
HAL Id: hal-03340842
https://hal.science/hal-03340842v1

Submitted on 10 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modelling of Decentralised Blockchain Applications
Development

Léo Besançon, Parisa Ghodous, Jean-Patrick Gelas, Catarina Ferreira da Silva

To cite this version:
Léo Besançon, Parisa Ghodous, Jean-Patrick Gelas, Catarina Ferreira da Silva. Modelling of Decen-
tralised Blockchain Applications Development. The 2020 International Conference on High Perfor-
mance Computing & Simulation (HPCS 2020), Mar 2021, Barcelone, Spain. �hal-03340842�

https://hal.science/hal-03340842v1
https://hal.archives-ouvertes.fr

Modelling of Decentralised Blockchain Applications

Development

Léo Besançon, Parisa Ghodous, Jean-Patrick Gelas

Univ Lyon, Université Claude Bernard Lyon 1

LIRIS, F-69100

Villeurbanne, France

{leo.besancon, parisa.ghodous}@liris.cnrs.fr

jean-patrick.gelas@univ-lyon1.fr

Catarina Ferreira Da Silva

Instituto Universitário de Lisboa (ISCTE-IUL)

Lisboa, Portugal

catarina.ferreira.silva@iscte-iul.pt

Abstract—The development of Decentralised Blockchain

Applications (DBA) is becoming more and more complex. We

formalise the development of DBA based on Business Process

Modelling and ontologies. This formalisation permits to represent

a set of specific constraints that characterise a DBA. These

constraints concern data management, the Blockchain storage

cost, the number of transactions allowed in a given time and the

execution of the application logic. Based on this formalism, we

propose a generic and adaptive methodology for the development

of DBAs. This methodology uses as input the constraints related to

each DBA and as output recommends a set of appropriate services

necessary for the development of each DBA. For example, our

methodology can recommend a specific distributed storage service

such as InterPlanetary File System (IPFS) for a DBA that needs to

handle a large amount of data. We apply our methodology to a

Blockchain Video Game application.

Keywords—Blockchain; Business Process Models; Ontologies;

Video Games; Development; Decentralised Blockchain Applications

I. INTRODUCTION

Decentralised Blockchain Applications (DBA), otherwise
called Dapps are applications that integrate Blockchain
technology to achieve various goals: decentralisation, no single
point of failure, automation, trustless transactions, privacy
and/or traceability [1]. However, a Blockchain Application may
not be decentralised if part of the application is centralised. As
such, integrating a Blockchain in an application does not mean
this application becomes decentralised.

We find that the topic of architectures for DBA is not
sufficiently developed. Indeed, various proposals aiming to
formalise generic architectures for distributed applications have
been proposed, e.g. by Microsoft [2] and IBM [3], but
application-specific constraints are not yet considered.

In order to fulfil this gap, we propose a methodology improve
modelling and formalisation of specific DBAs.

We then apply our methodology in the domain of Video
Games. We define what a Blockchain Video Game is and what
the constraints related to them are. Then, we formalise a
Blockchain architecture suitable for such games.

As the field of Blockchain technology is still relatively new,
our research is motivated by the need for a semantic and formal

approach to DBA development. Kim and Laskowski [4] state
that the use of ontology-driven development has two advantages.
Firstly, we get a better understanding of the data handled in
Blockchain systems, so it leads to better data standards and
business practices. Secondly, it helps to create formal
specifications for automated inference and verification of
Blockchain-based processes.

A. What are Decentralised Blockchain Applications?

We define Decentralised Blockchain Applications as
applications that use Blockchains in order to take advantage of
one or several of their properties and characteristics. This
definition is coherent with the one proposed by Raval [5], stating
that DBAs should be open source, have internal cryptocurrency
support, a decentralised consensus and no central point of
failure.

One of the most important properties of this definition is the
criterion of decentralisation, which is the shared governance of
an application's state. As stated in [6], decentralisation is not a
binary property. Depending on the number of actors involved
and the distribution of power in the shared governance, an
application can have various degrees of decentralisation.

In fact, as shown in [7], most current instances of DBAs have
to make compromises regarding decentralisation. For example,
some DBA can choose to compromise decentralisation for the
scalability of the number of supported transactions. An example
of such a compromise can be seen with Azarus [8]. The company
behind this DBA uses the EOS [9] Blockchain for their
application, which supports a huge number of transactions.
However, the Delegated Proof of Stake [10] consensus
mechanism behind this Blockchain is more centralised than the
Proof of Work [11] or Proof of Stake [12] consensus
mechanisms.

Currently developed DBAs are more and more complex, and
span various application fields, from decentralised finance (or
DeFi) [13] and [14] or resource trading [15] to video games [16].
The video game industry can use Blockchain technology to
ensure the players' asset integrity over time, reduce server costs
for developers, as well as to allow easy trading of in-game assets
for currency.

