
HAL Id: hal-03340868
https://hal.science/hal-03340868v1

Submitted on 10 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Polynomial chaos expansion for sensitivity analysis of
model output with dependent inputs

Thierry A. Mara, William E Becker

To cite this version:
Thierry A. Mara, William E Becker. Polynomial chaos expansion for sensitivity analysis of model
output with dependent inputs. Reliability Engineering and System Safety, 2021, 214, pp.107795.
�10.1016/j.ress.2021.107795�. �hal-03340868�

https://hal.science/hal-03340868v1
https://hal.archives-ouvertes.fr


Reliability Engineering and System Safety 214 (2021) 107795

A
0

Contents lists available at ScienceDirect

Reliability Engineering and System Safety

journal homepage: www.elsevier.com/locate/ress

Polynomial chaos expansion for sensitivity analysis of model output with
dependent inputs
Thierry A. Mara, William E. Becker ∗

European Commission, Joint Research Centre, 21027 Ispra (VA), Italy

A R T I C L E I N F O

Keywords:
Rosenblatt transformation
Nataf transformation
Mara–Tarantola transformation
Polynomial chaos expansion
Statistical calibration
Posterior sensitivity analysis

A B S T R A C T

In this paper, we discuss the sensitivity analysis of model response when the uncertain model inputs are
not independent of one other. In this case, two different kinds of sensitivity indices can be evaluated: (i)
the sensitivity indices that account for the dependence/correlation of an input or group of inputs with the
remainder and (ii) the sensitivity indices that do not account for this dependence. We argue that this distinction
applies to any global sensitivity measure. In the present work, we focus on the estimation of variance-
based sensitivity indices which are based on the second-order moment of the model response of interest. In
particular, we derive new strategies and new computationally efficient methods to assess them, which rely on
the polynomial chaos expansion. Several numerical exercises are carried out to demonstrate the performance
of the new methods, including a sensitivity analysis of a drainage model posterior to its statistical calibration.
1. Introduction

Uncertainty and sensitivity analysis are essential ingredients of
modelling [1]. In a decision-making process, uncertainty analysis aims
to verify whether the decision made (according to the model responses)
is robust to different sources of uncertainty. If the results are not robust,
sensitivity analysis can be used to identify which sources of uncer-
tainty are primarily responsible for the model output uncertainty [2].
Then, where feasible, further research can be conducted to improve
knowledge (and reduce the uncertainty) of the most influential inputs.
This refinement of knowledge is intended to yield a clearer decision.
The importance of uncertainty and sensitivity analysis in the decision-
making process is recognised by governmental organisations such as
the European Commission, which has included them in their ‘‘Better
Regulation Guidelines’’ [3]. These guidelines are the basis for all policy
making at the European level.

Sensitivity analysis has received much attention during the two last
decades in all disciplines that use and develop computer models, in
particular since the seminal work of Ilya M. Sobol’ [4] (who established
the theoretical basis of the widely-used variance-based sensitivity indices,
otherwise known as the Sobol’ indices), and the promotion of variance-
based sensitivity analysis by the European Commission’s Joint Research
Centre [1,5,6]. Sobol’ proved that, provided that the model inputs
(i.e. the sources of uncertainty in computer models) are independent
of each other, there is a unique functional ANOVA (ANalysis Of VAri-
ance) decomposition of the model response of interest with respect
to the uncertain inputs. This functional representation decomposes

∗ Corresponding author.
E-mail addresses: thierry.mara@ec.europa.eu (T.A. Mara), william.becker@bluefoxdata.eu (W.E. Becker).

the model response variance into a sum of partial variances which
are contributions of each input individually, and further contributions
due to interactions with other inputs. With such a decomposition, it
is straightforward to measure the relative importance of the input
variables in terms of their contributions to the model output variance.

Following the work of Sobol’, many numerical methods have been
proposed to estimate the Sobol’ indices when model inputs are inde-
pendent of each other. Monte Carlo methods are amongst the first
estimators proposed in the literature [4,7,8]. They employ several
(quasi) Monte Carlo samples to estimate Sobol’ indices by following
the pick-freeze strategy [9]. Another very popular class of methods
are based on the so-called Fourier Amplitude Sensitivity Test [10–
13]. Introduced in the 70s, they rely on Parseval–Plancherel theorem
to estimate first- and total-order Sobol’ indices. The most efficient
methods (in most circumstances) are those based on surrogate modelling
of the computer model responses [14–17]. A surrogate model (other-
wise known as a ‘emulator’ or ‘metamodel’) is a statistical model that
mimics the input–output relationship of the original model, but at a
greatly reduced computational cost. It is constructed by running the
original model a modest number of times for different input values and
obtaining corresponding output values. The surrogate model is then
constructed to fit this input–output data as well as possible by using
a variety of possible approaches. Global sensitivity analysis (which
typically requires a large number of model runs) can then be performed
using Monte Carlo estimators on the emulator rather than the real
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model, resulting in significant computational savings. In the present
article, we consider the Polynomial Chaos Expansion (PCE) method.
PCE is classified amongst the spectral approaches ([15,16,18] among
others), and can be used as an approximation of the input–output
relationship (inferred from a given input–output sample) by casting the
model response onto orthogonal polynomials. The Parseval–Plancherel
theorem is then invoked to compute Sobol’ indices, which means that
the variance decomposition and the Sobol’ indices are analytically ob-
tained from the PCE coefficients without running the PCE as a surrogate
model.

The large majority of sensitivity analysis approaches and estima-
tion procedures assume that model inputs are independent from one
another. However in reality, input variables may be correlated with
one another (i.e. linear dependence), or more generally dependent on
ach other, which can also imply nonlinear relationships. Performing
lobal sensitivity analysis of computer model responses with dependent
nputs is challenging. The difficulty stems from the non-uniqueness of
he ANOVA decomposition and the definition of useful importance mea-
ures (see [19]). In the last decade, several mathematical frameworks
nd associated numerical methods have been proposed to address this
ssue [19–31].

Li et al. (2010) introduced the covariance-based sensitivity in-
ices [21]. These are split into two kinds of sensitivity indices, namely,
he structural and correlative sensitivity indices. They can be inferred
fter a functional input–output relationship (i.e. metamodel) is ob-
ained. Caniou and Sudret (2013) use PCE as metamodel, identified
y assuming first that the input variables are independent of each
ther [31–33]. Then, the covariance analysis (that the authors called
NCOVA) is performed by considering the possible correlation between

he variables. Typically ANCOVA is a two-step approach. Chastaing
t al. (2012) attempt to define an ANOVA representation (like the one
f Sobol’ in which the summands are orthogonal) of the functional
nput–output relationship in the case of correlated input variables [25].
hus, with such a representation, it is straightforward to infer variance-
ased sensitivity indices. They find that this is possible only for a few
oint probability distribution function. Therefore, the application of
his approach is limited. In [22], a Monte Carlo estimation procedure
as proposed for estimating sensitivity indices of correlated variables,
lthough this requires knowledge of the joint distribution, and the
omputational cost is quite high. This was later extended to a metamod-
lling approach in [34], but in both cases there is no decomposition
f sensitivity into contributions due to correlations, and independent
ontributions.

Owen and Prieur (2017) propose to use the Shapley measure [35]
s a sensitivity index (called Shapley effect) when the input variables
re dependent on each other [28] (see also [36]). The nice properties
f the Shapley effect are that: (i) there is only one sensitivity index for
ach input, (ii) it takes into account the contribution of the input to the
utput variance in terms of correlation and interactions, (iii) mutual
ontributions are equally shared over the input variables that interact
nd that are correlated, and (iv) the overall Shapley effects sum to
ne. The main obstacles to the use of the Shapley effects for sensitivity
nalysis are the computational burden and their accurate estimation.

The authors in [20] observe that, when the input variables are
orrelated, the model response variance might be captured by only a
ew inputs; the remainder forming a subset of spurious inputs whose
ontribution to the response variance is embedded in the contribution
f the former. This led the authors to introduce two types of variance-
ased sensitivity indices: one that accounts for the correlation of each
nput variable with the others (called full sensitivity indices in [23])

and one that does not (called independent sensitivity indices). The im-
portance measures mentioned in previous paragraph do not decompose
the contribution of each variable into correlated and non-correlated
parts with the exception of the ANCOVA approach. Indeed, it is shown
in [37] that it is possible to infer the correlated and non-correlated
2

variance-based sensitivity indices with the ANCOVA approach. In our t
opinion, this decomposition is important in understanding whether an
input is contributing to the model directly or through a correlation
with another variable. Therefore, this paper will discuss approaches to
computing the full and independent indices.

We note that this distinction is not completely new in statistics: for
example, the partial correlation coefficient is essentially a version of the
Pearson correlation coefficient which does not account for the mutual
effect due to correlations with the other variables [38]. However,
neither the partial correlation coefficient nor the sensitivity indices
of [20] are ‘‘model free’’, because they assume linearity of the model
response, and a linear dependence structure (i.e. correlated inputs).
A first step beyond these limitations was made in [23], in which a
polynomial chaos expansion method was used to extend the approach
of [20] to nonlinear model responses, but still with limitations on
the dependence structure between the input variables. Subsequently,
a second step was made in [19] to handle any (given) dependence
structure: sampling-based strategies (i.e. Monte Carlo estimators) were
introduced to evaluate variance-based sensitivity index of any individ-
ual inputs or groups of inputs. In [30], the FAST method was adapted
to compute the (full and independent) first-order and total sensitivity
indices. The concept of full and independent sensitivity measures has
also been extended to the elementary effects method of Morris in [29].

In the present paper, we make a further advance in global sensitivity
analysis with dependent inputs, by extending the PCE-based method
of [23] to a broader class of dependence structure (as in [19] and [30]).
We focus on the estimation of the first- and total-order Sobol’ indices,
although any Sobol’ index can be estimated in theory (at no extra cost).
Incidentally, the number of model runs needed for accurate identifica-
tion of sparse PCEs with the algorithm of [18] has been shown to be
only weakly dependent on the dimensionality of the input space. This
is not the case with the aforementioned Monte Carlo methods and the
FAST method. Additionally, we show that the concept of distinguishing
between full and independent sensitivity measures can be extended to
any sensitivity index, although a full exploration of these new indices
is left for future work.

The paper is organised as follows, in Section 2 we recall the defini-
tions of the full and independent first-order and total sensitivity indices,
and discuss the usage and implications of these indices in some detail.
We also define the full and independent moment-independent sensitivity
measures. Then, in Section 3 we recall three possible sampling tech-
niques to generate dependent random samples from independent ones
(and vice-versa). In Section 4, we describe the algorithm to compute
the sensitivity indices of interest with PCE. Section 5 is devoted to
numerical test cases and applications. Section 6 concludes.

