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Abstract

Community detection in multilayer networks aims to identify groups of well-connected
nodes across multiple layers. While existing methods have been developed to deal with large
graphs with few layers (typically less than 10), many real-world datasets are structured by
transitive relationships that give rise to networks with thousands of extremely dense layers
(e.g. co-citation networks, IMDb actor graphs, co-reference information network, social net-
works). In addition, in these datasets the layers are often associated with textual summaries
which provide important and hitherto unexploited information on the nature of the relation
encoded by the layer. In this paper, we propose a new method which exploits the text asso-
ciated with the layers in order to identify communities grouping together nodes connected
through several semantically close layers. The method consists in embedding layer textual
information in an Euclidean space, and to use it to group together, in the same commu-
nity, nodes belonging to semantically close layers. To that end, we develop a pattern mining
approach that extracts communities from numerical data. This approach, which mixes both
symbolic and numeric techniques, is particularly well suited to identify communities in mul-
tilayer graphs. Indeed, we show that it obtains more diverse and better quality communities
than those obtained by state-of-the-art competitors on datasets where ground truth is known.
We also show that taking into account the semantic information improves the quality of the
communities.
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networks analysis.
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1. Introduction

The search for communities in graphs has given rise to numerous research works [1].
Indeed, communities, or groups of nodes similar by their strong connectivity, make pos-
sible to structure a graph into fairly independent components that facilitate its analysis.
During the last decade, driven by the study of complex systems coming from various ap-
plication domains (biology, computer science, engineering, economics, politics, sociology,
etc.), graphs representing real-world systems have been enriched with additional informa-
tion. First, attributes have been associated to nodes and community detection methods
have been extended to the search of dense and homogeneous communities in terms of at-
tribute values [2, 3]. Networks have also been enriched with additional information on
the connections between nodes, as multiple bonds between any two nodes may exist, re-
flecting different kinds of relationships. Such multilayer networks are made of multiple
interdependent graphs, where each graph stands for one aspect of the relationships. Sev-
eral methods have been proposed to address community detection problem in multilayer
networks [4, 5], as well as for multiplex networks [6], where all the layers share an identical
set of nodes.

However, an aspect very widespread in real-world graphs has been little considered so
far: The fact that many relationships between nodes are transitive. For example, if we
consider family networks, the relationships are transitive that is to say if persons a and b
are relatives and persons b and c are also parents, then a and c are from the same family as
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well. It is the case for many other network types, e.,g. co-citation or co-purchase networks.
If we consider that each layer of the graph corresponds to a group of nodes completely
connected by the transitive relation, communities in such a multilayer network correspond
to new groups of nodes which appear simultaneously in different layers.

While trying to analyze these real-world networks, we noticed that each layer is gener-
ally associated to textual unstructured data that characterize and contextualize the inter-
action. Several examples are given in [7] where the multilayer networks result from the
combination of multiple information sources. For example, when a co-author and a co-
citation networks are combined, each layer is also associated with additional information
such as the conference venues where the paper was published, its keywords or abstract.
Another example concerns social networks where layers represent different types of social
relationships like “friends” or “colleagues”. The additional information associated with
the layers is then the messages exchanged between group members. Three real-world ex-
amples are considered in our experiments which illustrates the numerous real contexts
where one has a multilayer graph with transitive relationships and where semantic infor-
mation is associated to layers. This information is valuable and can be used when building
communities to group nodes that are often related to other nodes in layers that have sim-
ilar characteristics. Taking into account the semantic similarity between the layers makes
it possible to create communities which group together nodes appearing in semantically
close contexts, for example authors who have co-authored articles on analogous subjects.