As the level of complexity of the DBAs increases, a few
research works have been formalising what is needed to develop

Supported by organisation B2Expand, 69100 Villeurbanne, FRANCE.

a DBA. For example, Duan et. al. [17] formalise Blockchains as
a standalone service. In practice, Blockchains interact with
various other systems such as user interfaces, game engines and
distributed storage systems. However, a Blockchain standalone
service is insufficient for our goals.

Abdellatif and Brousmiche [18] produced a representation
model of both Blockchains and users of a DBA to allow for
formal verification of smart contracts. This work is more related
to the security of a DBA than to its development.

 Another type of formalisation is through the design of a
generic architecture for a DBA [3]. These types of formalisation
do not take sufficiently into account the constraints of a specific
use-case. For example, having a distributed file storage
component in an architecture is helpful, but it does not tell a
developer what specific distributed file storage solution is best
suited for his/her target application.

B. The need for a generic methodology for Decentralised

Blockchain Applications development

One key aspect of DBAs is that for more advanced use cases,
such applications cannot solely rely on a Blockchain. Indeed,
Blockchains bring multiple constraints in application design.

Firstly, data sharing through Blockchain has high latency.
This constraint can be viewed in two distinct ways.

 If we only need data to be propagated in the network

without the Blockchain immutability and security,

the Blockchain will not add any latency on top of

the distributed data transfers. In this case, the

latency is higher than in a centralised system but is

both suitable for most applications and able to be

accurately modelled [19].

 However, if we need the data to be immutable, then

we need to wait for a certain number of Block

confirmations in order for the probability of a

rollback to become negligible. Here, the

confirmation time depends on the selected

consensus algorithm, as, for instance, Proof of Work

(PoW) [11] confirms blocks slower than Proof of

Stake (PoS) [12] or Delegated Proof of Stake

(DPoS) [10].
 Data sharing is also affected by the network utilisation, and
other parameters such as Block size, and finally the security one
needs.

Blockchain also has low data sharing bandwidth. This means
that Blockchains are neither suitable for use cases needing a high
transaction count, nor for use cases needing to handle a large
amount of data.

One particularly unsuitable use case for Blockchains should
thus be video games, as multiplayer video games usually need
low latency to be in real time, high communication rate between
players, and large image files to be transferred. This use case will
be detailed in section IV, but it shows the need to include other
components in DBAs design.

To resolve this data sharing problem, a DBA developer can
choose to design his/her application according to design patterns
that can be grouped into two main categories:

 The use of semi-centralised systems to avoid using the

Blockchain technology for tasks that are not suitable

for Blockchains. For example, most existing DBAs,

such as CryptoKitties [20], have their front-end code

stored on centralised web pages. In the case of

CryptoKitties, the images of the virtual assets are

served by the servers of the company, causing a single

point of failure. Although the definition of DBAs

implies they rely only on decentralised systems, this

compromise solution seems to be accepted by the

community. Unfortunately, this single point of failure

may lead to attacks such as DNS Hijacking [21].

 The use of existing decentralised scaling solutions. For

example, it is possible to store a Single Page

Application (SPA) on a distributed storage solution

such as InterPlanetary File System (IPFS) [22]. One

example of DBA that uses IPFS to achieve a fully

decentralised game is made by EtherPlay [23]. We

describe these solutions in more details in section

III.B.

These usual approaches to the design of DBAs have proven

to work, but the resulting architectures are rarely suitable for
multiple applications. This leads to low interoperability between
existing DBAs, which decreases their usability. In our opinion,
there is a strong need to develop a methodology that, given a
specific use case for a Blockchain application, leads to a DBA
architecture suitable for this application. In this paper, firstly we
study the state of the art of Blockchain systems architectures.

After studying how we could improve them, we propose a
novel approach and procedure to formalise DBAs. Our approach
uses ontologies and Business Process Model and Notation
(BPMN) to gather the constraints for the application and define
the set of service instances needed for the DBA. As a result, we
obtain a specified architecture for the DBA. Then, we show how
we apply our methodology in the Blockchain video game
industry. As far as we know no other existing system proposes a
methodology similar to ours.

II. CURRENT STATE OF THE ART OF BLOCKCHAIN

APPLICATION ARCHITECTURES

A. Concepts related to architectures in service oriented

computing

One possible approach to design an architecture is to
compose the application in services that each performs one
feature of the application. We can differentiate two main
approaches in current architecture design: Service Oriented
Architectures (SOA) and Microservice Architectures.

