectable at t 0 ∈ R + . Particularly, it is exact detectable at t 0 = 0. Thus the proof ends. 

The discrete-time case.

We consider the following system of nonlinear backward discrete-time equations

X d (t, i) = r =0 A T d (t, i)E i (t, X d (t + 1))A d (t, i) - r =0 A T d (t, i)E i (t, X d (t + 1))B d (t, i) + L d (t, i) (45) 
• r =0 B T d (t, i)E i (t, X d (t + 1))B d (t, i) + R d (t, i) -1 • r =0 A T d (t, i)E i (t, X d (t + 1))B d (t, i) + L d (t, i) T + M d (t, i),
for all (t, i) ∈ Z + × N , where we denoted

E i (t, X d (t + 1)) = N j=1 p t (i, j)X d (t + 1, j). (46) 
In (45

) {A d (t, i)} t∈Z+ ⊂ R nx×nx , {B d (t, i)} t∈Z+ ⊂ R nx×nu , 0 ≤ ≤ r, {L d (t, i)} t∈Z+ ⊂ R nx×nu , {M d (t, i)} t∈Z+ ⊂ S nx , {R d (t, i)} t∈Z+ ⊂ S nu
, i ∈ N are matrix valued bounded sequences and the matrices P t with the elements p t (i, j) involved in (46) satisfy the assumption (H 1d ) (b). The equations of type (45) are named generalized discrete-time Riccati equations (GDTRE). They are closely related to the control problems described by a discrete-time linear controlled system of the form

x(t + 1) = (A d0 (t, θ t )x(t) + B d0 (t, θ t )u(t)) + r =1 w d (t) (A d (t, θ t )x(t) + B d (t, θ t )u(t)) , ( 47 
)
1 Periodicity is required neither in this passage nor in any other passage of the proof of (ii) =⇒ (i).
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0 ∈ + , x 0 x 0 ∈ x , J d (t 0 , x 0 ; u) = E ∞ t=t0 x u (t) u(t) T M d (t, θ t ) L d (t, θ t ) L T d (t, θ t ) R d (t, θ t ) x u (t) u(t) (48) 
where x u (t) is the solution of the initial value problem (47) corresponding to the input u(•).

We recall that a solution { Xd (t)} t∈Z+ , Xd (t) = ( Xd (t, 1), . . . , Xd (t, N )) is named stabilizing solution of the GDTRE (45) if the zero solution of the closed-loop system

x(t + 1) = [A d0 (t, θ t ) + B d0 (t, θ t ) Fd (t, θ t ) + r =1 w d (t)(A d (t, θ t ) + B d (t, θ t ) Fd (t, θ t ))]x(t) (49) 
is ESMS, where

Fd (t, i) ∆ = - r =0 B T d (t, i)E i (t, Xd (t + 1))B d (t, i) + R d (t, i) -1 • r =0 B T d (t, i)E i (t, Xd (t + 1))A d (t, i) + L T d (t, i) , (50) 
(t, i) ∈ Z + × N . Regarding the matrices M d (t, i), L d (t, i), R d (t, i) we make the assumptions R d (t, i) > 0 (51a) M d (t, i) -L d (t, i)R -1 d (t, i)L T d (t, i) ≥ 0, (51b) 
for all (t, i) ∈ Z + × N . We introduce the auxiliary system

x(t + 1) = [A d0 (t, θ t ) -B d0 (t, θ t )R -1 d (t, θ t )L T d (t, θ t ) + r =1 w d (t) • (A d (t, θ t ) -B d (t, θ t )R -1 d (t, θ t )L T d (t, θ t ))]x(t) (52) 
y(t) = Čd (t, θ t )x(t)
where (c) the system (47) is stochastic stabilizable.

Čd (t, i) = (M d (t, i) -L d (t, i)R -1 d (t, i)L T d (t, i))
Under these assumptions the following are equivalent:

(i) the auxiliary system (52) is exact detectable at t 0 = 0;

(ii) the GDTRE (45) has a unique positive semidefinite solution { Xd (t)} t∈Z which is τ d -periodic and stabilizing.

