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Postsynaptic ionotropic receptors critically shape synaptic currents and
underpin their activity-dependent plasticity. In recent years, regulation
of expression of these receptors by slow inward and outward currents me-
diated by gliotransmitter release from astrocytes has come under scrutiny
as a potentially important mechanism for the regulation of synaptic infor-
mation transfer. In this study, we consider a model of astrocyte-regulated
synapses to investigate this hypothesis at the level of layered networks of
interacting neurons and astrocytes. Our simulations hint that gliotrans-
mission sustains the transfer function across layers, although it decor-
relates the neuronal activity from the signal pattern. Overall, our results
make clear how astrocytes could transform neuronal activity by inducing
a lowfrequency modulation of postsynaptic activity.

1 Introduction

The involvement of glial cells, particularly astrocytes in synaptic activity,
has led to considering synapses as tripartite entities, where, along with
the pre- and postsynaptic terminal, the perisynaptic astrocyte is an ac-
tive partner in the modulation of synaptic transmission (Perea, Navar-
rete, & Araque, 2009). Astrocytes can indeed release neuroactive molecules,
dubbed “gliotransmitters,” in response to synaptic activity. Gliotransmit-
ters, in turn, modulate synaptic activity and, thereby, synaptic plasticity
(De Pittà, Brunel, & Volterra, 2016). The reaction of astrocytes could also
facilitate the arrival of new information by modulating the dynamics at
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Plasticity and Information in Neuron-Astrocyte Networks 1971

Ranvier nodes’ level, as suggested by Lorenzo, Vuillaume, Binczak, and
Jacquir (2020). Astrocytes’ influence reaches the extrasynaptic areas, which
induces a modulation of the extrasynaptic depolarization and, once
again, synaptic plasticity (Papouin & Oliet, 2014). The boom of artificial
intelligence–based technology leads to increased use of spiking neural net-
works to understand information processing and implement their features
in many applications (Delorme, Gautrais, van Rullen, & Thorpe, 1999). Un-
derstanding how plasticity reacts and shapes information processing can
often lead to critical repercussions in machine learning and artificial intelli-
gence tasks. In this way, astrocyte influence over synaptic and extrasynaptic
plasticity appears to be highly relevant in the study of neural computation
(Alvarellos-González, Pazos, & Porto-Pazos, 2012; Sajedinia & Hélie, 2018).

A widely regarded learning paradigm, in both the biological and artifi-
cial context, is associative Hebbian learning, whereby the correlated firing
of pre- and postsynaptic neurons generates positive feedback that increases
the strength of the synaptic connection between those neurons (Dayan &
Abbott, 2001; Morris, 1999). Indeed, increasing or decreasing the weight
of synaptic signaling appears to be convenient when it comes to perform-
ing computational tasks. However, postsynaptic plasticity does not ex-
actly follow the Hebbian rule. At the biological level, this reinforcement
(or lack thereof) generally depends on activity-dependent modulations of
postsynaptic ionotropic transporters. At excitatory synapses, typically one
can find α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPAR)
and N-methyl-D-aspartate receptors (NMDAR). These receptors are known
to be numerous in the cortical pyramidal neuron (Abbott & Nelson, 2000).
Synaptic activity causes an increase in the concentration of calcium in the
postsynaptic button. This increase stimulates the traffic of the ionotropic
receptors, which than can be targeted by the neurotransmitters. AMPAR,
which contains GluA2 protein, are known to be numerous in the cortical
pyramidal neurons and impermeable to Ca2+ in the mature brain (Wright
& Vissel, 2012; Morita, Rah, & Isaac, 2013). This implies that their main con-
tribution is the depolarization of the postsynaptic membrane, which eases
the lifting of an Mg2+ block of NMDAR. The activation of NMDAR and
voltage-gated calcium channel (VGCC) is the main contribution in Ca2+

concentration (Malenka & Bear, 2004). When the NMDA receptors move
to extrasynaptic areas, they switch from presynaptic to astrocytic influence
(Papouin & Oliet, 2014). Gliotransmission contributes to depolarize the den-
dritic compartment’s membrane. This leads to postsynaptic ionotropic re-
ceptors’ opening through coupling conductance.