2. Sensitivity indices for dependent inputs

2.1. Variance-based sensitivity indices

Let us consider a model response 𝑦, which is a function of a set of
input variables 𝒙 = (𝑥1,… , 𝑥𝑑 ) = (𝒙1,𝒙2) where 𝒙1 and 𝒙2 are two com-
plementary subsets. Let us assume that the inputs are random variables
such that, 𝒙 ∼ 𝑝𝒙(𝒙), where 𝑝𝒙 is a joint probability density function. If
𝒙1 and 𝒙2 are independent of each other, then 𝑝𝒙(𝒙) = 𝑝𝒙1 (𝒙1)𝑝𝒙2 (𝒙2).
More generally (where 𝒙1 and 𝒙2 may be dependent on one another),
we have the following relationships 𝑝𝒙(𝒙) = 𝑝𝒙1 (𝒙1)𝑝𝒙2|𝒙1 (𝒙2|𝒙1) and
𝑝𝒙(𝒙) = 𝑝𝒙2 (𝒙2)𝑝𝒙1|𝒙2 (𝒙1|𝒙2), where 𝑝𝒙𝑖|𝒙𝑗 is a conditional pdf. If we now
set 𝒙̄1 = 𝒙1|𝒙2 and 𝒙̄2 = 𝒙2|𝒙1, it can be inferred that the vectors 𝒙̄1
nd 𝒙2 (resp. 𝒙1 and 𝒙̄2) are independent of each other since we have
𝒙(𝒙) = 𝑝𝒙1 (𝒙1)𝑝𝒙̄2 (𝒙̄2) = 𝑝𝒙̄1 (𝒙̄1)𝑝𝒙2 (𝒙2).

It is convenient to work with the pairs (𝒙̄1,𝒙2) and (𝒙1, 𝒙̄2) instead of
𝒙1,𝒙2), because the former contain independent subsets. Indeed, there
s redundant information in the pair (𝒙1,𝒙2) due to the dependence of
1 on 𝒙2. We can now apply the well-established tools of sensitivity
nalysis with independent inputs, but instead of analysing the sensi-

ivity of 𝑦 with respect to (𝒙1,𝒙2) we can analyse its sensitivity with
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respect to (𝒙̄1,𝒙2) or (𝒙1, 𝒙̄2). The notion of working with (𝒙̄1,𝒙2) and
(𝒙1, 𝒙̄2), rather than (𝒙1,𝒙2) directly, forms the basis of the sensitivity
analysis approach in this work, although this does imply that ordering
of variables (i.e. whether to use (𝒙̄1,𝒙2) or (𝒙1, 𝒙̄2)) becomes important.
This is discussed further in Section 4.2.

Following this idea, the resulting sensitivity indices can be inter-
preted as follows: the sensitivity index of 𝒙1 is the full sensitivity index
of 𝒙1 (taking into account dependence with the other input variables
within 𝒙2) whereas the sensitivity index of 𝒙̄2 is the independent sensi-
ivity index of 𝒙2, which does not account for dependence with other
nput variables (see [19,23,30]).

Within the context of variance-based sensitivity analysis, the follow-
ng sensitivity indices can be defined,

𝑆𝒙1 =
V
[

E
[

𝑦|𝒙1
]]

V [𝑦]
, (1)

𝑆𝑇 𝑖𝑛𝑑𝒙1
=

E
[

V
[

𝑦|𝒙2
]]

V [𝑦]
, (2)

𝑆 𝑖𝑛𝑑𝒙1
=

V
[

E
[

𝑦|𝒙̄1
]]

V [𝑦]
, (3)

𝑆𝑇𝒙1 =
E
[

V
[

𝑦|𝒙̄2
]]

V [𝑦]
, (4)

where V [⋅] is the variance operator, E [⋅] is the mathematical expecta-
tion, and V [⋅|⋅] and E [⋅|⋅] are the conditional variance and expectation
respectively. 𝑆𝒙1 and 𝑆𝑇𝒙1 are respectively the full first- and total-
order sensitivity indices while 𝑆 𝑖𝑛𝑑𝒙1

and 𝑆𝑇 𝑖𝑛𝑑𝒙1
are respectively the

independent first- and total-order sensitivity indices.
These formulas can be interpreted as follows, V [𝑦] = V𝒙 [𝑦] is the

total variance of 𝑦 when 𝒙 ∼ 𝑝𝒙. On the one hand, V
[

E
[

𝑦|𝒙1
]]

=
V𝒙1

[

E𝒙2|𝒙1
[

𝑦|𝒙1
]

]

in Eq. (1) (resp. E𝒙2|𝒙̄2

[

V𝒙1
[

𝑦|𝒙1
]

]

in Eq. (4)) is the
partial variance of 𝑦 due to 𝒙1 alone (resp. alone and by interaction with
𝒙̄2) when the latter is left free to vary w.r.t. its marginal density, that is
𝒙1 ∼ 𝑝𝒙1 , while 𝒙2 is constrained to vary conditionally onto 𝒙1, i.e. 𝒙̄2 ∼
𝑝𝒙2|𝒙1 . Therefore, V𝒙1

[

E𝒙2|𝒙1
[

𝑦|𝒙1
]

]

(resp. E𝒙2|𝒙1

[

V𝒙1
[

𝑦|𝒙1
]

]

) carries
away the mutual contribution to the total variance due to the depen-
dence of 𝒙1 on 𝒙2. On the other hand, V

[

E
[

𝑦|𝒙̄1
]]

= V𝒙1|𝒙2

[

E𝒙2
[

𝑦|𝒙1
]

]

in Eq. (3) (resp. the numerator in Eq. (2)) is the partial variance of
𝑦 due to 𝒙̄1 alone (resp. alone and by interaction with 𝒙2) when this
time 𝒙1 is constrained to vary conditionally onto 𝒙2, i.e. 𝒙̄1 ∼ 𝑝𝒙1|𝒙2
while 𝒙2 ∼ 𝑝𝒙2 . Thus, these partial variances do not contain the mutual
contribution due to the dependence of 𝒙1 on 𝒙2.

The first two sensitivity indices (Eqs. (1)–(2)) are the classical
definitions of the Sobol’ indices as highlighted in [22], while the last
two are only defined for dependent input variables. This implies that in
the ‘‘classical’’ Sobol’ indices, the first-order sensitivity index accounts
for correlations with other variables, while the total-order index does
not (see also [37]). The overall indices (1)–(4) are scaled within [0, 1]
and we have 𝑆𝒙1 ≤ 𝑆𝑇𝒙1 , 𝑆

𝑖𝑛𝑑
𝒙1

≤ 𝑆𝑇 𝑖𝑛𝑑𝒙1
(see for instance [30]).

The full first-order sensitivity index 𝑆𝒙1 measures the amount of
variance of 𝑦 due to 𝒙1 and its dependence with 𝒙2 but does not include
the interactions of 𝒙1 with 𝒙̄2. The full total sensitivity index 𝑆𝑇𝒙1 takes
into account both dependence and interaction. The independent first-
order sensitivity index 𝑆𝑖𝑛𝑑𝒙1

measures the contribution of 𝒙1 by ignoring
its correlations with 𝒙2 and interactions with 𝒙̄2 while 𝑆𝑇 𝑖𝑛𝑑𝒙1

accounts
for interactions and ignores correlations. Consider an input 𝑥𝑖, which
ontributes to the model response variance only because of its strong
ependence to the other inputs. In that case, we shall have 𝑆𝑇𝑥𝑖 ≥ 0

and 𝑆𝑇 𝑖𝑛𝑑𝑥𝑖
= 0.

It is worth underlining here that interactions in the case of dependent
inputs (following the partitioning of variables used in this paper) do
not have the same interpretation as in the case of independent ones.
While in the dependent case interactions concern (𝒙1, 𝒙̄2) and (𝒙̄1,𝒙2), in
he independent case they are related to the original variables (𝒙1,𝒙2).
his has the following consequence: a non-interacting input/output
3

elationship with respect to (𝒙1,𝒙2) can turn out to have an interacting i
relationship with respect to (𝒙1, 𝒙̄2) or (𝒙̄1,𝒙2). This complicates some-
hat the analysis, but recall that we use the pairs (𝒙1, 𝒙̄2) and (𝒙̄1,𝒙2)
ecause they are independent variables, which allows the use of the
ariance decomposition of 𝑦 in the Sobol’ sense [4]. However, in the
ependent case, note that such a decomposition is not unique as one
an derive it with respect to either (𝒙1, 𝒙̄2) or (𝒙̄1,𝒙2).

To illustrate, let us consider a model response which is supposedly
function of two dependent random vectors (𝒙1,𝒙2), but actually only
function of 𝒙1, say, 𝑦 = 𝑓 (𝒙1). By computing the sensitivity indices
.r.t. (𝒙1, 𝒙̄2), one will find 𝑆𝑇𝒙1 = 𝑆𝒙1 = 1 and 𝑆𝑇 𝑖𝑛𝑑𝒙2

= 𝑆𝑖𝑛𝑑𝒙2
= 0.

his leads to the conclusion that, because of the dependence structure
etween (𝒙1,𝒙2), all the information (i.e. variance) of 𝑦 is explained by
he subset 𝒙1. By further computing the sensitivity indices w.r.t. (𝒙̄1,𝒙2),
ne will get 𝑆𝑇 𝑖𝑛𝑑𝒙1

≥ 𝑆𝑖𝑛𝑑𝒙1
> 0 and 𝑆𝑇𝒙2 ≥ 𝑆𝒙2 > 0 which indicates

hat because of its dependence with 𝒙1, 𝒙2 also has an influence on the
odel response. It can be inferred that the value of 𝒙2 cannot be fixed

t an arbitrary value because this has an impact on the conditional pdf
f 𝒙1 (to do so, one should have 𝑆𝑇𝒙2 = 𝑆𝑇 𝑖𝑛𝑑𝒙2

= 0, according to [29]).
inally, it can be concluded that 𝒙2 is a spurious vector of inputs only
elevant because of its dependence with 𝒙1 (see [20]). However, it
annot be concluded that the original model structure (w.r.t. (𝒙1,𝒙2))
s of the form 𝑦 = 𝑓 (𝒙1). Indeed, it is only when (𝒙1,𝒙2) is a vector
f independent random variables that the original model structure can
e revealed because the variance decomposition in the Sobol’ sense
.r.t. (𝒙1,𝒙2) is unique. Nevertheless, with this result one can conclude

hat a surrogate model with only 𝒙1 ∼ 𝑝𝒙1 can be built that could be
ery accurate as compared to the original model, thus contributing to
model reduction objective.