In the following, we present the method MIMETIC (coMmunities In Multilayer networks
using sEmanTIC) to detect communities of nodes across semantically similar layers. Each
layer is supposed to be composed of a clique of nodes. As said before and illustrated in
the experiments, this structure is natural in many real contexts. If however the analyzed
data did not lend itself easily to this modeling, we can follow the way paved by [8], and
compute semantic communities in each layer using for example [3], each obtained commu-
nities being a layer for our method. MIMETIC uses the semantic to guide the community
construction and also to provide semantic information on the discovered communities.
Taking semantics into account makes the detection of communities more robust. Indeed,
building the communities on the sole topology of the network, information that can be
noisy, makes the communities sensitive to epiphenomenon. Considering the semantic as-
sociated to layers can attenuate this phenomenon and increase the community quality, as
we show in our experiments. MIMETIC consists in computing embedding in an Euclidean
space of the textual information associated to each layer. We use a similarity measure be-
tween vectors as a proxy for the membership relation of nodes to layers. This results in a
numerical relationship on which we compute communities using top-k diversified interval
patterns. A community is then a set of nodes which have a high membership value for the
same set of layers of the graph. As it is verified in the experiments, the obtained communi-
ties are the most important of the network and are obtained in a time of one or two orders
of magnitude less than that of the competitors. We also show that the textual information
associated with the layers can complement the network structure, leading to more accurate
communities with respect to ground truth, less prone to noise effects.

The paper presents four contribution: (1) the formalization of the problem of detect-
ing communities in transitive multilayer networks associated with textual data, problems
which are very widespread in practice; (2) the use of efficient NLP techniques to evaluate
the similarity between two layers in a discriminating way; (3) the proposal of an original
method which inherits from the mining of closed interval patterns to identify k diverse
communities; (4) experiments which show the capacities of the proposed method to iden-
tify communities on three large very different datasets and with better results than the
existing methods.
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The rest of the paper is structured as follows: Section 2 discusses related work. Sec-
tion 3 presents the method. Section 4 describes our experiments and explains the results.
Section 5 concludes and gives directions for future work.

2. Related Work

Communities in graphs denote groups of nodes that are more strongly or frequently
connected among themselves than with the remainders. There are many methods to de-
compose a single layer network into communities, and we refer to [1] as a review of this
field. The identification of communities in a graph proceeds from a Cartesian approach
consisting in breaking down a graph into a set of smaller-sized modules to facilitate anal-
ysis. However, many complex systems are composed of multiple layered networks, where
each layer represents one of many possible types of interactions. In order to determine
communities in this type of graph, we can distinguish between local methods, which build
a single community around a few seed nodes (e.g., [9]), from global methods which build
communities on the whole network. Among the latter, [6, 10] classify the methods into
three main categories. First, the flattening methods collapse the layers’ information into
a simple weighted graph and process it with usual single network community detection
methods. Such approaches have the major default to lose information on the layers from
which the aggregated links originate [11]. Second, aggregation methods discover commu-
nities in each layer independently and then merge them with an aggregation procedure.
EMCD [12], that relies on the clustering ensemble paradigm, and ABACUS [8], based on
frequent itemset mining, are examples of this category. Third, direct methods compute
communities at once on the multilayer network. Mucha et al. [13] extend the modularity
function to multilayer graphs, by coupling communities in neighboring layers. Edler et al.
[14] propose the information-theoretic and flow-based community detection method In-

fomap. They convert the community detection task into solving a coding problem follow-
ing the minimum-description-length principle. Using this compression-based framework,
they are able to compare how much different representations compress modular flows us-
ing random walks. Communities in multilayer networks can also be identified using graph
embedding approaches. One of them, MNE (Multiplex Network Embedding) [15], gen-
erates a layer-wise embedding for every node and layer, which combines an embedding
shared across all the layers and that describes the node globally, with a layer-wise embed-
ding. The obtained embedding represents the information of the multilayer graph into
an Euclidean space that preserves proximity information. Appropriate distance measures
between embedded vectors make possible to identify communities.