Proof. First, we prove the implication (i) → (ii). Applying Theorem 5.9 from [START_REF] Drăgan | Mathematical Methods in Robust Control of Discrete-Time Linear Stochastic Systems[END_REF], we deduce that the set of positive semidefinite and τ d -periodic solutions of the GDTRE (45) is not empty. Let Xd (t) = ( Xd (t, 1), Xd (t, 2), . . . , Xd (t, N )), t ∈ Z be such a solution. We show that Xd (•) is a stabilizing the magnetic field interaction between the coil core and a rail above the system, a naturally unstable configuration. The relevant variables are the gap between the coil core and the rail ζ, the speed ξ, the coil current ι, and voltage ν. The parameters and the mathematical model are the same as in the real world prototype developed in [START_REF] Oliveira | Digital implementation of a magnetic suspension control system for laboratory experiments[END_REF],

ζ(t) = ξ, ξ(t) = g - 24.9ι(t) 2 2am(1 + ζ(t)/a) 2 , Lι(t) = -R c ι(t) + ν(t), (69) 
where m = 2×10 -1 [kg] is the mass of the Maglev (with empty load compartment), a = 6.72×10 

 

We allow masses m 1 , m 2 and m 3 to be added / removed from the Maglev load compartment at each discrete time instant according to a Markov chain, in such a way that θ = 1 corresponds to the device with no mass in the compartment (total mass m), and θ = i, i = 2, 3, 4, describes the case with total mass m + i-1 j=1 m j . We assume m i = 2 × 10 -2 , i = 1, 2, 3. Linearization of (69) around the same operational point yields matrices A i , B i , i = 2, 3, 4 for each mass configuration above. Regarding the transition probabilities, for any i, j = 1, 2, 3, 4, we assume that the probability of changing from state i to any other state j = i is one-tenth of the probability of permanence at i. It is also assumed that the position sensor is subject to failures, with 10% chance of changing from state "operational" to "malfunction" and vice-versa. In order to capture this, we consider an augmented Markov chain with N = {1, . . . , 8}. θ ∈ {1, . . . , 4} means that the sensor is operational while θ ∈ {5, . . . , 8} indicates malfunction, and P = P 2 ⊗ P 1 where The system matrices are not affected by the sensor condition, therefore we define in connection to the matrices of the controlled system (47):

P 1 =    
A d0 (0, 1) = A n , B d0 (0, 1) = B n ; for each i = 2, 3, 4, A d0 (0, i) = A i , B d0 (0, i) = B i ; A d0 (0, 5) = A n , B d0 (0, 5) = B n ; for each i = 6, 7, 8, A d0 (0, i) = A i-4 , B d0 (0, i -4) = B i .
Regarding the output matrices of (2b), we have: and C d1 (0, i) = 0, i ∈ N . We can make the example more realistic by including matrices A d1 and B d1 in the models (1a) and (47):

C d0 (0, i) = 1 0 0 0 0 1 , i = 1, . . . , 4 
A d1 (0, i) = 0.1 √ i -1(A d0 (0, i) -A d0 (0, 1)), B d1 (0, i) = 0.1 √ i -1(B d0 (0, i) -B d0 (0, 1 
)), i ∈ N ; one physical interpretation is that each mass m i is a random variable with Gaussian distribution, and the standard deviation of the total mass is in direct relationship with the number of masses in the compartment. Moreover, some parameters of a real world maglev vary in periods of 24hs, following changes in the environment such as temperature, which affects the coil. Here, as we shall handle sort time intervals only, we introduce variation in the coil inductance with a short period of 10 -2 s as a way of incorporating periodicity in the experiments: L(t) = L + 0.1 L sin((2π/ τ d )(t -1)), t = 0, 1, . . . , 9, with τ d = 10. For each time instant 1 ≤ t ≤ 9 we follow the same ideas as above to obtain the matrices A dr (t, i), B dr (t, i), r = 0, 1 and i ∈ N ; the remaining matrices are time-invariant.