The authors of [23] propose to estimate Eqs. (1)–(4) with poly-
omial chaos expansions after decorrelating the input sample. The
dvantage of the proposed approach is its computational efficiency.
ndeed, only one input sample of a relatively modest size (albeit a
unction of the model complexity) is sufficient to estimate all the first-
rder and total sensitivity indices of each individual input variable.
he problem is that decorrelation does not necessarily mean indepen-
ence. Actually, with the decorrelation procedure of [23] recalled in
ection 3.3, independence is ensured only for a particular form of the
ependence structure, which is explained later in Section 3.3. In Sec-
ion 3.2 we extend the method to correlation structures represented by
Gaussian copula [22,39] and in Section 3.1 to the general dependence

tructure represented by the Rosenblatt transform. In Section 4, we then
xtend the PCE method to the case of dependent variables represented
y one of these dependence structures.

.2. Moment-independent sensitivity indices

In the following, we show how the concept of full and independent
ensitivity indices can also be applied to moment-independent mea-
ures. At the end of this section, we also comment on how this can
pply in the more general case.

In the case of independent inputs, variance-based sensitivity indices
ndicate whether a model output 𝑦 is a function of an input (or subset
f inputs) in the form of a functional relationship like 𝑦 = 𝑓 (𝒙1,𝒙2).
pecifically, they examine the contribution to the variance of the model
utput distribution 𝑝𝑦. If a relationship of the form 𝑦 = 𝑓 (𝒙2) is
iscovered, then 𝒙1 is deemed irrelevant. Arguably a more natural way

to infer that 𝑦 does not depend on 𝒙1 is to prove that 𝑝𝑦|𝒙1 = 𝑝𝑦. This has
led to the definition of the so-called moment-independent sensitivity
measures defined as [40],

𝛿𝒙1 = 1
2
E𝒙1

[

∫R
|

|

|

𝑝𝑦 − 𝑝𝑦|𝒙1
|

|

|

d𝑦
]

∈ [0, 1] (5)

his measure is equal to half of the average of the differences between
he unconditional pdf of 𝑦, denoted 𝑝𝑦, and the conditional pdf of

given 𝒙1, denoted 𝑝𝑦|𝒙1 . Finding 𝛿𝒙1 = 0 allows us to conclude
hat 𝑦 is not dependent on 𝒙1, therefore 𝒙1 can be regarded as non-

nfluential. We note that to evaluate 𝑦, 𝒙1 is drawn from 𝑝𝒙1 while
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the complementary input subset 𝒙2 is sampled from 𝑝𝒙2|𝒙1 . In the
independent case discussed here we naturally have 𝑝𝒙2|𝒙1 = 𝑝𝒙2 .

In the case of dependent input variables, the functional relationship
etween 𝑦 and 𝒙 can take one of the following forms, 𝑦 = 𝑓 (𝒙1, 𝒙̄2) or
= 𝑓 (𝒙̄1,𝒙2). If one shows that 𝑦 = 𝑓 (𝒙1) (i.e. 𝑆𝒙1 = 1 ⇔ 𝑆𝑇 𝑖𝑛𝑑𝒙2

=
), then it can be concluded that 𝒙2 is a subset of spurious inputs.
dditionally, if 𝑆𝑇𝒙2 = 0 then it can be inferred that 𝒙2 can be fixed
ithout any impact on the model response. However, such a distinction

annot be made with the 𝛿-importance measure as defined in Eq. (5)
ecause the latter actually assesses the importance of 𝒙1 by accounting
or its dependence with 𝒙2. This remark leads us to introduce the
ollowing complementary 𝛿-importance measure that does not account
or the dependence of 𝒙1 to 𝒙2,

𝑖𝑛𝑑
𝒙1

= 1
2
E𝒙̄1

[

∫R
|

|

|

𝑝𝑦 − 𝑝𝑦|𝒙̄1
|

|

|

d𝑦
]

(6)

where 𝒙̄1 ∼ 𝑝𝒙1|𝒙2 while 𝒙2 ∼ 𝑝𝒙2 . Finding 𝛿𝑖𝑛𝑑𝒙1
= 0 indicates that 𝒙1 is

a spurious subset of inputs which impacts the model response only via
its dependence with 𝒙2 (if any exists) while if 𝛿𝒙1 = 𝛿𝑖𝑛𝑑𝒙1

= 0, it can be
additionally concluded that 𝒙1 can be fixed without affecting the model
response.

The brute-force estimates of 𝛿𝒙1 and 𝛿𝑖𝑛𝑑𝒙1
subtly differ. In both

cases, 𝑝𝑦 is obtained after sampling 𝒙 ∼ 𝑝𝒙 with a (quasi) Monte
Carlo technique, running the model for each draw and collecting the
model response 𝑦 = 𝑓 (𝒙). Subsequently, 𝑝𝑦 can be estimated with an
appropriate method (such as the kernel density estimator of [41]).
To estimate 𝑝𝑦|𝒙1 one has to draw one random value of 𝒙1 ∼ 𝑝𝒙1 ,
then generate a (quasi) Monte Carlo sample of 𝒙̄2 ∼ 𝑝𝒙2|𝒙1 and infer
from 𝒙̄2 the sample of 𝒙2, run the model and get the model responses
before finally estimating 𝑝𝑦|𝒙1 for the drawn value of 𝒙1. This process
is repeated several times for different values of 𝒙1 ∼ 𝑝𝒙1 . In the end,
one obtains one single estimate of 𝑝𝑦 and several estimates of 𝑝𝑦|𝒙1 for
different values of 𝒙1 sampled from 𝑝𝒙1 . These can be used to compute
𝛿𝒙1 .

On the contrary, to compute 𝛿𝑖𝑛𝑑𝒙1
, one has to get several estimates

of 𝑝𝑦|𝒙̄1 for different values of 𝒙̄1 sampled from 𝑝𝒙1|𝒙2 . We proceed by
first generating a (quasi) Monte Carlo sample of 𝒙2 ∼ 𝑝𝒙2 , then we
deduce the draws of 𝒙̄1 sampled from 𝑝𝒙1|𝒙2 , and therefore the sample
of 𝒙1. Finally 𝑝𝑦|𝒙̄1 is deduced after running the model and getting the
response vector. This process is repeated several times for different
values of 𝒙̄1. This tricky sampling procedure is further explained in
Section 3.

The present extension of Borgonovo’s moment-independent measure
is given here to show how the underlying approaches in this paper
can be generalised outside of variance-based measures. Indeed, we
could conceivably apply the same principles to any global sensitivity
measures defined in the following general way in [42],

𝛾𝒙1 = E𝒙1
[

𝛥(𝑦, 𝑦|𝒙1)
]

(7)

where 𝛥(⋅, ⋅) is a dissimilarity measure between two random vari-
ables [43]. For example, in the case of dependent inputs one can
introduce the complementary sensitivity index that does not account
for the effect of 𝒙1 due to its dependence on 𝒙2, that is,

𝛾 𝑖𝑛𝑑𝒙1
= E𝒙1|𝒙2

[

𝛥(𝑦, 𝑦|𝒙1)
]

(8)

In the remainder of this paper, however, we focus on variance-based
sensitivity analysis and leave investigation of other measures to future
work.

3. Generating dependent and independent samples

In the previous section it was explained that a sensitivity analysis of
the system of dependent variables 𝑓 (𝒙1,𝒙2) can be achieved by instead
considering the independent pair 𝒙1, 𝒙̄2. Modellers need samples of
(𝒙1,𝒙2) to run their model but they need samples of 𝒙̄1 to compute 𝑆𝑖𝑛𝑑𝒙1
4

and 𝑆𝑇𝒙1 (see Eqs. (3)–(4). The key challenge in the present approach f
to estimate the set of variance-based sensitivity indices is to obtain
samples of the conditional and unconditional variables (e.g. 𝒙̄1 and 𝒙1)
respectively. In this section, we present several possibilities to do so,
with different properties and requirements.

3.1. The Rosenblatt transformation

Let 𝒖 = (𝒖1, 𝒖2) be the vector of independent random variables
stemming from the isoprobabilistic transformation,
{

𝒖1 = 𝐹𝒙1 (𝒙1)
𝒖2 = 𝐹𝒙2|𝒙1 (𝒙2|𝒙1)

(9)

where 𝐹𝒙1 is the cumulative density function (cdf) of 𝒙1 and 𝐹𝒙2|𝒙1 is
the conditional cdf of 𝒙2. We note that 𝒖 is uniformly distributed over
the unit hypercube [0, 1]𝑑 . We also notice that Eq. (9) is not unique as
one can swap the subscripts 1 and 2. Eq. (9) is called the Rosenblatt
transform (RT, [44]) of 𝒙 and allows independent random variables to
be obtained from dependent ones provided that the conditional cdfs are
known.

Propagating the input uncertainty through the model response re-
quires the generation of (quasi or pseudo) random draws of 𝒙. This can
be achieved with one of the inverse RT as follows,
{

𝒙1 = 𝐹−1
𝒙1

(𝒖1)
𝒙2 = 𝐹−1

𝒙2|𝒙1
(𝒖2|𝒖1)

(10)

which requires that the cdfs be invertible. This is performed in practice
by first generating a sample of 𝒖 with a (quasi) random generator such
as the LP𝜏 sequences of [45]. Then, this sample is transformed into a
sample of 𝒙 using Eq. (10). From Eq. (9), 𝒙̄2 = 𝐹−1

𝒙̄2
(𝒖2), therefore it is

straightforward to generate 𝒙̄2 independently of 𝒙1 as the former only
depends on 𝒖2. Therefore, fixing the value of 𝒖2 is equivalent to fixing
𝒙̄2.

3.2. The Nataf transformation

The Rosenblatt transformation requires knowledge of the condi-
tional cdfs, which might not always be the case in practice. When the
uncertainty of 𝒙 is characterised by a set of marginal cdfs {𝐹𝑥1 ,… , 𝐹𝑥𝑑 }
and a product–moment correlation matrix 𝑹𝒙, Nataf transformation is
more suitable to generate random samples of 𝒙 (NT, [46]). We note
however that the Nataf transformation is equivalent to the Rosenblatt
transform with a Gaussian copula [47]. Given 𝑹𝒛 and 𝒛 ∼  (0, 𝑰𝑑 ) the
teps of the NT are,

⎧

⎪

⎨

⎪

⎩

Find the upper Cholesky matrix 𝑼 ∶ 𝑹𝒛 = 𝑼𝑇𝑼
𝒛𝑐 = 𝒛𝑼
𝑥𝑗 = 𝐹−1

𝒙𝑗

(

𝛷
(

𝑧𝑐𝑗
))

,∀𝑗 = 1,… , 𝑑
(11)

The crux of this algorithm is to choose 𝑹𝒛 so that the product–moment
correlation matrix of 𝒙, in fine, is the one desired (i.e. 𝑹𝒙). For some
special distributions, the link between 𝑹𝒛 and 𝑹𝒙 are well-known
(see [48]). Generally, an iterative procedure can be required to tune
𝑹𝒛. We note that Eq. (11) is equivalent to the procedure of Iman &
Conover [49] when 𝑹𝒙 is a rank correlation matrix. In that case, there
is no need to tune 𝑹𝒛 as the latter exactly equals 𝑹𝒙.