A very important aspect of multilayer graphs has so far been little taken into account
by community detection methods: the semantics associated with each layer. Indeed, each
relation, which corresponds to a layer of the network, has particular semantics making
certain layers close or on the contrary more distant from others. As explained by Bothorel
et al. [11], the analysis of real-world multilayer graph is made difficult by the fact that
a large number of semantically different layers are considered all-together. With their
MiMag method, Boden et al. [7] propose a first contribution to take into account attributes
associated with layers when building communities. Their communities satisfy both aspects
of structural density and edge label similarity. To that end, communities are enforced to
be γ-quasi-cliques whose edge labels vary at most by a certain threshold w. Redundancy
is avoided by selecting only the most interesting, non-redundant subgraphs. However, as
we show in the experiments, the communities extracted by MiMag are not of very good
quality and do not allow the ground truth to be identified when it is known. Taking into
account a simple numerical value associated with the layers is not sufficiently informative.
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This is why we propose in this article a method based on the semantic analysis of texts
describing the layers to group those that have similar purposes.

3. Detection of communities in attributed multilayer graph

Multilayer graphs encode several relationships between a set of nodes. Different layers
may capture similar phenomenon and reinforce the relationships observed between nodes.
It is known that the links observed in a graph are prone to noise and this problem can be
mitigated by crossing several sources of information in order to have a set of concordant
hypotheses on the membership of a subset of nodes to the same community. This is what
we propose to do using the concept of attributed multilayer graph.

Definition 1 (Attributed Multilayer Graph). An attributed multilayer graph G is a set of
layers L = {1, . . . ,d}, each associated (1) to a graph Gi = (Vi ,Ei) with a transitive relationship
Ei = Vi × Vi between nodes, and (2) to a text, denoted Texti , that describes the content of the
information encoded by the layer.

This graph model is widespread and can be used in various contexts. For example, let
us consider a co-citation network, where nodes stand for articles. Two nodes are linked by
an edge in the layer i if the corresponding articles are cited by a same article that coincides
with layer i. The text describing layer i can be the title or the abstract of the paper. Another
example concerns social networks such as Twitter where users can be grouped into lists.
Each list can be modeled as a layer, and two nodes, that stand for two users, are linked
in the graph i if they belong to the list i. The title and description of the list are used as
attribute of i. Thus, each layer corresponds to a source of information on the relationship
between nodes. To exploit this type of graph, we could derive a weighted graph in which
the weight of the edges would correspond to the number of layers in which the adjacent
nodes are connected. However, as discussed by [11], this approach can hide relevant in-
formation, such as the fact that certain layers of the graph are more important than others
in defining a community, by scrambling the semantic information associated with each
layer. This is why we propose an approach which extracts the communities directly on the
multilayer network by exploiting the semantic similarity of the layers.

Definition 2 (Semantic similarity between layers). Let Sim be a similarity measure between
two layer descriptions: ∀i, j ∈ L, Sim(Text(i),Text(j)) ∈ [0,1] and Sim(Text(i),Text(i)) = 1.

The way the similarity is computed between layers is detailed below. Now, to form
communities in an attributed multilayer graph, we propose to group nodes that are con-
nected in the same layer or in semantically close layers. This process is based on a layer
membership function defined as follows:

Definition 3 (Membership function). Given an attributed multilayer graph G = {(Gi ,Texti) |
i ∈ L}, the membership function M(v, i) of a node v (v ∈

⋃d
k=1Vk) to a layer i is defined by:

M(v, i) = 1 if v ∈ Vi ,
M(v, i) = max

k|v∈Vk
Sim(Texti ,Textk), otherwise.

Example 1. Let us consider the attributed 3-layers graph in Figure 1: G = {(G1,Text1), (G2,Text2),
(G3,Text3)} such that Sim(Text1,Text2) = 0.2, Sim(Text1,Text3) = 0.9 and Sim(Text2,Text3) =
0.7. Considering node a such that a ∈ G1, a ∈ G2, and a < G3, we have

M(a,3) =max(Sim(Text1,Text3),Sim(Text2,Text3)) = 0.9
Figure 1 provides the derived numerical dataset and two examples of communities.
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Layer 1 Layer 2 Layer 3
a 1.0 1.0 0.9
b 1.0 0.0 0.9
c 1.0 0.0 0.9
d 1.0 0.7 1.0
e 0.9 1.0 1.0
f 0.9 1.0 1.0

Nodes
Layers and interval
values

a b c d
(Layer 1 )[1.0,1.0]
(Layer 3)[0.9,1.0]

d e f
(Layer 1)[0.9,1.0]
(Layer 2)[0.7,1.0]
(Layer 3)[1.0,1.0]

Multilayer graph Numerical dataset Communities

Figure 1. Example of an attributed 3-layer graph, its corresponding numerical dataset,
and two examples of communities (Sim(Text1,Text2) = 0.2, Sim(Text1,Text3) = 0.9 and
Sim(Text2,Text3) = 0.7).