According to [24], Microservices are more suitable for
decentralised workflows. Indeed, they emphasise the difference
between service orchestration and service choreography. Service
orchestration happens where a central element synchronises the
different services of an application. On the contrary, service
choreography relies on the fact that a service can synchronise
with the services it interacts with directly. As a result, an
architecture for DBAs can essentially rely upon an approach
based on Microservices.

B. Architecture of Blockchains and Distributed Ledger

Technologies (DLTs)

Traditional databases have a centralised and permissioned
governance. A user is assigned a role and access level, e.g.
administrator, write access, read access, etc.

On the contrary, Blockchains, as well as other types of DLTs
often either have a decentralised and permissionless governance,
or permissioned but distributed governance. In this case, the
term distributed refers to multiple machines performing a
calculation together, whereas decentralised refers to the control
and governance of the calculation. Permissionless and
permissioned refers to the access rights of each machine to
participate in the given calculation.

Cai et. al. [25] propose a generic architecture for Blockchain
systems. Their architecture is fairly simple, with three
components: the Blockchain as a data structure, a Peer to Peer
network, and a consensus model.

Different Blockchains and DLTs can use various consensus
mechanisms and have different protocol parameters. This means
they each have different characteristics, in terms of features,
scaling of the number of transactions they handle, data
bandwidth, latency, etc.

For the sake of simplification, we choose not to take into
consideration these characteristics in our methodology. Instead,
we choose to focus our work on the characteristics of the other
services, such as distributed storage, user interfaces, or
distributed computation services.

C. Architecture of Decentralised Blockchain Applications

One of the major works for DBA architecture in the industry
has been designed by IBM [3]. They describe an architecture for
DBAs that is suitable for enterprise applications. However, it
only describes high-level systems. As such, they propose an
exhaustive view of what features each component of a DBA
should have, but not how to best select these features.

Other works on DBA architectures have a more application-
oriented approach. For example, [26] specifies a reference
architecture for Blockchain-based Peer-to-Peer IoT applications.
They target only one type of use case, but they focus on
providing concrete solutions for developers of IoT applications
who want to integrate Blockchain technology. Indeed, they focus
on handling payments and identity for a huge number of devices.
They do not consider applications that require to store large
amounts of data on the blockchain, recommending using other
communication channels such as UDP or TCP in order to do so.
Furthermore, they also recommend using permissioned
blockchains for real time IoT applications, as the use of public
blockchains leads to latency issues. These architectures make it
easier to design and develop a DBA. They describe what
services will be needed to be implemented for a DBA and how
to handle interactions between them.

However, we find some limitations in the use of these
architectures to entirely design a DBA. For example, a DBA
developer would use one of the architectures described
previously in order to know what services he/she should
implement for his/her application. However, he/she will not be
able to deduce what concrete solutions should be implemented.

D. Formalisation tools for DBAs

We use formalisation tools described in this section in order
to propose a methodology that helps to formalise the concrete
constraints of a DBA and recommend a suitable set of solutions
to implement.

1) Ontologies
Firstly, ontologies are useful to describe Blockchain systems.

Indeed, ontologies aim to semantically define the various
concepts needed in a given field. Blockchain systems often
involve different fields that use similar concepts, which may not
have consistent definitions. As a result, several works are trying
to semantically define what a Blockchain is.

For example, Blockchain Ontology with Dynamic
Extensibility (BLONDiE) [27] and the Ethereum Ontology
(EthOn) [28] use Web Ontology Language (OWL) describing
such ontologies. They are useful to get a global understanding of
how different Blockchain concepts such as transactions, address
and signatures relate to one another, as well as to formalise these
concepts, but we did not find any application using these
ontologies. However, the PHP framework Sandra [29] lets users
easily design their Blockchain ontologies, and is used by
EverdreamSoft to query Blockchain assets.

Through the use of ontologies, the various systems interacting
with and within a DBA all have the same definition of the
concepts and data structures used, which improves semantic
interoperability of a DBA.

2) Business Process Model and Notation
Ontologies help formally define the concepts and data

structures we need to support in the application. Nonetheless, for
an application that needs the users to interact with each other,
another important aspect is how each possible action will be
propagated inside the application and inside the network of
users.

The best way to model this information propagation is through
BPMN [30] modelling. Indeed, Business Process Models help
formalise business workflows and processes. These methods are
widely used in order to better understand the interactions
between the various entities that need to communicate in an
information system to accomplish given tasks. As a result, the
modelling of all the processes comprised in a target Blockchain
application shows what interactions to focus on during the
design of the application.