In the NT transformation, two complementary independent subsets
𝒛1 and 𝒛2 such that 𝒛 = (𝒛1, 𝒛2), produce two correlated subsets (𝒙1,𝒙2).
t is worth noticing that because 𝑼 is a upper triangular matrix, the
nformation in 𝒛2 propagates only through 𝒙2. Therefore, 𝒙̄2 is related
o 𝒛2 which means that to fix 𝒙̄2 one simply needs to fix 𝒛2. As for RT,
T is not unique as the elements in the subsets 𝒙1 and 𝒙2 can be chosen
rbitrarily. Freedom in the definition of the subsets implies columns
nd rows permutation of 𝑹𝒙. Of particular interest are subsets of the
orm (𝑥 ,𝒙 ) in order to compute individual sensitivity indices.
𝑗 −𝑗
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3.3. The transformation of Mara and Tarantola

In [23], a non-linear Gram–Schmidt-like transformation is intro-
duced to obtain independent variables 𝑣1, 𝑣2, … , 𝑣𝑑 from dependent
ones. This transformation (hereafter referred to as ‘‘MT’’) reads as
follows,

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑣1 = 𝑥𝑖1
𝑣2 = 𝑥𝑖2 − E

[(

𝑥𝑖2 − E
[

𝑥𝑖2
])

|𝑣1
]

𝑣3 = 𝑥𝑖3 −
∑2
𝑗=1 E

[(

𝑥𝑖3 − E
[

𝑥𝑖3
])

|𝑣𝑗
]

⋮

𝑣𝑑 = 𝑥𝑖𝑑 −
∑𝑑−1
𝑗=1 E

[(

𝑥𝑖𝑑 − E
[

𝑥𝑖𝑑
])

|𝑣𝑗
]

(12)

and assumes an additive dependence structure between the 𝑥-variables
of the form,

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑥𝑖1 = 𝑣1
𝑥𝑖2 = 𝑣2 + 𝑓𝑖2 ,1(𝑣1)

𝑥𝑖3 = 𝑣3 + 𝑓𝑖3 ,1(𝑣1) + 𝑓𝑖3 ,2(𝑣2)

⋮

𝑥𝑖𝑑 = 𝑣𝑑 +
𝑑−1
∑

𝑗=1
𝑓𝑖𝑑 ,𝑗 (𝑣𝑗 )

(13)

where ∫R 𝑓𝑖𝑗 ,𝑘(𝑣𝑘)𝑝𝑣𝑘d𝑣𝑘 = 0, which ensures that the set of functions
{𝑓𝑖𝑗 ,1,… , 𝑓𝑖𝑗 ,𝑗−1} in the 𝑗th row of Eq. (13) are orthogonal (according
to [4]). We note that each equation in Eq. (13) is related to the
generalised additive model representation [50]. We also note that 𝒗 =
(𝒗1, 𝒗2) produces 𝒙 = (𝒙1,𝒙2) with the information in 𝒗2 only found in
𝒙2 and not in 𝒙1. Therefore, fixing 𝒗2 implies fixing 𝒙̄2.

This transformation was introduced to overcome NT that only deals
with linear pairwise dependencies between variables. In effect, MT
tackles nonlinear pairwise dependencies. The transformation of [23]
in Eq. (12) is particularly suited to dealing with given data. In that
case, the orthogonal functions in Eq. (13) can be estimated with an
iterative univariate regression procedure [50–53], among others). Note
that a less restrictive assumption than (13) can be adopted (see [23]),
but then a more sophisticated approach is required to infer the in-
dependent vector 𝒗. Importantly, the MT transformation requires no
knowledge of cdfs, either marginal or conditional. In that sense, it is the
most generally-applicable transformation of the three described here
(RT being the most generally-theoretical), albeit containing the strong
assumption in (13). The transformation is also sensitive to the ordering
of the variables — for this reason, variables are circularly reordered
in calculating sensitivity indices (see Section 4.2). Specifically, circular
permutation is chosen to make sure that one obtains a single estimate
of first- and total-order sensitivity indices of each variable, both ac-
counting for and ignoring the mutual dependent variance contributions.
Finally, we note that as with any estimation procedure, its accuracy will
be sensitive to the sample size — this may be checked by monitoring
convergence as the sample size is incrementally increased, and/or by
bootstrapping over the full sample.

4. Polynomial chaos expansion

4.1. The case of independent variables

In [15], the author demonstrated that it was straightforward to
estimate the variance-based sensitivity indices from a polynomial chaos
expansion. Since then, PCE for global sensitivity analysis has received
much attention in the community of modellers [16,54–58]. PCE is a
spectral representation of any square-integrable function 𝑓 (𝒙), when
the inputs are independent random variables. A PCE representation is
written,

𝑓 (𝒙) =
∑

𝑎𝜶𝛹𝜶(𝒙) (14)
5

𝜶⊂N𝑑
where 𝜶 = 𝛼1𝛼2 … 𝛼𝑑 ∈ N𝑑 is a 𝑑-dimensional index and the 𝑎𝜶 are
the PCE coefficients. The 𝛹𝜶 are the multidimensional polynomial basis
elements of degree |𝜶| =

∑𝑑
𝑖=1 𝛼𝑖. Because 𝒙 is a vector of indepen-

dent random variables, 𝛹𝜶 is obtained by tensor product of univariate
polynomials 𝜓𝛼𝑖 (𝑥𝑖). Depending on the marginal probability distribu-
tion function of 𝑥𝑖, 𝜓𝛼𝑖 belongs to different families of orthonormal
polynomials (such as Legendre polynomials for uniform distribution,
Hermite polynomials for normal distribution, Laguerre polynomials for
exponential distributions, and so on — see [59]).

Given the PCE coefficients, and knowing that the inputs are in-
dependent, the variance-based sensitivity indices can be computed as
follows [15],

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑆𝑥𝑗 =

∑

𝛼𝑗>0 𝑎
2
0…𝛼𝑗…0

∑

𝜶⊂N𝑑 𝑎2𝜶 − 𝑎20…0

𝑆𝑇𝑥𝑗 =

∑

𝜶⊂N𝑑∶𝛼𝑗>0 𝑎
2
𝜶

∑

𝜶⊂N𝑑 𝑎2𝜶 − 𝑎20…0

∀𝑖 ∈ (1,… , 𝑑) (15)

To estimate the coefficients 𝑎𝜶 , we use the Bayesian sparse polyno-
mial chaos expansion approach of [18], which builds sparse PCEs in a
Bayesian framework with the help of the Kashyap information criterion
for model selection [60]. This means that any statistic computed with
this approach is assigned a credible interval, which is crucial to assess
its significance level. There are other alternatives proposed in the
literature to build sparse PCEs, notably [16].

4.2. The case of dependent variables

In the case of dependent inputs, PCEs must be constructed with
respect to one of the vectors of independent variables discussed in
Section 3. If RT is used, then we consider 𝒖 in conjunction with
the shifted-Legendre polynomials, if NT is employed then we con-
sider the vector 𝒛 and Hermite polynomials while with MT, 𝒗 is
considered in association with the orthogonal polynomials derived
with the Gram–Schmidt procedure. In the sequel, we denote by 𝒙̄ the
vector of independent variables obtained by one the aforementioned
transformations.

Now, suppose that 𝒙̄ is obtained by transforming (𝑥1,… , 𝑥𝑑 ). Then,
the sensitivity indices of 𝑥̄1 represent the full sensitivity indices of
𝑥1 which account for its dependencies with the other variables (see
Section 2). The sensitivity indices of 𝑥̄2 represent the sensitivity indices
of 𝑥2 which account for its dependencies with the other variables
except 𝑥1 (see [23]). The sensitivity indices of 𝑥̄𝑑 are interpreted as the
independent sensitivity indices of 𝑥𝑑 , and the full sensitivity indices
of (𝑥1, 𝑥2) are those of (𝑥̄1, 𝑥̄2). In the same way, the independent
sensitivity indices of (𝑥𝑑−1, 𝑥𝑑 ) are those of (𝑥̄𝑑−1, 𝑥̄𝑑 ).

However, as underlined previously, the different transformations to
enerate 𝒙̄ are not unique. The order of the variables in the vector to
e transformed determines which sensitivity indices can be computed
ith the identified PCE. To compute the overall set of full sensitivity

ndices (𝑆𝑥𝑗 , 𝑆𝑇𝑥𝑗 ) and independent sensitivity indices (𝑆 𝑖𝑛𝑑𝑥𝑗 , 𝑆𝑇
𝑖𝑛𝑑
𝑥𝑗

),
or all 𝑗 = 1,… , 𝑑, all the transformations obtained by circularly re-
rdering the input vector (𝑥1,… , 𝑥𝑑 ) must be considered. This implies
transformations and subsequently the identification of 𝑑 sets of PCE

oefficients. Nonetheless, with PCE, only one Monte Carlo sample of
he input variables 𝒙 is needed to assess any variance-based sensitivity
ndices. Hence, the number of model calls 𝑁 can still be reasonable. In
any cases, 𝑁 < 1 000 is sufficient to obtain an accurate estimation

f the sensitivity indices but this depends on the effective dimension of
he model and the degree of smoothness of 𝑓 (𝒙). This makes PCE-based
ensitivity analysis a compelling approach compared with existing
ethods. The algorithm to compute the overall (𝑆𝑥𝑗 , 𝑆𝑇𝑥𝑗 , 𝑆

𝑖𝑛𝑑
𝑥𝑗
, 𝑆𝑇 𝑖𝑛𝑑𝑥𝑗

),
or all 𝑗 = 1,… , 𝑑, is given in Appendix.

We also note that if the objective is to estimate higher-order in-
eraction effects, circularly reordering the variables is not sufficient,
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and other permutations would have to be considered. However, for
many cases the estimation of first and total-order sensitivity indices is
sufficient, and higher-order effects are left to future work.

Depending on the transformation used, PCEs are built upon 𝒙̄ which
is either 𝒖, or 𝒛 or 𝒗. If 𝒖 is chosen, then PCEs are built with the
shifted-Legendre polynomials, if it is 𝒛 then Hermite polynomials will
be used, while if the random variables are arbitrarily distributed (like
in the case of 𝒗), then a Gram–Schmidt orthogonalisation procedure is
used to obtain the subset of orthogonal polynomials. But as highlighted
in [61], working with the transformed independent variables might
pose problems of convergence of PCEs. In that case, subsequent individ-
ual transformation of the 𝑥̄-variables can help to overcome this issue.
n the numerical exercises Section 5, we will indicate which further
ransformation has been used if so.