3.1. Computing similarities between textual attributes

To take advantage of the textual information associated with each layer, we propose
to use recent machine learning techniques. The goal is to create a text embedding that
synthesizes the semantics of the text into a single vector. Unsupervised techniques have
been proposed to perform this type of task, such as Word2Vec [16]. But the limits of
these approaches are that they do not take into account the context of the words when
embedding. More recent methods consider the context of the word so that the vector of
a polysemous word is closer to words with a similar meaning depending on the context.
Learning such models is very resource-intensive, and pre-trained models are now avail-
able, offering significant improvements over vectors learned from scratch. Indeed, these
models allow even low resource tasks to benefit from deep learning architectures allowing
the same pre-trained model to successfully tackle a wide range of NLP tasks. The advan-
tage of these approaches is that the parameters are not learned from random initialization,
but improved from the pre-trained models to be more suited to the considered problem.

We use the deep learning framework for natural language processing BERT1 (Bidirec-
tional Encoder Representations from Transformers) [17], already pre-trained on BooksCor-
pus (800M words) and English Wikipedia. We fine-tune this model on the texts describing
the layers. This makes the model more specific and increases the dispersion of the gen-
erated embedding in the associated vector space. The similarities between the BERT em-
beddings of layer’s attributes are then obtained by the cosine distance and are used as Sim
measure in the membership function.

3.2. Computing communities in numerical dataset with interval patterns

We propose to identify communities in multilayer graphs based on the membership
function. Our objective is to identify groups of nodes that share common high membership
values to one same subset of layers. To this end, we build a numerical dataset that contains
values of membership M(v, i) of nodes v ∈ V to layers i ∈ L. These membership values are
based on similarity measures between BERT embeddings of the layers’ attributes. Finding
communities in the multilayer network is then equivalent to extracting closed interval
patterns from the numerical dataset [18]. This approach defines communities as closed
patterns that have both an intention specifying intervals of membership values for the
layers; and an extension which is the set of nodes that have membership values inside the
intervals for all the layers. Thereby, the communities are well characterized by the layer
intervals and can be interpreted as we will see in the experiments.

Definition 4 (Interval patterns). Let us consider the numerical dataset crossing the nodes of
V =

⋃d
i=1Vi with the layers of L and whose entries are the values M(v, i) with v ∈ V and i ∈ L

1bert-base-uncased: https://huggingface.co/transformers/pretrained_models.html
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(sse Definition 3). An interval pattern I is a vector of d intervals 〈[ai ,bi]〉i∈{1,...,d}. A node v ∈ V
belongs to the support of I iff ∀i ∈ {1, . . . ,d},M(v, i) ∈ [ai ,bi]. The support of I is denoted φ(I).

As the value domain of the membership function is [0,1], the support of the interval
pattern I =

�d
i=1[0,1] is the whole set of nodes V . There may exist several interval patterns

with the same support. With the following Galois connection, we restrict interval patterns
to closed ones without loss of information.

Definition 5 (Closed interval patterns). There is a Galois connection on the interval pattern
language, defined by φ(I) = {v ∈ V | M(v, i) ∈ [ai ,bi], ∀[ai ,bi] ∈ I} and, for N ⊆ V , ψ(N ) =
〈[ai ,bi]〉 with ai = minv∈N M(v, i) and bi = maxv∈N M(v, i). A closed interval pattern satisfies
ψ(φ(I)) = I .