3) Formalisation of video games
In 2015, Solís-Martínez et. al. [31] built VideoGame Process

Modelling, a notation based on BPMN to model video game
logic. Their aim is to quickly design video games with their
notation, which can then be quickly converted into functional
code. As such, their proposal mainly formalises the development
aspect of video games. This formalisation is important, even
though Politowski et al. [32] showed that video game projects
are mainly programmed using the same processes as other
computer software. However, the VideoGame Process
Modelling formalisation gives us a better understanding of the
interactions between the different services within a video game.
This is important when we consider the formalisation of
Blockchain video games.

III. PROPOSED METHODOLOGY

Based on a description of the target DBA, our methodology
recommends a set of services needed in the DBA's architecture,
and tells the user by which service each interaction in the DBA
will be handled.

A. Formalisation of the needs of a DBA

In order to be able to recommend the needed services for the
DBA, our methodology needs a formal description of the target
DBA's features and its constraints.

This formal description is partly obtained through an
ontology defining the needed concepts related to Blockchains,
the field of the target use case, and the target DBA.

Another form of formalisation we consider is to obtain models
using BPMN to show the various interactions the users will have
with the application and with each other, as well as the
interactions between the different services within the
application.

1) Ontologies related to the field of the use case
In most cases, DBAs that are being designed integrate

Blockchain technology inside an already existing application.
Examples of existing DBAs are implementations of lotteries,
gambling games, asset trading or exchanges for various finance
derivatives. All of these applications existed before Blockchain
technology, but we saw the benefits of building DBAs for these
use cases.

However, in order to be sure that important concepts related
to the field of the use case are translated correctly into the
Blockchain ecosystem, it is useful to define an ontology
covering all of these concepts. For example, if a developer wants
to design a decentralised exchange for financial assets, he has to
correctly identify and define formally what an asset is and what
a trade between users of an exchange is. Constraints related to
the security of a user's funds also need to be defined formally,
regarding the login process, the number of Blockchain
confirmations needed to assume a transfer is immutable, and so
on.

Answering these questions will be needed for making various
design choices that will be reflected in the DBA's architecture.
For example, one could want to make an offer on this exchange
without any fees, and to include fees only when a trade is
executed. To achieve this, the DBA needs to include a way for
users to sign messages that define a sale or buy order, and share
the signed message with other users without committing a
transaction on the Blockchain. This means the architecture has
to be designed with this feature in mind, for instance through the
use of a gossip protocol.

2) Ontologies related to the target Decentralised

Blockchain Application
Our methodology we describe in section III and its application

in the video game industry in section IV extends an existing
Blockchain ontology in order to accurately define how concepts
related to our use case's field, the chess game, are represented in
a Blockchain setting.

To highlight the need of an extended ontology, we use the
concept of finality [33], or immutability. One of the properties

of Blockchains is to be immutable. This means that once
consensus is reached and data is committed to a Blockchain, it
should not be possible for this data to be edited or deleted.
However, some Blockchains, such as the ones using the Proof of
Work consensus mechanism, have probabilistic finality. This
implies that once a Block is committed to the Blockchain, it may
still be deleted, but with a probability that quickly decreases to
zero with time.

A DBA should formally handle these edge cases, and this is
easier to consider if we have a unified ontology that defines how
each data of the application is specified with regards to the
underlying Blockchain data structure.

3) BPMN model of the DBA
Another model we need to establish is an event-based BPMN

model of the DBA itself. Here, we define the properties needed
for each interaction within the DBA. This means this BPMN
model shows the constraints of each interaction in terms of the
number of transactions it should handle, the needed security, or
the storage space needed to handle data transfers. As [34] shows,
it is possible to extend BPMN in order to consider the
decentralised environment of Blockchain systems.

Once a target DBA has been formalised, the developer should
be able to easily match its needs with existing distributed
services, such as the ones described in the next section.

B. Distributed services

As we have seen in existing DBA architectures, such as [3],
several additional services are used to handle the tasks
Blockchain cannot handle effectively. One of the goals of our
methodology is to recommend which services are needed for the
DBA, and for which interactions they are used. Indeed, if a
Blockchain is suitable to be used for a given interaction, we
recommend using it.

1) Distributed storage
For storing the ledger data, Blockchain currently requires

every node to store it, even though solutions regarding sharding
[35] and scaling [36] are being worked on. As a result, storing
relatively small data for the DBA directly in the Blockchain can
be quite expensive. Thankfully, other distributed storage
solutions, like IPFS, Swarm, or direct Peer to Peer exchange
between the users of the DBA are possible.

We propose in [37] a data representation for Blockchain Video
Games assets that makes it easier to support several distributed
storage solutions concurrently. For example, a user of a given
DBA could query data simultaneously on IPFS and through Peer
to Peer connections with other users of the DBA.

2) Distributed computations
The service for distributed computation is divided into two

categories: scaling up the number of transactions a Blockchain
can handle in a given time, or increasing the complexity of the
computations.