.3. Computational issues

Eq. (15) indicates that the Sobol’ indices are computed directly
rom the PCE coefficients. Thus, there is no need to run the PCE
s a surrogate model to estimate variance-based sensitivity indices.
his is the reason why variance-based sensitivity analysis with PCE
an be classified among the spectral methods along with the Fourier
mplitude sensitivity test [10,13]. Therefore, the challenge with PCE-
ased sensitivity analysis is the PCE coefficient estimation. In practice,
t is expected that a sparse PCE often suffices to be a good proxy of the
nput–output relationship, that is,

(𝒙) =
∑

𝜶∈
𝑎𝜶𝛹𝜶(𝒙̄) + 𝜖 (16)

where  is a subset of multi-indexes 𝜶 ⊂ N𝑑 of maximal polynomial
degree 𝑝 = |𝜶| and level of interaction 𝑞, 𝒙̄ the vector of independent
ariables and 𝜖 the approximation error.

We employ the stepwise regression algorithm of [18], derived in a
ayesian framework, to identify the best PCE. Let 𝑿 be an input sample
f 𝒙 ∼ 𝑝𝒙 of size 𝑁 ×𝑑 and 𝒀 the associated vector of model responses,
ayesian sparse PCE starts by obtaining the standardised vector 𝒚 from
he original vector 𝒀 . We denote by 𝑿̄ one of the possible independent

input samples obtained from the transformation of 𝑿 with either RT,
NT or MT. From the dataset

(

𝑿̄, 𝒚
)

, the best sparse PCE is obtained as
follows,

1. Initialisation: Set initial polynomial degree 𝑝 = 4 and interaction
level 𝑞 = 2 (or 𝑝 = 2, 𝑞 = 1 if 𝑑 high). Create the initial subset of
candidates 𝑐 = {𝜶 ∈ N𝑑 ∶ 𝑝 ≤ 𝑝, 𝑞 ≤ 𝑞}.

2. Define 𝑃 = Card
(

𝑐
)

, denote by (𝜶1,… ,𝜶𝑃 ) the subset of
multi-indexes, set 𝑚 = 1,  = 𝜶1, and 𝐾𝐼𝐶𝑀𝐿𝐸

𝑚 = +∞.
3. Model selection: Set 𝑚 = 𝑚+1,  = (,𝜶𝑚). Compute the current

PCE coefficients and 𝐾𝐼𝐶𝑀𝐿𝐸
𝑚 . If 𝐾𝐼𝐶𝑀𝐿𝐸

𝑚 > 𝐾𝐼𝐶𝑀𝐿𝐸
𝑚−1 remove

𝜶𝑚 from . Resume until 𝑚 = 𝑃 .
4. Enrichment or Stop: Update 𝑝, 𝑞. If 𝑝 < (𝑝−1) and 𝑞 < 𝑞 Stop.

Otherwise, set 𝑝 = 𝑝+2 and/or 𝑞 = 𝑞+1, create a new subset 𝑐
with elements of degree within [𝑝, 𝑝] and level of interaction
within [𝑞, 𝑞] and resume from 2.

The PCE coefficients are estimated at step 3 by assuming 𝜖 ∼
 (0, 𝜎2𝜖 ), yielding

𝒂̂ ∼ 
(

𝒂̂𝑀𝐿𝐸
 , ̂𝑪𝑎𝑎

)

(17)

with,

𝒂̂𝑀𝐿𝐸
 =

(

𝜳 𝑇
𝜳

)−1 𝜳 𝑇
𝒚 (18)

̂𝑪𝑎𝑎 =
(

𝜎̂𝑀𝐿𝐸
𝜀

)2 (𝜳 𝑇
𝜳

)−1 (19)

and the posterior pdf of the error variance is the following inverse
Gamma distribution,

𝜎̂2𝜀 ∼ IG
⎛

⎜

⎜

𝑁 + 2
2

,

(

𝒚 − 𝜳𝒂̂𝑀𝐿𝐸


)𝑇 (

𝒚 − 𝜳𝒂̂𝑀𝐿𝐸


)

2

⎞

⎟

⎟

(20)
6

⎝ ⎠
whose mode is,

(

𝜎̂𝑀𝐿𝐸
𝜀

)2 =

(

𝒚 − 𝜳𝒂̂𝑀𝐿𝐸


)𝑇 (

𝒚 − 𝜳𝒂̂𝑀𝐿𝐸


)

𝑁
. (21)

The estimated vector of coefficients 𝒂̂𝑀𝐿𝐸
 is known as the maximum

likelihood estimate (MLE) which differs from [18] who identified the
maximum a posteriori estimate since Gaussian prior was assigned to the
PCE coefficients. The error vector 𝜺 = 𝒚 − 𝜳𝒂̂𝑀𝐿𝐸

 can be compared
a posteriori with  (0,

(

𝜎̂𝑀𝐿𝐸
𝜖

)2) to ensure that the initial assumption
(Gaussian likelihood) is reasonable. It is worth mentioning here that
assuming Gaussian likelihood might provide non-robust estimates for
some problems (e.g. when 𝒚 contains outliers).

In step 3, the current sparse PCE (associated with ) is judged
better than the previous one provided that its model selection criterion
(namely, 𝐾𝐼𝐶𝑀𝐿𝐸

𝑚 ) is smaller than the previous one (i.e. 𝐾𝐼𝐶𝑀𝐿𝐸
𝑚−1 ).

The Kashyap information criterion (KIC) at the 𝑚th iteration is defined
as follows

𝐾𝐼𝐶𝑀𝐿𝐸
𝑚 = 𝑁 ln

(

𝜎̂𝑀𝐿𝐸
𝜀

)2 − 𝑃𝑚 ln(2𝜋) − ln |
(

𝜎̂𝑀𝐿𝐸
𝜀

)2 (𝜳 𝑇
𝜳

)−1
| (22)

where 𝑃𝑚 = Card (), | ⋅ | stands for determinant.
With the previous algorithm, the final maximal polynomial degree

𝑝 and level of interaction 𝑞 are automatically identified. Suppose
that, at iteration 𝑚 − 1, elements of polynomial degree within [𝑝, 𝑝 + 2]
and level of interaction within [𝑞, 𝑞 + 1] has been added to the subset
of multi-indexes (step 4) but at iteration 𝑚 none of these elements has
been kept during the stepwise regression. Then, at the end of the 𝑚th
iteration, one comes up with a subset of maximal polynomial degree
𝑝 = 𝑝 and level of interaction 𝑞 = 𝑞. In this case, the iteration stop
because it is unlikely that higher-order elements would provide better
sparse PCE. Otherwise, the enrichment procedure should go further.

As an illustration, suppose that at step 4, the current subset of multi-
indexes for a problem with 𝑑 = 4 variables is the subset  below. We
note that  is of polynomial degree 𝑝 = 4 and level interaction 𝑞 = 3.
Hence, at step 4,  is enriched with elements of degrees 5 and 6 (see
𝑐).

 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0000
1000
0010
2000
0020
1010
1110
2010
1020
2020

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

, 𝑐 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

3110
1310
1130
4010
2210
2030
3020
1220
1040
4020
2220
2040

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

To circumvent the curse of dimensionality, we proceed as follows

• Find in  all elements of degree within [𝑝 − 1, 𝑝] or level
interaction 𝑞 (e.g. 1110)

• Make copies of each selected element by increasing by 2 the value
(i.e. polynomial degree) of each index except if the index of one
variable in  is always 0 (e.g. 1110 has provided 3110; 1310; 1130
and not 1112 as the fourth index is always zero).

Another feature of Bayesian sparse PCE is that the joint probability
density function of all quantities are estimated (see Eqs. (17)–(21)).
Therefore, the sensitivity indices (15) can be computed with uncer-
tainty range. This is useful to assess significant differences between
PCE-based computed statistics.

5. Numerical examples

5.1. PCE-RT on non-rectangular domain

We illustrate the use of polynomial chaos expansion in conjunc-
tion with the Rosenblatt transformation (method denoted PCE-RT) by
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considering a ten dimensional problem with an inequality constraint.
The input vector 𝒙 = (𝑥1,… , 𝑥𝑑 ) ∈ [0, 1]𝑑 is uniformly distributed

ithin the non-rectangular domain defined by the constraint ∑𝑑
𝑗=1 𝑥𝑗 <

. Sampling a joint pdf of this nature can be a challenging issue if
ne uses the basic acceptance–rejection sampling proposed in [62].
his is because the joint pdf of 𝒙 is: 𝑝𝒙(𝒙) = 𝑑! if ∑𝑑

𝑗=1 𝑥𝑗 < 1,
therwise 𝑝𝒙(𝒙) = 0. This means that the probability of drawing a good
andidate (that satisfies the constraint) by randomly drawing from the
nit hypercube is 1

𝑑! which is very low for 𝑑 = 10 as discussed in the
resent example. On the contrary, knowing the conditional cdfs one
an efficiently generate random samples w.r.t. the joint pdf by using
q. (10) (inverse RT). It can be shown that the inverse conditional cdfs
n this case are,

⎧

⎪

⎨

⎪

⎩

𝑥𝑖1 = 1 − (1 − 𝑢1)
1
𝑑

𝑥𝑖𝑘 =
(

1 − (1 − 𝑢𝑘)
1

𝑑−𝑘+1

)

∏𝑘−1
𝑗=1

(

1 − 𝑢𝑗
)

1
𝑑−𝑗+1

(23)

In the present work, this sample is generated with the LP𝜏 sequences
f [45]. A sample size of 𝑁 = 1 024 is chosen.