Glial cells can also form a network. Interastrocyte communication seems
to be only chemical (Scemes & Giaume, 2006), as astrocytes do not display
action potential generation. In the astrocyte’s network, astrocyte’s territory
is nonoverlapping (Bushong, Martone, Jones, & Ellisman, 2002). However,
the strictly chemical communication known as slow inward current (SIC)
could induce delayed and slower influence of the astrocyte’s network to
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1972 R. Villaume, J. Lorenzo, S. Binczak, and S. Jacquir

any linked synapse, which can be hard to study if the focus is only on
the neuron. Considering that synaptic plasticity depends on postsynaptic
membrane potential and that astrocyte-mediated SICs modulate this ac-
tivity indirectly, this work focuses on the involvment of gliotransmission
on AMPAR trafficking. In particular, the dynamics of the model for tripar-
tite synapse proposed by Stimberg, Goodman, Brette, and Pittà (2019) have
been enriched. This model distinguishes between intra- and extrasynapti-
cally located postsynaptic receptors. In a recent review, Kastanenka et al.
(2020) also considered how astrocytes modulate information processing.
The slow Ca2+ oscillation taking place in astrocytes makes them attuned
for slow dynamics. However, they may predominantly modulate fast neu-
ronal activity (Perea et al., 2016; Sardinha et al., 2017). Lenk et al. (2020)
investigated astrocyte’s connectivity influence over noisy neuronal activ-
ity. They showed that gliotransmission’s homeostatic effect decreases high
neuronal activity and increases low neuronal activity. Though this home-
ostatic influence appears critical, we intend to test the astrocytic signaling
impact on neuronal networks with various activities. We aim to perform a
step further toward signal processing by studying how a neuron-astrocyte
network processes an activity pattern. In this study, we investigate the glio-
transmission’s influence on several varying frequencies of signal patterns
processing. Then we consider how astrocytic gliotransmission modulates
AMPAR trafficking and the overall neuronal activity.

2 Method

This research is based on the modelization on several studies, which con-
tributed to different neural and astrocyte modeling. Though we tried to im-
plement the equations as close as possible to the original works, we adapted
some parameters to study neuron-astrocyte network activity. The postsy-
naptic bouton’s dynamics is based on Tewari and Majumdar (2012), the
AMPAR trafficking on Shouval, Castellani, Blais, Yeung, and Cooper (2002),
the dendritic compartment on Kepecs and Raghavachari (2002), the neu-
ron on Izhikevich (2003), and the astrocyte on Stimberg, Goodman et al.
(2019). The implementation details and parameter justification are in the
corresponding subsection. The latter study provided the simulation code
for astrocyte’s dynamics. We based our simulation code on theirs and con-
sider that the overall model extends theirs.

2.1 Neuron Model. A two-compartment model of neurons is consid-
ered with the soma and the dendritic arbor. The dendritic compartment
model is conductance based, while the neuron model is phenomenologi-
cal. This adaptation preserves neuronal dynamics for a large span of input
current dynamics (i.e., applied current and synaptic input) and stability re-
garding the time step of differential equations. Somatic neuronal dynamics
are defined using the model of neocortical pyramidal neuron proposed by
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Plasticity and Information in Neuron-Astrocyte Networks 1973

Izhikevich (2003):

C
dVs

dt
= k(Vs − Vrest )(Vs − vt ) − u + I + χ (2.1)

du
dt

= a(b(Vs − Vrest ) − u) (2.2)

if Vs ≥ Vθ , then

{
Vs = c

u = u + d,
(2.3)

where Vs is the membrane potential, u the recovery parameter, and a, b are
parameters that shape the sensibility of v and u, while c is the reset potential
and d the outward-inward currents. All parameter values are depicted in
Table 1.

The input current I in equation 2.1 is defined as

I = gc

P
(Vd − Vs)Asoma. (2.4)

We added a random Poisson stimulation (χ) to simulate random neuronal
spiking activity around 1 Hz. There is only one dendritic compartment.
The dendritic compartment has been implemented following the study of
Kepecs and Raghavachari (2002). We assume that the dendrite has a length
of 500 μm. This value is based on Fiala, Spacek, and Harris (1999). Given that
there is no maximal extent reported for pyramidal neurons, the value is the
average of all maximal extent reported. This parameter scales the synap-
tic input to the dendritic compartment (regarding the synaptic density re-
ported further) and does not affect the results. The dendritic compartment
is active, and the membrane potential Vd is estimated by solving

Cm
dVd

dt
= −ILeak − INaP − IKs − IKA

+ gc

1 − P
(Vs − Vd )

− Isyn − Iextrasyn, (2.5)

with gc the coupling conductance between the somatic and the dendritic
compartments (Kepecs & Raghavachari, 2002). The persistent sodium cur-
rent reads

INaP = gNar3
∞(Vd − VNa), (2.6)

r∞ = 1
1 + exp(−(Vd + 57)/5)

, (2.7)
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1974 R. Villaume, J. Lorenzo, S. Binczak, and S. Jacquir

Table 1: Parameters of Neuron and Dendrite Equations.