As weighting matrices in (48), we consider

M d (t, i) = C d (t, i)C d (t, i) , R d (t, i) = 1 and L d (t, i) = 0, i ∈ N , t ≥ 0.
This completes the description of model ( 2) and ( 47)-(48).

Detectability and PBH criterion

We have implemented the PBH type criterion of Proposition 2.1 (b) for the system described above. For example, for the largest eigenvalue λ max (T c ) ≈ 2.759 we give here the eigenvector For this eigenvector, 9 t=0 Γ d (t)T d (t, 0)Y ≈ 1.209 × 10 -2 so that the equality in (13b) does not hold. We have computed all eigenvectors Y of T c and checked that they do not satisfy the condition in (13b), which implies that the Maglev is exact detectable at t 0 = 0.

Y ∈ S N n d , Y = (Y 1 , Y 2 , . . . , Y N ), where Y i ≈   1 
For comparison purposes, let us present a non-detectable version of the Maglev. We replace the parameter α = 1/10 in P 2 with α = 0, meaning that either the position sensor is operational at all times (when 1 ≤ θ(0) ≤ 4) or the position sensor is malfunctioning at all times (when 5 ≤ θ(0) ≤ 8) a.s., and in this case, only the coil current is observed via the output variable y . The structure of matrices A d and A n are similar in the sense that their elements (3, 1) and (3, 2) are null, which means that the position does not affect the current as time evolves, according to the linearized Maglev model we are working with. Then, when 5 ≤ θ(0) ≤ 8, the Maglev position can diverge from the operation point without being detected via the output process, suggesting that this configuration is not detectable. In fact, the PBH test leads to the same operator T c as above (it is irrespective of the output) and, now, we have more zeros elements in Γ d providing for the eigenvector given in (70): 

Detectability and the generalized Riccati equation (45)

Next we shall look at the generalized Riccati equation (45) and the characterization given in Theorem 4.2 in terms of detectability of the auxiliary system (52). First, note that the PBH tests we have performed for (2) are valid for (52) because (2b) and the output equation in (52) are the same in our setup, as we have set M d (t, i) = C d (t, i)C d (t, i) and L d (t, i) = 0, i ∈ N , t ≥ 0, thus leading to Čd (t, i) = C d (t, i). Moreover, Monte Carlo simulation of system (49) indicates that the system is ESMS and the Riccati solution is stabilizing. This is in perfect harmony with what is expected from Theorem 4.2 (ii) for an exact-detectable system. Now, let us see how the Riccati behaves for the non-detectable version of the Maglev where α = 1/10 is replaced with α = 0. We have obtained two different periodic solutions for the Riccati. In one of the solutions, matrices X d (1, 1) and X d [START_REF] Drăgan | Exact detectability of discrete-time and continuous-time linear stochastic systems with periodic coefficients: A unified approach[END_REF][START_REF] Damm | Rational Matrix Equations in Stochastic Control[END_REF] are the same as above; in the second solution we have found We have also checked that the former solution is stabilizing, while the later is not stabilizing. This confirms what is expected from Theorem 4.2 (ii): the Riccati presents at least two solutions and one of them is not stabilizing.

Conclusion

This paper has discussed the ESMS analysis of time-varying linear stochastic systems. For this the established relation between exact detectability notion and ESMS notion has been considered. PBH criteria for exact detectability have also been obtained. Then, using stochastic stabilizing assumption the existence and uniqueness solution for generalized Riccati equations has been tested by using exact detectability. The developed from this paper has been done in both continuous and discretetime case. Finally, a magnetic suspension system is given to illustrate the feasibility and effectiveness of the obtained theoretic results.

Proposition 2 .

 2 1. (a) Under the Assumption (H 1c ) the following are equivalent:

Theorem 3 . 1 .