Now, let us consider the following model response: 𝑦 =
𝑑
𝑗=1 𝑐𝑗 log(𝑥𝑗 ). We set 𝑑 = 10, and 𝑐𝑗 = 0 for all 𝑗 < 7, and for all
≥ 7 𝑐𝑗 = 1. This implies that the model structurally only depends

n (𝑥7,… , 𝑥10). It is straightforward to see that, as a function of the
-variables, the model response is of the form,

=
𝑑
∑

𝑗=1
𝑓𝑗 (𝑢𝑗 ).

ndeed, by replacing Eq. (23) in the model response 𝑦, it can be inferred
hat,

𝑗 (𝑢𝑗 ) = log
[(

1 −
(

1 − 𝑢𝑗
)

1
𝑑−𝑗+1

)𝑐𝑗
⋅
(

1 − 𝑢𝑗
)

∑𝑑
𝑘=𝑗+1

𝑐𝑘
𝑑−𝑗+1

]

Because the 𝑢-variables are independent of each other it can be
oncluded that the model is additive w.r.t. to 𝒖. To verify this, the
obol’ indices of the 𝑢-variables are estimated with the PCE approach.
CEs are built upon the 𝑢-variables with the shifted-Legendre orthogo-
al polynomials. The results are gathered in Table 1 for two different
T transformations. They have been estimated with fair accuracy.
xamining Table 1, despite the estimation error, one can easily verify
hat ∑10

𝑗=1 𝑆̂𝑢𝑗 = 1, whatever the transformation ordering.
Recall that the interpretation of the sensitivity indices of the 𝑢-

variables as those of the 𝑥-variables depends on how the former have
been obtained from the RT (Eq. (9)). In Table 1, we have reported
the first-order sensitivity indices of the 𝑢-variables for two different
transformations. In the first one (row #2), the sample of 𝒖 has been
computed after transforming the sample of 𝒙 set in the canonical order
𝑥1,… , 𝑥10). Consequently, 𝑆̂𝑢1 = 𝑆̂𝑥1 , which is the full first-order effect
f 𝑥1 that accounts for its dependence with all other variables. We note
hat 𝑆̂𝑥1 only represents 3% of the total variance. The sensitivity index
̂𝑢2 is of 𝑥2|𝑥1, which is the first-order effect of 𝑥1 which accounts for

its dependence with all other variables except 𝑥1 (in [23] the authors
denote it 𝑆̂2−1). The interpretation of the other indices follows the same
reasoning until the interpretation of 𝑆̂𝑢10 , where the latter is simply
the independent first-order effect of 𝑥10, namely 𝑆̂𝑖𝑛𝑑𝑥10 . We note that the
independent contribution of 𝑥10 to the total variance is much higher
than the full contribution of 𝑥1. This is explained by the structural
independence of 𝑦 to 𝑥1. Although the model does not structurally
depend on 𝑥1, because of its dependence with the other variables, 𝑥1
still has a substantial impact on the model response. By fixing the
value of 𝑥1, the uncertainty of the other variables would be impacted,
which would marginally affect the variance of the model response
(a small reduction of 3%). However, because the model is additive,
fixing (𝑥1,… , 𝑥6) would lead to a significant reduction of the response
variance (i.e. ∑6

𝑗=1 𝑆̂𝑢𝑗 = 40%).
The second RT is applied to (𝑥7,… , 𝑥10, 𝑥1,… , 𝑥6) (Table 1, row #3).

Because 𝑦 has a structural dependence only on the first four variables
7

a

Table 1
Estimated first-order sensitivity indices of the RT-variables with the PCE-RT method.

RT ordering 𝑆̂𝑢1 𝑆̂𝑢2 𝑆̂𝑢3 𝑆̂𝑢4 𝑆̂𝑢5 𝑆̂𝑢6 𝑆̂𝑢7 𝑆̂𝑢8 𝑆̂𝑢9 𝑆̂𝑢10
(𝑥1 ,… , 𝑥10) 0.03 0.04 0.05 0.06 0.09 0.13 0.13 0.13 0.14 0.20
(95% CI×e−3) (2) (2) (3) (3) (3) (4) (4) (4) (4) (5)

(𝑥7 ,… , 𝑥10 , 𝑥1 ,… , 𝑥6) 0.21 0.23 0.26 0.30 0.00 0.00 0.00 0.00 0.00 0.00
(95% CI×e−3) (1) (1) (1) (2) [-] [-] [-] [-] [-] [-]

(𝑥7, 𝑥8, 𝑥9, 𝑥10), we should find 𝑆(𝑢1 ,…,𝑢4) = 𝑆(𝑥7 ,…,𝑥10) = 1. This is
confirmed by our results. Indeed, we first note that 𝑆̂𝑢𝑗 = 0 for 𝑗 > 4.
This is explained by the fact that, with the current RT, the sensitivity
indices of these 𝑢-variables (for 𝑗 > 4) are those of (𝑥1,… , 𝑥6) without
accounting for their dependencies with (𝑥7,… , 𝑥10). Since the former
only impact 𝑦 via their dependencies with the latter, their independent
contributions are null. We also note that the first-order sensitivity
indices of (𝑥7,… , 𝑥10) sum-up to one as expected.

Finally, the fact that we have found that 𝑆(𝑥7 ,…,𝑥10) = 1 and
𝑆 𝑖𝑛𝑑(𝑥1 ,…,𝑥6)

= 0, does not allow us to infer that the model response is struc-
turally independent of (𝑥1,… , 𝑥6). As previously discussed in Section 2,
the non-uniqueness of the ANOVA decomposition (in the Sobol’ sense)
precludes us making this conclusion. However, this finding is still useful
in that it gives information relevant to a model reduction setting. In
effect, we can conclude that all the information in the model response
is contained in the input subset (𝑥7, 𝑥8, 𝑥9, 𝑥10). Therefore, prioritisation
should be given to the accurate assessment of these variables in order
to better estimate the model response.

5.2. PCE-NT on the Ishigami function

As a second example and to demonstrate the PCE-NT approach, let
us consider the Ishigami function, which is defined as follows,

𝑓 (𝒙) = sin 𝑥1 + 7 sin2 𝑥2 + 0.1𝑥43 sin 𝑥1 (24)

where the input variables are uniformly distributed over [−𝜋, 𝜋], with
a linear correlation between 𝑥1 and 𝑥3. We denote 𝜌13 the moment–
product correlation coefficient. The Sobol’ indices of this problem
for linear correlations varying over (−1, 1) were investigated in [22]
and [30]. In [22] only 𝑆𝑥𝑗 and 𝑆𝑇 𝑖𝑛𝑑𝑥𝑗

were estimated with a Monte
arlo approach. The overall first-order and total-order sensitivity in-
ices were assessed in [30] with the Fourier amplitude sensitivity test
the approach was called EFAST-INT). For the sake of comparison, PCE-
T is employed to estimate (𝑆𝑥𝑗 , 𝑆𝑇

𝑖𝑛𝑑
𝑥𝑗
, 𝑆𝑖𝑛𝑑𝑥𝑗 , 𝑆𝑇𝑥𝑗 ), for all 𝑗 = 1, 2, 3.

CE-NT relies on transformation Eq. (11) which requires a vector of in-
ependent standard normal variables 𝒛, due to the choice of a Gaussian
opula. The latter is obtained from the isoprobabilistic transformation
f the vector 𝒖 uniformly distributed over [0, 1]𝑑 , i.e. 𝑧𝑗 = 𝛷−1(𝑢𝑗 ).

A sample of 𝒖 is drawn with the LP𝜏 sequences. PCEs are built
pon the 𝑢-variables with shifted Legendre polynomials because PCEs
uilt upon the 𝑧-variables with Hermite polynomials faced convergence
ssues. This is due to the fact that 𝒖 is uniformly distributed like
he original model input 𝒙 (albeit the correlation structure) while the
-variables are non-linear transformations of the 𝑢-variables. Such a
on-linear transformation can complicate the relationship between 𝑦
nd 𝒛 as compared with 𝒖. This issue has been highlighted by other
uthors [63].

The estimated sensitivity indices are depicted in Fig. 1. Note that
e do not report the estimation errors as the indices are estimated
ccurately. They are in good accordance with those obtained in [30]
ith the EFAST-INT method. Nevertheless, while with EFAST-INT an
verall number of 3 × 8 192 function calls were necessary to obtain
ccurate estimates of the Sobol’ indices, with PCE-NT only 𝑁 = 1 024
unction calls were performed. This demonstrates the efficiency of the
ayesian sparse polynomial chaos expansion proposed by [18].

The results indicate that 𝑥2 is not correlated to the other two inputs

s its full and independent sensitivity indices are equal. We can also



Reliability Engineering and System Safety 214 (2021) 107795T.A. Mara and W.E. Becker
Fig. 1. First-order (left) and total-order (right) sensitivity indices versus the correlation coefficient (𝜌13) between 𝑥1 and 𝑥3 in the Ishigami function. See text for comments and
explanations.
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guess that 𝑥2 does not interact with the other two inputs, because its
total and first-order indices are also the same. As far as 𝑥1 and 𝑥3 are
concerned we note that, when the correlation coefficient is zero, the
full and independent sensitivity indices are equal. When the correlation
coefficient is close to ±1, the independent sensitivity indices (both first
and total order) of 𝑥1 and 𝑥3 are null because all the information in
𝑓 (𝒙) is captured by only one of the pairs (𝑥1, 𝑥2) or (𝑥2, 𝑥3). This finding
informs the analyst that the output uncertainty is explained by one
of these two pairs only, thus, allowing some kind of dimensionality
reduction.

5.3. PCE-MT and model calibration

5.3.1. Motivation
We consider now a case in which model input distributions are

inferred from statistical calibration. Statistical calibration of computer
models enhances their reliability by demonstrating that they can match
observations. If the model at hand is not able to match the observations,
statistical calibration can help in identifying the sources of discrepancy,
if done properly. Model calibration is usually undertaken in a Bayesian
framework which requires the definition of a likelihood function (char-
acterising discrepancies between model predictions and observations)
and prior uncertainties of the model inputs (independence is usually
assumed). Model inputs might also include hyperparameters of dis-
crepancy models [14,64–66]. This yields the so-called joint posterior
distribution of the model inputs. Sampling random draws from the
posterior distribution is not an easy job, and Markov Chain Monte Carlo
(MCMC) methods are typically used for such a task [67–70].

We consider the sensitivity analysis of a drainage experiment model
posterior to its calibration. This model was studied in different pa-
pers. First, [71] used this model to compare the performances of two
Bayesian approaches for statistical calibration. Then, [72] performed
the global sensitivity analysis of the model responses prior to its cali-
bration. Recently, [73] used this model to illustrate the extension of the
calibration method developed in [74] to the generation of stochastic
random samples from a joint pdf defined in a Bayesian framework.
In the present exercise, we consider the data obtained in [73]. We
stress on the fact that this is a purely numerical exercise meaning that
the observations were generated by simulations corrupted with random
noise. Hereafter, we recall the setting of the statistical calibration
problem.