The number of potential closed interval patterns in a numerical dataset is huge. It is
necessary to define a quality measure to only keep patterns that correspond to interesting
communities in the multilayer network. Recalling that the patterns we are looking for are
groups of nodes with high membership values on a subset of layers, we only consider half
interval patterns with bi = 1 for all intervals. Among the intervals, the ones that bring
some information are those with ai , 0. Indeed, such intervals makes it possible to identify
a community. So, we propose to evaluate the quality of a closed interval pattern as the sum
of the membership values of the nodes in its support on the intervals with ai , 0.

Definition 6 (Top-k communities with respect to measureQ). A community is made of nodes
having a high membership value on the intervals that are restricted on the left. We can measure
this thanks to the function Q defined as:

Q(I) =
d∑

i=1, ai>0

∑
v∈φ(I)

M(v, i).

The top-k communities are the k closed interval patterns with maximal values on Q.

In our view, communities have also to be different from one another. We can measure
the similarity between two communities by the proportion of their common nodes:

Jaccard(I, J) =
φ(I)∩φ(J)
φ(I)∪φ(J)

.

Two communities are diversified if they have a proportion of common nodes that is lower
than a threshold δ. Thus, we compute a set of k communities, each containing at least α
nodes. The communities have also to be diversified two by two, and if a pattern is excluded
from the set because it is similar to another one, then we preserve the one of greatest value
on Q. This is formalized in the following definition.

Definition 7 (Top-k diversified communities). Let S be the set of closed interval patterns.
Given three parameters, σ , δ and k, we compute the set K of top-k diversified communities such
that (1) K is of size k with K ⊆ S ; (2) ∀I ∈ K, |φ(I)| ≥ σ , (3) ∀I, J ∈ K, Jaccard(I, J) < δ and (4)
∀I ∈ K, if ∃J ∈ S such that Jaccard(I, J) ≥ δ, then Q(I) ≥Q(J).

An efficient algorithm to compute closed interval patterns has been proposed in [18].
It avoids to generate several times the same closed interval pattern by using a canonicity
test according to lectic order < on the set L of layers: if a pattern I has been generated
by a change on attribute i, we consider that it is canonically generated iff I and ψ(φ(I))
do not differ on any attribute h such that h < i. The fact that ψ(φ(I)) differ from I on at
least one attribute h ≤ index is denoted Closed ≺index I in Algorithm 1 and leads to stop
the recursion (see line 2). The recursion is also stopped when the support of the pattern
is below σ , as none of the patterns generated by the following recursive calls can have a
support higher than the threshold.
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Algorithm 1: MIMETIC(I, σ , k, δ, index, minQ, K)
Input: I is an interval pattern generated at the previous step with a minimal change on layer

numbered index. σ , k and δ are fixed thresholds, minQ is a dynamic threshold on Q,
and K is the current set of top-k diversified communities.

Output: K the set of top-k diversified communities.
1 Closed← ψ(φ(I))
2 if (|φ(I)| < σ ) or (Closed ≺index I) or (UBQ(I) <minQ) then
3 return
4 TopKDiv(K, Closed, k, δ, minQ)
5 for i = index to d do
6 [a,b]← Closed[i]
7 if a = b then
8 Continue
9 c← nextValue(i,a)

10 P atL← [1 . . . i − 1][c,b][i + 1 . . .d]
11 MIMETIC(P atL, σ , k, δ, i, minQ, K)

We extend this algorithm by adding another condition that may stop the recursion: the
fact that an upper bound of Q, noted UBQ, is less than minQ, an internal threshold that
is dynamically updated by the algorithm when computing the top-k communities. Let
us define this upper bound UBQ. During the enumeration process of Algorithm 1, the
interval pattern I with [ai ,bi] as ith interval is specialized in an interval pattern J with ith

interval [ci ,di] such that ai < ci and bi > di . For all such J , we have:

Q(J) ≤
index∑

i=1, ai>0

∑
v∈φ(J)

M(v, i) +
d∑

i=index+1

∑
v∈φ(J)

M(v, i)

≤
index∑

i=1, ai>0

∑
v∈φ(I)

M(v, i) +
d∑

i=index+1

∑
v∈φ(I)

M(v, i) =UBQ(I). (3.1)

Indeed, for the intervals that have not been enumerated so far, we can sum all memberships
values. Furthermore, as φ(J) ⊆ φ(I), we can also upper bound Q(J) by taking the sum over
the vertices in the support of pattern I .