Regarding the first category, scaling up the number of
transactions, for instance Ethereum currently only handles a
dozen transactions per second, which is not enough if one plans
on using this Blockchain for a DBA that needs to handle more
transaction in a given time period. Second layer scaling solutions

can be comprised of several methods to increase the number of
transactions: mainly sharding, plasma, and state channels.

Each of these solutions have their own set of compromise
between the complexity of implementation, the security of the
transactions, the possible censorship, the decentralisation and
the number of transactions they can handle.

Regarding the second category, increasing the complexity of
computations that can be handled by a DBA may also be wanted.
For example, a forward pass of a trained neural network would
not be easily doable on Ethereum. This means that a DBA that
requires distributed or decentralised executions of such
computations would not be able to do so using a Blockchain.

Several distributed computing services are currently working
towards this goal: iExec, Trubit, and Golem. These companies
develop a service rendering possible to have trusted off-chain
complex computations. Anybody could use their application to
compute a certain workload. Then, they validate, for example
through redundancy, the result of the computation, which is
transmitted back to the user who offered this workload.

C. Goal of our methodology

Our methodology intends to make a set of recommendations
to help the development of a DBA. For instance, for each
interaction between users of the DBA, a recommendation is
provided on whether it is considered best to only use a
Blockchain to implement a certain DBA functionality or if it is
needed to include other services. Our methodology starts with a
list of functional requirements [38] for the application from the
client, from which the specifications are drawn (Fig. 1).

These specifications are currently written in natural
language, but we expect to be able to formalise them later.

From a security perspective, our methodology also needs to
ensure the security benefits of Blockchain technology transfers
well to the whole application. This is achieved by focusing our
models on the possible interactions between all the actors of a
given DBA.

D. Overview of our methodology

Figure 1: Overview of the four steps of our methodology.

Given a target DBA, the methodology is divided into the
following steps, presented in Fig. 1:

1. Formalise both the concepts related to the

Blockchain side of the DBA and those related to the

application field. We can reuse an existing ontology

or, if needed, we can extend an existing ontology to

comprehensively define the concepts of our

DBA. For instance, in our application presented in

section IV, we extend the existing EthOn [28]

ontology with concepts related to the chess game.

2. Formalise all interactions that happen in the DBA,

between the services of the DBA or the users. We

use event-based BPMN modelling for this step: the

start event corresponds to an action a user or service

makes within the DBA. It is for example the

deployment of the DBA, or a transaction made by a

user. Then, our model shows all the

communications between users and services that

ensue from this starting event. A DBA may need

several different BPMN models in order to

formalise every possible interaction.

3. Define the technical constraints of the DBA. Here,

both the ontology and the BPMN models are useful

to reach a comprehensive list of these constraints.

Indeed, the ontology can help identify the

constraints related to one concept in particular. For

instance, if the ontology shows that the concept of

Blockchain account is critical to the application, the

account model of the Blockchain used could lead to

a technical constraint. An Unspent Transaction

Output (UTXO) model, which requires every

transaction, aside from coinbase transactions that

compensate miners, to refer to an existing

transaction in order to be valid, could be preferred

over a simpler account/balance model, which only

keeps track of the state associated with each account

[39]. Similarly, to define the constraints related to

the interactions between the multiple concepts of the

DBA, each interaction shown in the BPMN models

has to be analysed.

4. Choose the suitable service instances for the DBA.

For each constraint defined in the previous step, we

choose the best service instance to answer it using

the following criteria: security of the solution,

decentralisation requirements, number of

transactions to handle, volume of data to exchange,

or even simplicity of implementation. The output of

our methodology is obtained by matching the

characteristics of each interaction in a DBA with the

functionality of the services supported by our

methodology. As an example, we apply our

methodology to a DBA that is a registrar for images

and their metadata. In this case, the costs involved

prevent the storage of images on the Blockchain, so

we use IPFS for this task. The access permissions

for the DBA is handled by smart contracts on the

Ethereum Blockchain, as the application does not

require a high-throughput and low-latency

execution environment. Finally, the user interface

for storing and retrieving images is a small SPA,

interacting with an Ethereum smart contract using

Web3 and a Web3 provider such as Metamask.

IV. APPLICATION TO THE VIDEO GAME INDUSTRY

A. Modelling of a Blockchain chess game

In order to apply our methodology to the Video Game
industry, we start by gathering the characteristics of video games
and Blockchain video games.