 31 Assume(a) the Assumption (H 1c ) is fulfilled;

Remark 4 . 1 .

 41 As we already remarked, the implication (ii) =⇒ (i) of Theorem 4.1, remains valid when we dismiss the periodicity condition in (a). It remains as an open problem the proof of the implication (i) =⇒ (ii) without the periodicity property of the coefficients.

, 21 C 1 , i = 5 ,

 2115 September 11, 2021 17/d0 (0, i) = 0 0 . . . , 8,

9 t=0Γ

 9 .661 × 10 -4 7.661 × 10 -3 0 7.661 × 10 -3 3.534 × 10 -d (t)T d (t, 0)Y ≈ 1.209 × 10 -2

9 t=0

 9 Γ d (t)T d (t, 0)Y = 0, implying that the Maglev is not exactly detectable.

× 10 6 - 1 .

 61 674 × 10 5 -7.724 × 10 6 -1.6744 × 10 5 2.628 × 10 4   .

X d ( 1

 1 

  I r and {θ t } t∈Z+ is a nonhomogeneous Markov chain, taking values in the set N , having the transition probability matrix P t = {p t (i, j)|(i, j) ∈ N ×N }. This means that p t (i, j) = P{θ t+1 = j|θ t = i} for all t ∈ Z + , (i, j) ∈ N ×N . The initial probability distributions of the Markov chain {θ t } t∈Z+ will be denoted π θ P{θ 0 = i}, 1 ≤ i ≤ N . We assume that {w d (t)} t∈Z+ , {θ t } t∈Z+ are independent stochastic processes defined on a given probability space (Ω, F, P). We shall write A d (t, i) and C d (t, i) instead of A d (t, θ t ) and C d (t, θ t ), respectively, whenever θ t = i ∈ N .

	), {w d (t)} t∈Z+ , w d (t) = (w d1 (t) w d2 (t) . . . w dr (t)) T is a sequence of independent random vectors with zero mean and covariance E[w d (t)w T d (t)] = 0 . This means that π θ 0 = (π θ 0 (1), π θ 0 (2), . . . , π θ 0 (N )), where π θ 0 (i) =

  1/2 .

	Now we are in position to state the discrete-time counterpart of the Theorem 4.1:
	Theorem 4.2. Assume:
	(a) the coefficients of the GDTRE (45) are periodic sequences with period τ d ≥ 1;
	(b) the matrices M d (t, i), L d (t, i), R d (t, i) satisfy the sign constraints (51);

  -3 [m] is a constant, and R c =[START_REF] Abou-Kandil | Matrix Riccati Equations in Control and Systems Theory[END_REF] [Ω] and L = 0.52 [H] are the coil resistance and inductance, respectively. A gap ζ 0 = 4.5 × 10 -3 is set as an operational point and the equations above allow to find the corresponding values of operational voltage, current and speed. Deviations around the operational values of ζ 0 , ν 0 and ι 0 at time t ≥ 0 constitute the vector state x(t), and deviations around the operational voltage correspond to the control variable u(t). The model is then linearized around x = 0 and discretized with a sample period of ∆ t = 10 -3 [s], leading to the "nominal" linear system

	where				
	A n ≈	  1.0008745 1.0002914 × 10 -3 -1.677 × 10 -5 1.7491 1.0008745 -0.03334 0 0 0.962454	  and B n ≈	 	-1.07852 × 10 -8 -3.226 × 10 -5 1.8869 × 10 -3

x(t + 1) = A n x(t) + B n u(t)
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d the GDTRE (45) satisfied by Xd (•) may be rewritten as:

for all (t, i) ∈ Z + × N . One sees that (53) is the GDTLE of type (25) associated to the system

where

, for all (t, i) ∈ Z + × N . Since (54a) coincides with (49) the fact that Xd (•) is the stabilizing solution of the GDTRE (45) one obtains applying Theorem 3.2 in the case of the system (54) and of the GDTLE (53).