Thus, in line 4 of Algorithm 1, Closed is a candidate community and the function Top-
KDiv ensures that the set of returned communities contains the top k diversified communi-
ties (see Algorithm 2). In lines 5 to 11, it generates recursively the next candidate patterns
by considering the next interval (line 6). This new interval is a specialization of the pre-
vious one by increasing the value of a (lines 9 and 10), the left hand-size interval bound.
MIMETIC is recursively called in line 11.

The first call is MIMETIC(I , σ , k, δ, 1, 0, ∅) with I =
�

i[0,1].
The function TopKDiv (see Algorithm 2) computes the top-k diversified communities.

It loops over the ordered list of k already found diversified communities (lines 4 to 10)
and stores the ones that are similar to pattern Closed in the variable similarPatterns. If a
similar pattern has a higher Q value than Closed, the loop stops as pattern Closed will not
be inserted to the list K (lines 8 and 9). If there is no similar pattern in K, either (1) Closed
will replace the worst pattern and minQ value is updated, if the size of K is k (lines 13 to
16), or (2) it will simply be added to K (line 18). If similar patterns exist and if Closed has
a higher Q value than all of them, then all of the similar patterns are removed and Closed
is inserted to K. Notice that minQ is only updated if the list K contains k patterns.
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Algorithm 2: TopKDiv(K, Closed, k, δ, minQ)

Input: K is a set ordered with respect to Q
of up to k diversified communities.
Output: K, the updated sorted list, as well as
the current value of minQ.

1 similarP atterns←∅
2 i← 0
3 isBetter← true
4 while i < |K| and isBetter do
5 J ← IP[i]
6 if Jaccard(J,Closed) ≥ δ then
7 insert(J, similarP atterns)
8 if Q(J) > Q(Closed) then
9 isBetter← f alse

10 i← i + 1

11 if (|similarP atterns| = 0) then
12 if (Q(Closed) ≥ δ) then
13 if (|K| = k) then
14 remove(K[0]),K)
15 insert(Closed,K)
16 minQ←Q(K[0])
17 else
18 insert(Closed,K)
19 else
20 if isBetter then
21 forall J ∈ similarP atterns do
22 remove(J,K)
23 insert(Closed,K)
24 if (|K| = k) then
25 minQ←Q(K[0])

4. Experimentation

We evaluate the performance of MIMETIC
2 on the following aspects: (1) Scalability:

How does MIMETIC performs on real-world networks of large size? (2) Effect of parame-
ters: What are the impact of the parameters on the communities quality? (3) Description
of the obtained communities: What are the characteristics of the communities? (4) Com-
parison with competitors: How does MIMETIC perform in comparison to state-of-the-art
methods on a dataset having ground-truth communities? (5) Impact of semantic on com-
munity quality: Does the use of semantic improve upon community detection? (6) Does
MIMETIC provide human-understandable network communities?

4.1. Description of the datasets and baselines for comparison

For our evaluation, we consider three real-world multilayer networks for which we have
a text that describes each layer. For one of them, we also have access to explicit ground-
truth community labels. Cit-HepTh3 is a citation network based on high-energy physics
theory papers where each paper corresponds to a layer and the referenced papers are the
nodes of the graph that are linked by a co-citation relation. Paper’s abstracts are used as
layer semantic description. IMDB4 is a movie database from which we derived a mul-
tilayer network of actors with movies as layers. Actors who play in the movie are part
of the layer. The layer’s descriptions are the movie’s synopsis. Wiki-Topcats3 is an in-
formation network derived from Wikipedia articles. Layers represent Wikipedia articles
and are attributed with the page’s title. Nodes of the layers are linked by a co-reference
relation. Each page is also associated to one or several categories that we use as ground-
truth communities. The availability of such ground-truth allows us to evaluate community
detection methods by quantifying the degree of agreement between the obtained and the
ground-truth communities. The table below lists the networks and their properties:

2
MIMETIC is implemented in Python and experiments are performed on 8 Intel(R) Xeon(R) W-2125 CPU @

4.00GHz cores 126GB main memory.
3https://snap.stanford.edu/data/
4
https://www.kaggle.com/stefanoleone992/imdb-extensive-dataset

https://www.kaggle.com/stefanoleone992/imdb-extensive-dataset
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Figure 2. Number of enumerated and pruned patterns, and running time (δ = 1, k = 15).