Symbol Description Value Unit [Ref.]

C Somatic membrane potential capacitance 100 pF [13]
Vrest Somatic membrane resting state −70 mV [13∗]
k Constant 1

R 0.7 pA.mV−1 [13]
vt Instantaneous threshold potential −50 mV [13∗]
vθ Threshold potential 30 mV [13∗]
a Recovery time constant 0.03 ms−1 [13]
b Constant 1

R −2 nS [13]
c Potential reset value −60 mV [13∗]
d Outward - inward currents 100 pA [13]
Kp Steepness of neurotransmitter release function 5 mV [9]
Vp Value at which the function is half-activated 2 mV [9]
Cm Dendrite membrane capacitance 1 μF.cm−2 [17]
gc Soma-dendrite coupling conductance 0.2 μA.cm−2 [17∗]
Mg2+ Magnesium block 1 mM [9]
dspine Spine density, assuming 2 per μm 7.96.e+5 cm−2 ∗
P Dendrite-soma surface’s ratio 0.1 [17]
gNa Sodium channel conductance 0.25 mS.cm−2 [17]
gKs Potassium channel conductance 0.1 mS.cm−2 [17]
gKA Potassium channel conductance 10 mS.cm−2 [17]
gAMPAR AMPAR conductance 0.35–1.0 nS [9]
gNMDAR NMDAR conductance 0.01–0.6 nS [9]
geNMDAR Extrasynaptic NMDAR conductance 0.01–0.6 nS [9]
gGABAR GABAR conductance 0.25 nS [9]
VNa Reversal potential −55 mV [17∗]
VK Reversal potential −80 mV [17∗]
VL Reversal potential −80 mV [17∗]
VAMPAR Reversal potential 0 mV [9]
VNMDAR Reversal potential 0 mV [9]
VGABAR Reversal potential −70 mV [9]
αAMPAR Binding rate 1.1 μM−1ms−1 [9]
βAMPAR Unbinding rate 0.19 ms−1 [9]
αNMDAR Binding rate 0.072 μM−1ms−1 [9]
βNMDAR Unbinding rate 0.0066 ms−1 [9]
αeNMDAR Binding rate 0.072 μM−1ms−1 [9]
βeNMDAR Unbinding rate 0.0066 ms−1 [9]
αGABAR Binding rate 5 μM−1ms−1 [9]
βGABAR Unbinding rate 0.18 ms−1 [9]

Notes: Ref. number identification: 9: Destexhe, Mainen, & Sejnowski, 1998; 13: Izhikevich,
2003; 17: Kepecs & Raghavachari, 2002. ∗: Experimentally adjusted.

and the two potassium currents

IKs = gKsq∞(Vd − VK ), (2.8)

q∞ = 1
1 + exp((Vd + 60)/10)

, (2.9)
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Plasticity and Information in Neuron-Astrocyte Networks 1975

IKA = gKAa3
∞b∞(Vd − VK ), (2.10)

a∞ = 1
1 + exp(−(Vd + 45)/6)

, (2.11)

b∞ = 1
1 + exp(−(Vd + 56)/15)

, (2.12)

the leak current

Ileak = gleak(Vd − VL), (2.13)

with Isyn the sum of current from the ith spine head and Iextrasyn the sum of
current from the extrasynaptic area near the ith spine head:

Isyn =
Nsyn∑
i=1

dspine(INMDARi + IAMPARi + IGABARi ), (2.14)

Iextrasyn =
Nsyn∑
i=1

dspineIeNMDARi , (2.15)

with Nsyn the number of synapses (20 in this study) and dspine the spine
density of a section of the dendritic compartment (i.e., with as much cross-
section as synaptic’s connection). The current in equations 2.14 and 2.15 is
estimated as

Ix = gxmxB(Vspine)(Vspine − Vx), (2.16)

and the ratio of receptors in the open state depends on the neurotransmit-
ters’ or gliotransmitters’ concentration:

dmx

dt
= αx.[T].(1 − mx) − βx.mx, (2.17)

[T] =
{

[T](Vpre) if AMPAR, NMDAR, GABAR

GA if eNMDAR.
(2.18)

with x = AMPAR, NMDAR, eNMDAR, GABAR (see Table 1 for the param-
eters’ values), and the magnesium block for NMDAR, eNMDAR current
(Jahr & Stevens, 1990) can be expressed, such as

B(Vspine) = 1

1 + exp(−0.062Vspine) [Mg2+]
3.57

. (2.19)
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1976 R. Villaume, J. Lorenzo, S. Binczak, and S. Jacquir

Though the magnesium concentration (i.e., [Mg2+]) could vary, in this study
we use a fixed value of 1 mM (see Table 1). Otherwise, B(Vspine) = 1 for
equation 2.16 (i.e., for AMPAR and GABAR).