Inspired by the work of Solís-Martínez et. al. [31], we
propose the BPMN modelling of a two users video game,
described in Fig. 2. In this BPMN model, we define a player of
a game as an entity who can make actions that will affect the
state of the game. The list of possible actions given a specific
game state is constrained by the game's rules. For example, in a
game of chess, the actions for a player include the moves that
each piece could do, considering the current board position.
Also, as chess is a turn-based game, only actions made by the
current player are considered. Finally, meta-moves, such as
resigning at a game of chess, have to be possible as well. Starting
from this modelling of a game of chess, we model a Blockchain
version of this game. Potential motivations to integrate
Blockchain technology with the game of chess are to be able to
easily bid on the outcome of a game and to secure the Elo rating
[40] of players, a system ranking players based on their result
history, on the Blockchain in an immutable and transparent
manner. The only limitation of our proposed application is the
possibility of cheating of one of the two players, by using of a
chess-playing software. Cheating is one common occurrence in
online chess gaming, and betting on the outcome of a game
would be an incentive for players to do so. However, cheating
detection in chess is an active research field [41].

In order to find the constraints of this DBA, we first need to
have an ontology that defines the different concepts our game
integrates. We present in Fig. 3 the ontology defining the
concepts needed for our DBA. We use Protégé [42] to import the
EthOn [28] ontology defined using OWL, and we extend it with
additional concepts related to the chess game. Indeed, EthOn is
one among the most complete existing ontologies related to
Blockchain development. Building upon previous research
facilitates collaboration, so we prefer to extend it instead of
building a new ontology from scratch. Fig. 3 is a representation
of part of the extended ontology, using rectangles to represent
the concepts and arrows for properties. Firstly, the players are
represented by the Blockchain account they use. This account is
composed of a public and private key pair. Then, we define the
different actions a player can make, which are then included into
messages. Chess already has a standard notation, e.g. Be5 means
"move a bishop to e5", so we do not have to redefine moves. A
transaction is composed of four fields: an address "from", an
address "to", a value, and arbitrary data. The messages
describing user actions are included into the data field of
transactions. As chess is a fully deterministic game, the game
state is entirely defined by the move history. The game's logic is
programmed using smart contracts. Indeed, we may not use the
Blockchain to execute the logic, and decide to process each
move off-chain, but we have to be able to verify the results in
case of conflicts between the two players.

Along with this ontology, we also propose the workflow of
the game using BPMN models. For the sake of simplicity, we
focus on what happens when one of the players wants to make a
move. The player first needs to transmit the information of his

move to the other player. To do so, the application encapsulates
the user's craft message describing the intended action. This
message is then propagated to the Blockchain by including it in
a new transaction. Once this transaction is sent, both players wait
for the transaction to be included in a Block and for enough
confirmations to have passed. The time needed for the
transaction to be considered final can vary significantly, from
one second to one hour, depending on the chosen Blockchain's
characteristics and if a second layer scaling solution is used.
During this time, no other action can be made by the players.
Then, once the new Block has propagated, they each change
their game states accordingly, and check whether the game
follows an end game position, e.g. if one player checkmates the
other. If it is not the case, the application awaits for the action of
the second player.

This workflow is formalised in Fig. 4 showing a BPMN
modelling of the game. This modelling is done using Camunda
BPM [43]. Here, we use a high-level representation abstraction
of the concepts of Blockchain and Nodes, as these are services
from the viewpoint of our application. For example, the task
"Generate block" hides the fact that the Block should be valid
and follow the Blockchain's method of consensus. As the
Ethereum Blockchain uses Proof of Work, this task requires the
node to increment the nonce in the Block's header in order to find
a valid Block. Once a valid Block is created, the node can
transmit it to the rest of the network.

B. Services needed for the development of this DBA

Based on the ontology and the BPMN models presented
above, we can deduce the services that are most suitable for an
implementation of our target DBA. The ontology and BPMN are
used to tell the expert each interaction he/she must focus on, by
giving a comprehensive list of constraints. However, an expert
still has to manually go through the existing solutions in order to
see what the best one to use is. The automation of this process is
future work.

On average, a game of chess ends at move 40. As a result,
one constraint for our DBA is to be able to exchange 40
messages between the players at a reasonable cost. Based on the
BPMN model presented, we can only use a Blockchain and send
a transaction for each move. However, in this use case, the
DBA’s specifications should specify the maximum allowed
latency between each move. As a result, services used to reduce
latency below this threshold, such as state channels, sidechains
or plasma, must be studied. We recommend using a second layer
scaling solution called state channels [36]. Indeed, they are
suitable for this application: the implementation of state
channels between two participants is straightforward, and the
cost is negligible. Furthermore, the smart contract handling the
Blockchain logic for the game is made using Ethereum, as it is
the most popular Blockchain with support for smart contracts,
and is suitable for this case. Finally, no large data transfers are
needed for this application. At most, we use IPFS solely to
display the game's interface. This interface is an SPA hosted on
IPFS, and accessible through a browser via either an IPFS
gateway or a browser extension hosting an IPFS node. The
choice of the IPFS provider is non-critical, and depends on the
wanted accessibility and security for the application.