5.3.2. The case study
In the modelled experiment, a vertical column filled with water-

saturated soil is drained by imposing multistep pressure heads on either
side of the column. This is achieved by moving vertically (downward),
at different timesteps, a reservoir tank connected to the bottom of the
column. The soil drainage experiment is modelled by several equations
8

and initial/boundary conditions. The flow through the porous medium
is governed by the following partial differential equation:
𝜕𝜔
𝜕𝑡

= 𝜕
𝜕𝑧

[

𝐾(ℎ)
( 𝜕ℎ
𝜕𝑧

− 1
)]

(25)

where 𝑡 [T] is time, 𝑧 [L] is the vertical coordinate (positive down-
ward), and 𝐾 [L][T]−1 is the unsaturated hydraulic conductivity. The
water content 𝜔 [−] and the pressure head ℎ [L] are the state vari-
bles. The unsaturated hydraulic conductivity 𝐾(ℎ) is modelled by the
ualem–van Genuchten (MvG) retention curve [75,76],

(𝑆𝑒) = 𝑘𝑠 ⋅ 𝑆
𝜆
𝑒

(

1 −
(

1 − 𝑆1∕𝑚
𝑒

)𝑚)2
(26)

here 𝑘𝑠 [L][T]−1 is the saturated hydraulic conductivity, and 𝑆𝑒 (−)
is the effective saturation defined as follows:

𝑆𝑒 =
𝜔 − 𝜔𝑟
𝜔𝑠 − 𝜔𝑟

=

⎧

⎪

⎨

⎪

⎩

1
(

1 + |𝛼ℎ|𝑛
)𝑚 ℎ < 0

1 ℎ ≥ 0
(27)

ith 𝑚 = 1 − 1∕𝑛. The soil hydraulic parameters are the saturated
ydraulic conductivity 𝑘𝑠, the saturated water content 𝜔𝑠 [−], the
esidual water content 𝜔𝑟 [−] and the MvG fitting coefficients 𝛼 [L]−1,
[−] and 𝜆 [−].

The calibration exercise of this model was performed in [71]. For
ake of completeness, we recall here the target joint posterior distribu-
ion which is the likelihood function (using independent uniform priors
or the calibrated parameters),

(𝒙|𝒚ℎ, 𝒚𝜔, 𝜎ℎ, 𝜎𝜔) ∝
1

(𝜎ℎ𝜎𝜔)𝑁𝑜
exp

{

−1
2

(

𝑆𝑆ℎ(𝒙)
𝜎2ℎ

+
𝑆𝑆𝜔(𝒙)
𝜎2𝜔

)}

(28)

where 𝑆𝑆ℎ and 𝑆𝑆𝜔 are the sum of square errors of the pressure
head and water content respectively while 𝜎2ℎ and 𝜎2𝜔 are their error
variances. We recall that the data sets are simulated model outputs
corrupted with Gaussian noise. With true experimental data sets, the
choice of the target joint posterior distribution must be chosen with
care. The random vector 𝒙 = (𝑘𝑠, 𝜔𝑟, 𝜔𝑠, 𝛼, 𝑛, 𝜆) contains the soil hy-
draulic parameters to be calibrated. Independent uniform priors were
assumed within ranges as shown in Table 2. These uncertainty ranges
were considered in the sensitivity analysis of the observed model
responses prior to the calibration exercise [72]. The observations are
𝒚ℎ, the hydraulic heads at 𝑧 = 3 cm, and the average water content
𝒚𝜔 at the same location. For both variables, 𝑁𝑜 = 481 observations at
different timesteps were considered.

A random sample of size 𝑁 = 512, drawn from the joint posterior
distribution Eq. (28), was generated with the numerical approach
described in [73]. This allows sampling of the posterior without an
explicit analytical representation of the distribution. It is worth men-
tioning that a MCMC sample could have been used. However, the
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Table 2
Prior uncertainty ranges of hydraulic parameters; cm and minutes are used following

the convention in hydrology.
Parameter 𝑘𝑠 𝜔𝑟 𝜔𝑠 𝛼 𝑛 𝜆

(cm/min) (−) (−) (cm−1) (−) (−)

Range [0.01,0.5] [0.01,0.20] [0.40,0.45] [0.005,0.02] [1.0,1.4] [−0.5,1.0]

sample obtained in [73] is preferred because the method used to
generate it relies on the assumption defined by Eq. (13). Therefore,
this sample fits the requirements of the PCE-MT approach described
in Section 3.3. The random sample is depicted in Fig. 2.

The main diagonal of Fig. 2 shows the posterior marginal distribu-
tions of the inputs. We note that, while the distributions of (𝜔𝑠, 𝛼, 𝑛)
ppear to be close to normal, the distributions of (𝑘𝑠, 𝜔𝑟, 𝜆) are skewed.
he posterior ranges of (𝜔𝑠, 𝛼, 𝑛) are remarkably narrow, proving that
hey are satisfactorily identified. The plots below the main diago-
al show the pairwise scatter plots of the generated random sample
see [73] for more details). It is clear that there are strong correlations
n the sample, with some parameters being positively correlated (e.g. 𝑘𝑠

and 𝜔𝑠) and others negatively correlated (e.g. 𝑘𝑠 and 𝜔𝑟). This correla-
tion structure is dictated by the model which is based on the physics of
the system. This suggests that to fit the observed data, one must account
for the complex interplay between the hydraulic parameters.

The plots above the main diagonal depict the sample where vari-
ables have been decorrelated using the approach in Eq. (12), and
considering the canonical order 𝒙 = (𝑘𝑠, 𝜔𝑟, 𝜔𝑠, 𝛼, 𝑛, 𝜆). This trans-
formation provides the decorrelated sample 𝒙̄ = (𝑘𝑠, 𝜔̄𝑟, 𝜔̄𝑠, 𝛼̄, 𝑛̄, 𝜆̄).
For instance, on row #1 column #2 𝑘𝑠 is plotted against 𝜔̄𝑟, which
corresponds to 𝜔𝑟 decorrelated from 𝑘𝑠. On row #2 column #3 𝜔̄𝑟 is
plotted against 𝜔̄𝑠, which is 𝜔𝑠 decorrelated from both 𝑘𝑠 and 𝜔̄𝑟, and
so forth. We notice that the ranges of variation of (𝜔̄𝑟, 𝜔̄𝑠, 𝛼̄, 𝑛̄, 𝜆̄) have
been shrunk significantly compared with their original ranges (i.e. of
(𝜔𝑟, 𝜔𝑠, 𝛼, 𝑛, 𝜆)). Notably, 𝛼̄ varies within [−2, 1]𝑒−5 which is virtually
zero (column # 4, row # 1,2,3). Therefore, it is expected that its
independent Sobol’ indices would be equal to zero. The interpretation
of the independent Sobol’ indices Eqs. (2)–(3) holds provided that 𝒙̄ are
effectively independent of each other. Visual inspection of the scatter
plots of the decorrelated draws (upper diagonal) suggests that this is
likely the case, except notably for 𝑘̄𝑠 and 𝛼̄ (row #1, column #4). This
mplies that, the sensitivity indices of 𝛼̄ (resp 𝑘̄𝑠) also contains some
ontribution of 𝑘̄𝑠 (resp. 𝛼̄).

.3.3. Posterior sensitivity analysis
The quantity of interest in the present study is the predicted cumu-

ative outflow at 𝑡 = 240 min, which is related to the quantity of water
emoved from the soil. It is defined as follows,

𝑠 = ∫

𝐿

0
(𝜔(𝑧, 0) − 𝜔(𝑧, 𝑡)) d𝑧. (29)

o perform the posterior uncertainty and sensitivity analysis of 𝐶𝑠, we
ropagate the random sample previously discussed in Eq. (29). Because
he joint posterior pdf in Eq. (28) from which the input sample has
een drawn is not tractable, one cannot infer the conditional cdfs and
et sets of independent samples with RT. Hence, PCEs are built upon
he 𝑣-variables obtained after orthogonalisation of the MCMC sample
rom Eq. (12). The associated orthogonal polynomials are inferred from
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ram–Schmidt orthogonalisation. We recall that the 𝑣-variables are o
ot completely independent (see previous discussion about Fig. 2).
herefore, the sensitivity analysis has to be conducted with care: a
isual inspection can help to gauge whether any residual dependence
till exists. This limitation is however expected with any decorrela-
ion procedure. An important remark is that PCE identification with
he method of [18] is computationally cheap because of the strong
orrelation between the input variables that yields very sparse PCEs.

The total-order and first-order variance-based sensitivity indices are
athered in Table 3. It results that the first-order effects are equal
o the total-order effects for all input variables. The full sensitivity
ndices are all greater than 0.81, meaning that none of them can be
ixed to their best estimate without impacting the prediction of the
umulative flow. We also observe that all the independent sensitivity
ndices are close to zero (the highest one is 𝑆𝑖𝑛𝑑𝑛 ≃ 0.04). This means that
ll the hydraulic parameters mainly contribute to the model response
ariance through their mutual correlations. These results are related to
he strong correlations observed in Fig. 2 (lower diagonal). It is then
xpected that only few parameters suffice to explain the predicted flow
ariance.

The MvG parameter 𝛼 is the one which has the highest full first-
rder sensitivity index (𝑆𝛼 ≃ 0.94, Table 3 in bold font), although 𝑘𝑠
as a full first-order effect with almost the same value (𝑆𝑘𝑠 ≃ 0.93).
he difference between 𝑆𝑘𝑠 and 𝑆𝛼 is likely to be insignificant if one
ecalls that the samples of 𝑘𝑠 and 𝛼̄ are not completely independent
read the discussion in the previous subsection). Anyway, if we assume
his difference does not matter, we can conclude that the independent
utual contribution of the other parameters to the model response vari-

nce is 𝑆 𝑖𝑛𝑑(𝑘𝑠 ,𝜔𝑟 ,𝜔𝑠 ,𝑛,𝜆)
= 1 − 𝑆𝛼 ≃ 0.06. This implies that if one were able

o find the true value of 𝛼, and sample the remainder conditionally on
hat value, then propagating the sample through Eq. (29) would yield

reduction of 94% of the variance of the cumulative flow (because
here are no interactions in the model, 𝑆𝑥𝑗 = 𝑆𝑇𝑥𝑗 ). However, given the
igh accuracy with which 𝛼 has been estimated during the calibration
rocess (𝛼 ∈ [0.008, 0.011] cm−1, see Fig. 2 row # 4, column # 4), it is
nlikely that its uncertainty can be further reduced.