In order to compute with large dt and to avoid computational instability,
we fixed Vspine = Vd. Thus, we assume that in the mean time of one time
step, Vspine and Vd membrane potentials reached the same value.

2.2 Neurotransmitter Release. To ease the computation, we use the es-
timation of neurotransmitter release given by Destexhe, Mainen, and Se-
jnowski (1998),

[T](Vpre) = Tmax

1 + exp(−(Vpre − Vp)/Kp)
, (2.20)

where Tmax is the maximal concentration of neurotransmitter in the synaptic
cleft, Vpre the presynaptic neuron’s voltage, and Kp and Vp can be found in
Table 1.

2.3 Synaptic Plasticity. Synaptic plasticity is based on the study of
Shouval et al. (2002). For simplicity, we only modeled the density expres-
sion of AMPAR (i.e., NAMPAR).

dNAMPAR

dt
= � − Nampar

τ
, (2.21)

with

� = 1 − 1

0.4
√

2π
. exp

(
−0.5

(
Capost − 0.3

0.25

)2
)

, (2.22)

τ = 0.14
1.2 + Ca0.61

post

, (2.23)

where equations 2.22 and 2.23 give the fixed point and the convergence time
for equation 2.21. Though the � function’s equation is not reported in Shou-
val et al. (2002), the authors underlined that a function with similar property
wouldn’t alter the plasticity dynamics (see Figure 1). As 0 ≤ NAMPAR ≤ 1, it
modifies the value for gAMPAR in equation 2.16:

gAMPAR = 0.35 + 0.65NAMPAR. (2.24)

which fits in the range reported in Table 1.
The postsynaptic Ca2+ (denoted Capost) dynamics read (Tewari & Majum-

dar, 2012)
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Plasticity and Information in Neuron-Astrocyte Networks 1977

Figure 1: Illustration of � as function of spine head’s Ca2+ concentration.

dCapost

dt
= f (Capost )

1 + θ
, (2.25)

where f (Capost ) includes membrane proteins, VGCC, and plasma mem-
brane calcium-dependent ATPases (PMCAs) responsible for the Ca2+ influx
and efflux such as

f (Capost ) = −ηINMDA + iR
2Fvspine

− spump, (2.26)

θ = btKendo

Kendo + Capost
2 , (2.27)

iR = gRB(NR, Po)(Vspine − VR), (2.28)

spump = ks(Capost − Carest
post ), (2.29)

where iR and spump account for influx and efflux, respectively, and B(NR, Po)
is a binomially distributed random number describing the VGCC open
probability, whenever Vspine is greater than activation threshold (i.e.,
−30 mV, Tewari & Majumdar, 2012; see Table 2 for parameters’ values). We
did not model Ca2+ diffusion between the postsynaptic spine head and the
dendritic compartment because this dynamic appeared to be unstable with
the time step used in the simulations. In this study, the astrocytic influence
is only made through NMDAR-induced depolarization of the dendritic
compartment.
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1978 R. Villaume, J. Lorenzo, S. Binczak, and S. Jacquir

Table 2: Parameters of Synaptic Plasticity Model Equations

Symbol Description Value Unit [Ref.]

η Fraction of Ca2+ current carried by NMDAR 0.057 [33]
Po VGCC open probability 0.52 [29]
Kendo Ca2+ affinity of Endogenous buffer 10 μM [16]
bt Total endogenous buffer concentration 200 μM [39]
VR Reversal potential of Ca2+ ion in spine 27.4 mV [36]
vspine Volume of dendrite spine 0.9048 μm3 [39]
Carest

post Resting postsynaptic Ca2+ concentration 100 nM [39]
ks Maximum PMCa efflux rate 100 s−1 [16]
gR Conductance of R-type channel 15 pS [29]
NR Number of R-type channels 6 [29]

Note: Ref. number identification: 16: Keller, Franks, Bartol, & Sejnowski, 2008;
29: Sabatini & Svoboda, 2000; 33: Schneggenburger, Tempia, & Konnerth, 1993;
36: Sochivko et al., 2002; 39: Tewari & Majumdar, 2012.