V. CONCLUSIONS AND PROSPECTS

We propose a new approach for DBA architecture design,
based both on business process modelling and ontologies. Our
approach provides in the end a set of specific services for the
implementation of a particular DBA.

Future work includes automating the process of choosing the
most suitable service instances with recommendation tools
based on multi-criteria algorithms. Finally, we intend to apply
our methodology to other video games, such as real time
multiplayer games.

REFERENCES

[1] Z. Zheng, S. Xie, H.-N. Dai, X. Chen and H. Wang, "Blockchain

challenges and opportunities: a survey," Int. J. Web and Grid

Services,, vol. 14, p. 352–375, 2018.

[2] PatAltimore, Azure Blockchain Workbench architecture - Azure

Blockchain. [Online]. Available: https://docs.microsoft.com/enus/

azure/blockchain/workbench/architecture

[3] R. Viswanathan, D. Dasgupta et S. R. Govindaswamy,

«Blockchain Solution Reference Architecture (BSRA),» IBM

Figure 2: BPMN modelling of a game of chess.

Figure 3: Partial view of an ontology defining the concepts needed for a Blockchain chess game.

Figure 4: BPMN describing a Blockchain chess game.

Journal of Research and Development, vol. 63, p. 1:1–1:12, 3

2019.

[4] H. M. Kim and M. Laskowski, "Towards an Ontology-Driven

Blockchain Design for Supply Chain Provenance," SSRN

Electronic Journal, 2016.

[5] S. Raval, Decentralized applications: harnessing Bitcoin's

blockchain technology, " O'Reilly Media, Inc.", 2016.

[6] D. Treisman, «Defining and measuring decentralization: a global
perspective,» 2002.

[7] G. Slepak et A. Petrova, «The DCS Theorem,» 2018.

[8] Azarus game challenge network. [Online]. Available:
https://wp.azarus.io/

[9] I. Grigg, «EOS - An Introduction,» 7 2017. [Online]. Available:

https://eos.io/documents/EOS An Introduction.pdf

[10] D. Larimer, DPOS Consensus Algorithm - The Missing White

Paper — Steemit. [Online]. Available:

https://steemit.com/dpos/@dantheman/dpos-consensus-
algorithm-this-missing-white-paper

[11] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf et

S. Capkun, «On the Security and Performance of Proof of Work
Blockchains,» chez Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security, New

York, NY, USA, 2016.

[12] S. King and S. Nadal, "PPCoin: Peer-to-Peer Crypto-Currency

with Proof-of-Stake," Self-published paper, p. 6, 2012.

[13] Maker, «The Dai Stablecoin System,» [Online]. Available:
https://makerdao.com/whitepaper/DaiDec17WP.pdf, 2017.

[14] A. Biryukov, D. Khovratovich et S. Tikhomirov, «Findel: Secure
Derivative Contracts for Ethereum,» chez Financial Cryptography

and Data Security, vol. 10323, M. Brenner, K. Rohloff, J.

Bonneau, A. Miller, P. Y. A. Ryan, V. Teague, A. Bracciali, M.
Sala, F. Pintore et M. Jakobsson, Éds., Cham, Springer

International Publishing, 2017, p. 453–467.

[15] C. Liu, K. K. Chai, E. T. Lau et Y. Chen, «Blockchain Based
Energy Trading Model for Electric Vehicle Charging Schemes,»

chez Smart Grid and Innovative Frontiers in Telecommunications,

vol. 245, P. H. J. Chong, B. Seet, M. Chai et S. U. Rehman, Éds.,
Cham, Springer International Publishing, 2018, p. 64–72.

[16] Gods Unchained TCG. [Online]. Available:

https://godsunchained.com

[17] Z. Duan, H. Mao, Z. Chen, X. Bai, K. Hu et J.-P. Talpin, «Formal

Modeling and Verification of Blockchain System,» chez

Proceedings of the 10th International Conference on Computer
Modeling and Simulation, New York, NY, USA, 2018.

[18] T. Abdellatif et K. Brousmiche, «Formal Verification of Smart

Contracts Based on Users and Blockchain Behaviors Models,»
chez 2018 9th IFIP International Conference on New

Technologies, Mobility and Security (NTMS), 2018.

[19] K. K. Ramachandran et B. Sikdar, «A Queuing Model for
Evaluating the Transfer Latency of Peer-to-Peer Systems,» IEEE

Transactions on Parallel and Distributed Systems, vol. 21, p. 367–

378, 3 2010.

[20] CryptoKitties, CryptoKitties | Collect and breed digital cats!.