Dataset # nodes # edges # layers
average layers’
density

average density
with M(v, i) > 0

Cit-HepTh 13921 2336992 14932 1.61× 10−6 2.95× 10−6

Wiki-Topcats 10000 1561063 9891 3.16× 10−6 6.48× 10−5

IMDB 18125 65033 9975 3.96× 10−8 2.76× 10−3

We consider five competitors: MiMag [7], Mucha [13], EMCD[12], MNE[15] and In-

fomap[14], as discussed in section 2 following the classification in [6].

4.2. Algorithm evaluation

First, we consider the behavior of the algorithm MIMETIC on the datasets. Figure 2
presents the number of enumerated and pruned patterns (using the upper-bound UBQ
defined in equation 3.1) as well as the running time depending on σ . We can observe that
MIMETIC succeeds to extract communities for very low thresholds (between 0.5% and 5%
depending on the dataset) on the number of nodes per community. We see that the upper
bound on the Q measure makes it possible to prune a large number of patterns, espe-
cially when σ is low. Finally, we observe that computation time increases as the threshold
becomes very low, an expected behavior since, in this case, very small communities are
numerous.

Figure 3. Mean and standard deviation of Q and the number of communities w.r.t. δ (Top),
the number of nodes in the communities w.r.t. k (Bottom) for Cit-HepTh (σ = 100), Wiki-

Topcats (σ = 600) and IMDB (σ = 600) (default δ = 0.8, k = 15).
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4.3. Effect of parameters

Figure 3 shows the behavior of MIMETIC as a function of the parameters δ and k. Recall
that the diversity constraint requires that the proportion of nodes in common between two
communities is less than δ. Thus, when δ is small, the number of communities may be
less than k. Moreover, this constraint influences the quality of the communities, and, here
again, low values of δ induce lower values of Q. From these experiments, it appears that
δ = 0.8 is a good compromise between quality and fairly diverse communities. Let us
now consider the evolution of the quality of communities according to k. We observe that
we can extract a large number of communities with a regular decrease in their average
qualities. There is also a steady increase in the number of nodes present in at least one
community.

4.4. Describing the communities

Figure 4 shows the communities obtained on each dataset for different values of k. The
average number of nodes per community is shown on the first row. We can see that it re-
mains well above σ , even when k increases. The average number of layers per community
is shown on the second row. This number slowly decreases with k. It is quite small while
being greater than 1, indicating that a few layers are involved in each community. This
is because the generalized membership function of a node to a layer to which it does not
originally belong to is significant only if the two layers are semantically very similar. Oth-
erwise, we would have to bring together layers that are too different and do not correspond
to the same reality. The third row displays the mean and standard deviation of the Jaccard
index between community pairs. The communities in Cit-HepTh are very dissimilar, with
an average value around 0.10. For the other two datasets, the communities are a little more
similar, but the similarity decreases readily with k.

4.5. Comparing the communities of MIMETIC with those of competitors

To assess MIMETIC’s ability to identify relevant communities, we consider the Wiki-

Topcats dataset for which we have "ground-truth" communities. To compare the obtained
communities M with the ground-truth ones M? , we adopt the measure in [2]:

1
2|M? |

∑
mi∈M?

max
mj∈M

∆(mi ,mj ) +
1

2|M? |

∑
mj∈M

max
mi∈M?

∆(mi ,mj ).