2.4 Astrocyte Model. We have used the G-ChI model for astrocyte Ca2+

dynamics (Li & Rinzel, 1994; Shuai & Jung, 2002). According to the study
by Stimberg, Goodman et al. (2019), the astrocyte Ca2+ (denoted Ca) is esti-
mated as

dCa
dt

= Jr + Jl − Jp, (2.30)

dh
dt

= h∞ − h
τh

(1 + ξ (t)
√

τh), (2.31)

with ξ (t) a white noise and where

Jr = �Cam3
∞h3(CaT − (1 + �A)Ca), (2.32)

Jl = �L(CaT − (1 + �A)Ca), (2.33)

Jp = OPH2(Ca, KP), (2.34)

with

m∞ = H1(Ca, d5)H1(IP3, d1), (2.35)

h∞ = d2
IP3 + d1

d2(IP3 + d1) + (I + d3)Ca
, (2.36)

τh = IP3 + d3

�2(IP3 + d1) + O2(I + d3)Ca
, (2.37)

and the astrocytic inositol 1,4,5-trisphosphate (denoted IP3) is estimated as
(De Pittà, Goldberg, Volman, Berry, & Ben-Jacob, 2009; Goldberg, De Pittà,

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/7/1970/1925344/neco_a_01399.pdf by IN
IST-C

N
R

S user on 15 N
ovem

ber 2022



Plasticity and Information in Neuron-Astrocyte Networks 1979

Volman, Berry, & Ben-Jacob, 2010):

dIP3

dt
= Jβ + Jδ − J3K − J5P + Ji

net, (2.38)

Jβ = OβA, (2.39)

Jδ = Oδ

κδ

κδ + IP3
H2(Ca, Kδ ), (2.40)

J3K = O3KH4(Ca, KD)H1(IP3, K3), (2.41)

J5P = �5PIP3, (2.42)

with H the Hill function Hn(x, K) = xn

xn+Kn , and Ji
net is the IP3 diffusion from

neighboring astrocytes, estimated as

Ji
net =

NA(i)∑
j=1

−FA

2

(
1 + �i jIP3

|�i jIP3| tanh

(
|�i jIP3| − IPθ

3

IP3scale

))
, (2.43)

where NA(i) represents the number of astrocytes neighbor of the ith astro-
cyte. The fraction of activated astrocyte receptors (see equation 2.39) reads
(Wallach et al., 2014):

dA

dt
= ON[T]i(1 − A)

− �N(1 + ζH1(Ca, KKCa))A, (2.44)

where [T]i is the released glutamate concentration, summed over all
synapses managed by the ith astrocyte. See Table 3 for parameter details
and values.

2.5 Gliotransmission. The gliotransmitter’s available and released re-
sources (see equations 2.17 and 2.18) are estimated as (De Pittà, Volman,
Berry, & Ben-Jacob, 2011):

dxA

dt
= �A(1 − xA), (2.45)

dGA

dt
= �eGA, (2.46)

which are updated when astrocyticCa2+ concentration crosses the threshold
Caθ (see Table 4) (Stimberg, Goodman et al., 2019):

GA ← GA + ρeGTUAxA, (2.47)

xA ← xA(1 − UA), (2.48)
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1980 R. Villaume, J. Lorenzo, S. Binczak, and S. Jacquir

Table 3: Parameters of Astrocyte’s Equations.

Symbol Description Value Unit [Ref.]