[Online]. Available: https://www.cryptokitties.co

[21] Cryptocurrency Exchange EtherDelta Hacked in DNS Hijacking
Scheme, 2017. [Online]. Available:

https://www.ccn.com/cryptocurrency-exchange-etherdelta-

hackedin-dns-hijacking-scheme/

[22] J. Benet, "IPFS - Content Addressed, Versioned, P2P File

System," arXiv:1407.3561 [cs], 7 2014.

[23] Tug Of War, An Unstoppable Game. [Online]. Available:
http://tugofwar.io

[24] T. Cerny, M. J. Donahoo et M. Trnka, «Contextual Understanding

of Microservice Architecture: Current and Future Directions,»

SIGAPP Appl. Comput. Rev., vol. 17, p. 29–45, 1 2018.

[25] W. Cai, Z. Wang, J. B. Ernst, Z. Hong, C. Feng et V. C. M. Leung,

«Decentralized Applications: The Blockchain-Empowered
Software System,» IEEE Access, vol. 6, p. 53019–53033, 2018.

[26] G. S. Ramachandran et B. Krishnamachari, «A Reference

Architecture for Blockchain-based Peer-to-Peer IoT
Applications,» arXiv preprint arXiv:1905.10643, 2019.

[27] H. Ugarte, A more pragmatic Web 3.0: Linked Blockchain Data,

2017.

[28] J. Pfeffer, «EthOn—introducing semantic Ethereum,» blogpost,

https://media.consensys.net/ethon-introducing-semantic-

ethereum-15f1f0696986#.ttvx7c83i, 2017.

[29] EverdreamSoft, everdreamsoft/sandra. [Online]. Available:

https://github.com/everdreamsoft/sandra

[30] S. A. White, «Introduction to BPMN,» Ibm Cooperation, vol. 2, p.
0, 2004.

[31] J. Solís-Martínez, J. P. Espada, N. García-Menéndez, B. C. Pelayo

G-Bustelo and J. M. Cueva Lovelle, "VGPM: Using business
process modeling for videogame modeling and code generation in

multiple platforms," Computer Standards & Interfaces, vol. 42, p.

42–52, 11 2015.

[32] C. Politowski, L. Fontoura, F. Petrillo et Y.-G. Guéhéneuc, «Are

the Old Days Gone?: A Survey on Actual Software Engineering

Processes in Video Game Industry,» chez Proceedings of the 5th
International Workshop on Games and Software Engineering,

New York, NY, USA, 2016.

[33] B. Magri, C. Matt, J. B. Nielsen and D. Tschudi, "Afgjort – A

Semi-Synchronous Finality Layer for Blockchains," Self-

published paper, p. 44, 2019.

[34] G. Decker et F. Puhlmann, «Extending BPMN for Modeling

Complex Choreographies,» chez On the Move to Meaningful

Internet Systems 2007: CoopIS, DOA, ODBASE, GADA, and IS,
Berlin, 2007.

[35] M. Zamani, M. Movahedi et M. Raykova, «RapidChain: Scaling

Blockchain via Full Sharding,» chez Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications

Security, New York, NY, USA, 2018.

[36] J. Poon and T. Dryja, "The Bitcoin Lightning Network: Scalable
Off-Chain Instant Payments," p. 59, 2016. [Online]. Available:

https://www.bitcoinlightning.com/wpcontent/

uploads/2018/03/lightning-network-paper.pdf

[37] L. Besançon, C. Ferreira Da Silva et P. Ghodous, «Towards

Blockchain Interoperability: Improving Video Games Data

Exchange,» chez . IEEE International Conference on Blockchain
and Cryptocurrency, Seoul, 2019.

[38] R. Balzer et N. Goldman, «Principles of Good Software

Specification and Their Implications for Specification
Languages,» chez Proceedings of the May 4-7, 1981, National

Computer Conference, New York, NY, USA, 1981.

[39] J. Zahnentferner, «Chimeric Ledgers: Translating and Unifying
UTXO-based and Account-based Cryptocurrencies.,» IACR

Cryptology ePrint Archive, vol. 2018, p. 262, 2018.

[40] A. E. Elo, The rating of chessplayers, past and present, Arco Pub.,
1978.

[41] D. J. Barnes et J. Hernandez-Castro, «On the limits of engine

analysis for cheating detection in chess,» Computers & Security,
vol. 48, pp. 58-73, 2015.

[42] N. F. Noy, M. Crubézy, R. W. Fergerson, H. Knublauch, S. W. Tu,

J. Vendetti et M. A. Musen, «Protégé-2000: an open-source
ontology-development and knowledge-acquisition environment.,»

chez AMIA Annual Symposium Proceedings, 2003.

[43] Workflow and Decision Automation Platform. [Online]. Available:
https://camunda.com/