What is the smallest subset of input parameters that explains the
ncertainty in the predicted flow 𝐶𝑠? The answer to this question
equires the calculation of the first-order sensitivity indices of groups of
arameters until one of them is equal to one. These indices are called

‘closed’’ sensitivity indices because they are closed within a subset of
nputs [77]. They are usually denoted by 𝑆𝑐(… ) with a superscript 𝑐.
ere, they are simply denoted 𝑆(… ) to be consistent with our notation

n Eq. (1). The sensitivity to pairs of variables (Table 4) indicates that
he couplet which has the highest contribution to the response variance
s (𝑘𝑠, 𝑛) (with 𝑆(𝑘𝑠 ,𝑛) ≃ 0.97, in bold font), although there are several
ther pairs with similarly high values (e.g. 𝑆(𝜔𝑠 ,𝛼) ≃ 0.96). By looking
t triplets of parameters, it is found that the total response variance is
lmost entirely explained by (𝑘𝑠, 𝜔𝑟, 𝑛), since the effect of this group

of parameters is 𝑆(𝑘𝑠 ,𝜔𝑟 ,𝑛) ≃ 1 (bold font in Table 5). We note that
𝑘𝑠, 𝜔𝑟, 𝜔𝑠), (𝑘𝑠, 𝜔𝑠, 𝛼), (𝑘𝑠, 𝛼, 𝑛), (𝑘𝑠, 𝑛, 𝜆) and (𝜔𝑟, 𝛼, 𝑛) also capture most
f the variance of the predicted cumulative flow as their sensitivity
ndex is higher than 0.99. These results confirm our preliminary guess
hat because of the strong correlation between the input parameters,

nly a few explain the total variance of the predicted flow.
Table 3
Sensitivity analysis of the model of drainage experiment. Estimated individual first-order sensitivity indices of the hydraulic parameters for
predictive cumulative flow. In parenthesis, the 95% credible intervals. The highest value is highlighted in bold font.
𝑆̂𝑘𝑠 = ̂𝑆𝑇 𝑘𝑠 𝑆̂𝜔𝑟 = ̂𝑆𝑇 𝜔𝑟 𝑆̂𝜔𝑠 = ̂𝑆𝑇 𝜔𝑠 𝑆̂𝛼 = ̂𝑆𝑇 𝛼 𝑆̂𝑛 = ̂𝑆𝑇 𝑛 𝑆̂𝜆 = ̂𝑆𝑇 𝜆

0.929 (±2𝑒−3) 0.881 (±3𝑒−3) 0.926 (±4𝑒−3) 0.936 (±3𝑒−3) 0.874 (±2𝑒−3) 0.896 (±4𝑒−3)

𝑆̂ 𝑖𝑛𝑑𝑘𝑠 = ̂𝑆𝑇
𝑖𝑛𝑑
𝑘𝑠

𝑆̂ 𝑖𝑛𝑑𝜔𝑟 = ̂𝑆𝑇
𝑖𝑛𝑑
𝜔𝑟

𝑆̂ 𝑖𝑛𝑑𝜔𝑠 = ̂𝑆𝑇
𝑖𝑛𝑑
𝜔𝑠

𝑆̂ 𝑖𝑛𝑑𝛼 = ̂𝑆𝑇
𝑖𝑛𝑑
𝛼 𝑆̂ 𝑖𝑛𝑑𝑛 = ̂𝑆𝑇

𝑖𝑛𝑑
𝑛 𝑆̂𝜆 = ̂𝑆𝑇 𝜆

1.1𝑒−3 (±5𝑒−4) 1.9𝑒−3 (±6𝑒−4) 0.00 (±0.00) 0.00 (±0.00) 4.3𝑒−2 (±3𝑒−3) 0.00 (±0.00)
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Fig. 2. Draws of the MvG hydraulic parameters generated by statistical calibration. On the diagonal, are depicted the posterior marginal distributions. On the lower diagonal are
he scatter plots of the draws generated in a Bayesian framework, showing correlations in the sample. On the upper diagonal, the draws transformed with Eq. (12) are depicted.
he latter are not correlated. See text for explanation.
Table 4
Sensitivity analysis of the model of drainage experiment. Estimated first-order sensitivity indices of couplets of hydraulic parameters (95%
credible intervals). The highest value is highlighted in bold font.
𝑆̂(𝑘𝑠 ,𝜔𝑟 ) 𝑆̂(𝑘𝑠 ,𝜔𝑠 ) 𝑆̂(𝑘𝑠 ,𝛼) 𝑆̂(𝑘𝑠 ,𝑛) 𝑆̂(𝑘𝑠 ,𝜆)

0.942 (±0.002) 0.958 (±0.001) 0.942 (±0.002) 0.970 (±0.001) 0.938 (±0.002)

𝑆̂(𝜔𝑟 ,𝜔𝑠 ) 𝑆̂(𝜔𝑟 ,𝛼) 𝑆̂(𝜔𝑟 ,𝑛) 𝑆̂(𝜔𝑟 ,𝜆) 𝑆̂(𝜔𝑠 ,𝛼)

0.949 (±0.002) 0.933 (±0.002) 0.881 (±0.003) 0.929 (±0.004) 0.959 (±0.003)

𝑆̂(𝜔𝑠 ,𝑛) 𝑆̂(𝜔𝑠 ,𝜆) 𝑆̂(𝛼,𝑛) 𝑆̂(𝛼,𝜆) 𝑆̂(𝑛,𝜆)

0.959 (±0.003) 0.943 (±0.004) 0.947 (±0.002) 0.944 (±0.002) 0.950 (±0.002)
Table 5
Sensitivity analysis of the model of drainage experiment. Estimated first-order sensitiv-
ity indices of triplets of hydraulic parameters. The highest value is highlighted in bold
font.
𝑆̂(𝑘𝑠 ,𝜔𝑟 ,𝜔𝑠 ) 𝑆̂(𝑘𝑠 ,𝜔𝑟 ,𝛼) 𝑆̂(𝑘𝑠 ,𝜔𝑟 ,𝑛) 𝑆̂(𝑘𝑠 ,𝜔𝑟 ,𝜆) 𝑆̂(𝑘𝑠 ,𝜔𝑠 ,𝛼)

0.990 ±7𝑒−4 0.942 ±2𝑒−3 0.999 ±1𝑒−4 0.944 ±2𝑒−3 0.998 ±8𝑒−4

𝑆̂(𝑘𝑠 ,𝜔𝑠 ,𝑛) 𝑆̂(𝑘𝑠 ,𝜔𝑠 ,𝜆) 𝑆̂(𝑘𝑠 ,𝛼,𝑛) 𝑆̂(𝑘𝑠 ,𝛼,𝜆) 𝑆̂(𝑘𝑠 ,𝑛,𝜆)

0.979 ±1𝑒−3 0.984 ±1𝑒−3 0.997 ±4𝑒−4 0.942 ±2𝑒−3 0.995 ±4𝑒−4

𝑆̂(𝜔𝑟 ,𝜔𝑠 ,𝛼) 𝑆̂(𝜔𝑟 ,𝜔𝑠 ,𝑛) 𝑆̂(𝜔𝑟 ,𝜔𝑠 ,𝜆) 𝑆̂(𝜔𝑟 ,𝛼,𝑛) 𝑆̂(𝜔𝑟 ,𝛼,𝜆)

0.959 ±2𝑒−3 0.995 ±7𝑒−4 0.940 ±3𝑒−3 0.995 ±5𝑒−4 0.935 ±2𝑒−3

𝑆̂(𝜔𝑟 ,𝑛,𝜆) 𝑆̂(𝜔𝑠 ,𝛼,𝑛) 𝑆̂(𝜔𝑠 ,𝛼,𝜆) 𝑆̂(𝜔𝑠 ,𝑛,𝜆) 𝑆̂(𝛼,𝑛,𝜆)

0.978 ±2𝑒−3 0.977 ±2𝑒−3 0.984 ±2𝑒−3 0.981 ±2𝑒−3 0.976 ±2𝑒−3

6. Conclusion

Global sensitivity analysis of models with dependent inputs is a
challenging issue. The reason is that even if a model response is
structurally independent of a given input (by ‘‘structurally’’ we mean
in its mathematical definition), it can appear to be sensitive to that
input if it is strongly correlated to others. Computing the indepen-
dent sensitivity indices helps to identify the input variables that are
structurally linked to the model response of interest. This is the case
10
when the independent total-order sensitivity index of an input is not
null. However, if its independent total-order sensitivity index is null,
it cannot be inferred that the model response does not structurally
depend on that input. To conclude this, one has to perform the ANOVA
decomposition by assuming independence, because in that case the
ANOVA decomposition is unique.

In the present work, we have used the Polynomial Chaos Expan-
sion (PCE) approach to estimate variance-based sensitivity indices.
For this purpose, three transformations have been used: namely, the
Rosenblatt transformation [44], the Nataf transformation [46] and [23]
transformation. The decision of which transformation to use is problem-
dependent. For example, the Rosenblatt transformation should be pre-
ferred if the conditional distributions are known. The Nataf transfor-
mation is adequate when the input uncertainty is defined by their
marginal distributions and their moment–product correlation matrix.
With a given input sample, the [23] transformation is appropriate,
provided that Eq. (13) holds.

The case studies here have demonstrated the efficiency of the
proposed methodology, allowing the estimation of any variance-based
sensitivity indices from one single sample. Finally, the sensitivity anal-
ysis of a drainage model posterior to its calibration highlights the
importance of defining the objective of the sensitivity analysis, and
thereby computing the sensitivity indices that are appropriate for the
task, as recommended in [77]. For the calibrated drainage model, the
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focus was on identifying the smallest subset of inputs that mostly
explain the total variance of the predicted cumulative flow. It was
found that the solution to this question is not unique. Several subsets
of inputs of identical cardinality can explain the same amount of the
output variance.
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Appendix. Algorithm of PCE with dependent inputs

Let 𝐱 be an 𝑁 × 𝑑 dependent sample and let 𝐲 be the associated
𝑁 × 1 vector of model responses. The input sample may have been
generated from either the Rosenblatt transformation Eq. (10), the Nataf
transformation (11) or the transformation of Mara & Tarantola (13).
The generation of 𝐱 is obtained from an independent sample denoted 𝐱̄
f size 𝑁 × 𝑑. Depending on the method chosen to sample 𝒙, we have
̄ ∈ (𝐮, 𝐳, 𝐯) (see Section 4.2 for more details). The algorithm to compute
he (full and independent) first-order and total-order sensitivity indices
s as follows,

1. Set 𝑖 = 1 and 𝐱 = [𝐱1,… , 𝐱𝑑 ], where 𝐱𝑗 is the sample of 𝑥𝑗
2. Depending on the method chosen, find 𝐱̄ from either Eq. (9),

Eq. (11) or Eq. (12)
3. Identify the Bayesian sparse PCE associated with (𝐱̄, 𝐲) and com-

pute the associated first-order and total sensitivity indices [18].
Let us denote them 𝑆̄𝑗 and ̄𝑆𝑇 𝑗 , 𝑗 = 1,… , 𝑑

4. Set 𝑆𝑖 = 𝑆̄1, 𝑆𝑇𝑖 = ̄𝑆𝑇 1, 𝑆𝑖𝑛𝑑𝑖−1 = 𝑆̄𝑑 and 𝑆𝑇 𝑖𝑛𝑑𝑖−1 = ̄𝑆𝑇 𝑑 with the
following convention, 𝑆 𝑖𝑛𝑑𝑑 = 𝑆𝑖𝑛𝑑0 and 𝑆𝑇 𝑖𝑛𝑑𝑑 = 𝑆𝑇 𝑖𝑛𝑑0 .

5. Set 𝑖 = 𝑖 + 1. If 𝑖 = 𝑑 + 1 stop. Otherwise set 𝐱 = [𝐱𝑖,… , 𝐱𝑑 ,
𝐱1,… , 𝐱𝑖−1] and resume from 2
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