Each community of a set is matched with its most similar community of the other set, with
∆ a similarity measure between two communities. We consider two standard metrics: the
F1 score and the Jaccard index. Hence, for each method, we obtain a score between 0 and
1, where 1 indicates the perfect recovery of ground-truth communities. As MiMag algo-
rithm throws an out-of-memory error when the number of layers is greater than 2500, we
consider a reduced Wiki-Topcats dataset made of the 50 categories with greatest number
of pages. To run MIMETIC, we fix k = 50 and set σ to 10 so as to obtain 50 communities for
different δ values from 0.2 to 0.8. Figure 5 (left) presents the results. We can observe that
MIMETIC performs very well on both metrics and succeeds to identify the 50 communi-
ties. MiMag method provides 4 communities that only cover 2% of the nodes. Mucha’s
approach produces 371 communities: One of 1192 nodes, 7 with around 40 nodes, and the
others with few nodes. The communities are not homogeneous in terms of page categories.
Infomap gives also results that are below for both measures. MNE, that computes em-
bedding vectors of the multilayer graph nodes while preserving their proximity, requires
a post-treatment to obtain communities. We use k-means with k = 50 to get communi-
ties. The obtained results are also very low. Finally, we do not report the results obtained
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Figure 4. Number of nodes (Top) and layers (Middle) per community. Mean and standard-
deviation of the Jaccard values between communities (Bottom) w.r.t. k for Cit-HepTh (σ =
100), Wiki-Topcats and IMDB (σ = 600) (δ = 0.8).

by EMCD as this method is not working properly when the number of layers exceeds 30
and returns one node per community. Regarding the execution time (Figure 5 Middle), all
methods are slower than MIMETIC.

Method Jaccard F1 score

MIMETIC

δ = 0.8 0.283 0.381
δ = 0.6 0.307 0.422
δ = 0.4 0.311 0.431
δ = 0.2 0.313 0.426

Mucha 0.137 0.187
MiMag 0.071 0.124
Infomap 0.197 0.285
MNE 0.036 0.070

MIMETIC-Bool MIMETIC/MIMETIC-Bool

δ Jaccard F1 score Jaccard F1 score
0.8 0.240 0.332 +17.9% +14.7%
0.6 0.224 0.315 +37.0% +33.9%
0.4 0.261 0.364 +19.1% +18.4%
0.2 0.265 0.374 +18.1% +13.9%

Figure 5. Wiki-Topcats: Adequacy to ground truth (Left); Running times in log(s) w.r.t. # lay-
ers (σ = 10, k = 50 and δ = 0.4) (Middle). Upturn of MIMETIC over MIMETIC-Bool (Right).

4.6. Does the semantic improve the quality of the communities?

To assess if the semantics has an influence on the quality of obtained communities, we
changed the membership function of Definition 3 so as M(v, i) = 0 if v < Vi . We call the
obtained method MIMETIC-Bool. Note that this method is equivalent to ABACUS[8]. We
set σ = 5 so as to obtain 50 communities for δ values between 0.2 and 0.8. Figure 5 (right)
presents the results and shows that using the semantic improves the quality of the returned
communities from 14% up to 37%.
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4.7. Examples on IMDB

We computed communities on a subset of 2000 movies involving 6847 actors of the
IMDB dataset. While MiMag, and Mucha return small communities that cover at most
2 layers (movies), MIMETIC (σ = 5, δ = 0.15) finds larger communities of 3 to up to 5
movies. The movies in a same community not only have common actors, but also share
the same category and have close synopsis. For example, we find a community of 12 actors
and 3 movies that all belong to the category “science-fiction" and have common words
in their descriptions such as “alien", “spaceship", “astronauts" and “planet". Another one
corresponds to "drama" with keywords “husband", “affair" and “love".

5. Conclusion

We introduced attributed multilayer graphs to endow multilayer networks with layer’s
semantic attributes. We defined a membership function to assess how semantically similar
nodes are across layers, and computed these similarities in practice with sentence em-
bedding. We proposed MIMETIC, that is build on closed interval patterns to fine top-k
diversified communities. We compared it to state-of-the-art methods on a dataset with
ground-truth communities and obtained more diversified and higher quality communi-
ties. We also demonstrated that considering the similarity between layers improves the
quality of the communities, and all of that in less running time.
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