To this end, we have to check that the system (54) is exact detectable at t 0 = 0. Proceeding as in the proof of Proposition 6.2 from [START_REF] Drăgan | Exact detectability and exact observability of discrete-time linear stochastic systems with periodic coefficients[END_REF], one shows that the system (54) is exact detectable at t 0 = 0 because, based on (i) from the statement, the system (52) is exact detectable at t 0 = 0. Finally, applying Corollary 5.2 from [START_REF] Drăgan | Mathematical Methods in Robust Control of Discrete-Time Linear Stochastic Systems[END_REF] in the case of GDTRE (45) we may conclude that (ii) is true if (i) holds. Further we prove the implication (ii) =⇒ (i). Let t 0 ∈ Z + be fixed. According to the Definition 2.2 specialized for the case of the auxiliary system (52) we have to show that

for any (x 0 , π θ 0 ) for which

By direct calculation, one may show that the unique positive semidefinite, τ d -periodic and stabilizing solution Xd (•) of the GRDE (45) satisfies the modified GDTRE:

We set
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To check if Xd (•) is the stabilizing solution of the GDTRE (57) we consider the closed-loop system

Based on (60) we deduce that the system (61) coincides with the system (49). Hence, the system (61) is ESMS, which allows us to deduce that Xd (•) is the unique positive semidefinite τ d -periodic and stabilizing solution of the GDTRE (57). The GDTRE (57) is involved in the solution of the LQ optimization problem described by the controlled system

the cost functional

and the class of admissible controls U d (t 0 , x 0 ) consisting from all stochastic processes u = {u(t)} t≥t0 such that for each t , u(t) are measurable with respect to σ-algebra generated by (w d (s), θ s ), 0 ≤ s ≤ t and additionally the sum from the right hand side from (63) is convergent. Let û(t) = 0 a.s. t ≥ t 0 and x(t; t 0 , x 0 ) be the solution of the IVP (62) determined by the control û(•). From ( 52), ( 58) and ( 62) together with the uniqueness of the solution of an IVP we infer that x(t; t 0 , x 0 ) = x(t; t 0 , x 0 ) a.s. for all t ≥ t 0 . Employing (56) we obtain that

This allows us to conclude that Jd (t 0 , x 0 ; û) = 0, which means that û ∈ U d (t 0 , x 0 ). Further, applying Theorem 6.1 from [START_REF] Drăgan | Mathematical Methods in Robust Control of Discrete-Time Linear Stochastic Systems[END_REF] we deduce that the solution of the optimal control problem described by the controlled system (62), the performance criterion (63) and the set of admissible controls U d (t 0 , x 0 ) is given by the control

where x * (t; t 0 , x 0 ) is the solution of the closed-loop system obtained when (64) is substituted in (62).

On the other hand, we have

Using (51a), ( 63) and (65) we deduce that

Substituting (66) in (62) we obtain that x * (•; t 0 , x 0 ) is a solution of (52). From the uniqueness of the solution of an IVP we may deduce that

Plugging ( 64) in (62) we see that x * (•; t 0 , x 0 ) is a solution of the system (61). Hence,

because Xd (•) is the stabilizing solution of the GDTRE (57). Thus, from (67), (68) we deduce that (55) is satisfied. So, we have proven that the system (52) is exact detectable at t 0 for an arbitrary t 0 ∈ Z + . Particularly, it is exact detectable at t 0 = 0. Thus the proof ends.
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We consider a magnetic suspension system, which we refer to as the Maglev for short. In the configuration considered here, the Maglev is composed of an actuator to control the voltage applied in a coil, a load compartment, and sensors for current and position. The system is sustained in the air by Vasile Dragan: funding acquisition, investigation and writing-original, Eduardo Fontoura Costa: funding acquisition, investigation and writingoriginal, Ioan-Lucian Popa: funding acquisition, investigation and writingoriginal, Samir Aberkane: funding acquisition, investigation and writingoriginal.
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