CaT Total cell free Ca2+ content 2 μM [38]
ρa ER to cytoplasm volume ratio 0.18 [38]
d1 IP3 association constant 0.13 μM [38]
d2 Ca2+ inactivation dissociation constant 1.05 μM [38]
d3 IP3 dissociation constant 0.9434 μM [38]
d5 Ca2+ activation dissociation constant 0.08 μM [38]
O2 IP3R binding rate of Ca2+ inhibition 0.2 μMs−1 [38]
�Ca Maximal rate of Ca2+ release by IP3Rs 6 s−1 [38]
�L Maximal rate of Ca2+ leak from the ER 0.1 s−1 [38]
OP Maximal Ca2+ uptake rate by SERCAs 0.9 μMs−1 [38]
KP Ca2+ affinity of SERCAs 0.05 μM [38]
Oβ Maximal rate of IP3 production by PLCβ 0.5 μMs−1 [38]
Oδ Maximal rate of IP3 production by PLCδ 0.6 μMs−1 [38]
κδ Inhibition constant of PLCδ by IP3 1.5 μM [38]
Kδ Ca2+ affinity of PLCδ 0.1 μM [38]
O3K Maximal rate of IP3 degradation by IP3 − 3K 4.5 μMs−1 [38]
K3K IP3 affinity of IP3 − 3K 1 μM [38]
KD Ca2+ affinity of IP3 − 3K 0.7 μM [38]
�5P Maximal rate of IP3 production by IP5P 0.05 s−1 [38]
ON Agonist binding rate 0.3 μM−1s−1 [38]
�N Maximal inactivation rate 0.5 s−1 [38]
KKCa Ca2+ affinity of PKC 0.5 μM [38]
ζ Maximal reduction of receptor affinity by PKC 10 [38]
FA GJC IP3 permeability 2 μMs−1 [18]
IPθ

3 Threshold gradient for IP3 diffusion 0.3 μM [38]
IP3scale Scaling factor of diffusion 0.05 μM [38]

Note: Ref. number identification: 18: Lallouette, De Pittà, & Berry, 2019; 38: Stimberg,
Goodman et al., 2019.

2.6 Network Setups. In this study, we modeled a column of pyrami-
dal neurons. The network consisted of three layers of 100 neurons each. In
those 100 neurons, 20 were inhibitory interneurons, which connected only
to neurons within the same layer. All neurons received 20 synaptic connec-
tions. Neurons received around 80% of the synaptic connections from the
previous layer to prevent the signal from vanishing through layers and 20%
of the synaptic connections from neighbor neurons. The connections were
randomly chosen.

There were equal numbers of astrocytes and neurons. Each astrocyte
was paired with one postsynaptic neuron, meaning it connected with all
the neuron’s synapses. Astrocyte-to-astrocyte connectivity depended on the
grid’s position, following the implementation of Stimberg, Goodman et al.
(2019). Each astrocyte could thus make a maximum of four connections
(the previous layer astrocyte, the two neighbors of the same layer, and the
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Plasticity and Information in Neuron-Astrocyte Networks 1981

Table 4: Parameters of Gliotransmission Equations.

Symbol Description Value Unit [Ref.]

Caθ Ca2+ threshold for exocytosis 0.19669 μM [39]
GT Total vesicular gliotransmitter concentration 250 μM [11]
�A Gliotransmitter recycling rate 1.25 s−1 [11; 38; 39∗]
UA Gliotransmitter release probability 0.6 [38]
ρe Astrocytic vesicle-to-extracellular volume ratio 0.00065 [38]
�e Gliotransmitter clearance rate 10 s−1 [11; 38; 39∗]

Note: Ref. number identification: 11: Flanagan, McDaid, Wade, Wong-Lin, & Harkin, 2018;
38: Stimberg, Goodman et al., 2019; 39: Tewari & Majumdar, 2012. ∗: Experimentally
adjusted.

Figure 2: Schematic representation of the astrocytes’ nonoverlapping areas and
astrocyte-to-astrocyte connectivity.

next-layer astrocyte). A simplified version of the astrocyte-to-astrocyte con-
nectivity is displayed in Figure 2.

2.7 Numerical Method. For the differential equations, we used the for-
ward Euler method, with dt = 0.1 ms. The program was written in Python,
under the BRIAN2 simulator (Stimberg, Brette, & Goodman, 2019), based
on the Stimberg, Goodman et al. (2019) study. For each combination cor-
responding to the cases «with astrocyte», «without astrocyte» and «switch
frequency» condition, we performed 30 simulations. The simulations were
carried out on the cluster of the Computing Center of the University of Bur-
gundy (Linux 64 bits, processors Intel Xeon E5-2640v3 (2P, 8C/P). The code
can be found at http://modeldb.yale.edu/266794.

2.8 Stimulation and Conditions of Simulation. Since the earliest ob-
servation of the relationship between the mean and the variance of neural
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1982 R. Villaume, J. Lorenzo, S. Binczak, and S. Jacquir

Figure 3: Random stimulation signal generated at several switch frequencies.

responses (Werner & Mountcastle, 1965; Tolhurst, Movshon, & Thompson,
1981), Poisson statistics has often been used to describe the neural firing
patterns, so we followed the classic rejection method to generate Poisson
spike trains. A step signal of varying intensity drove the frequency of the
input neurons’ (i.e., 80 excitatory neurons, which make synapses with the
first-layer neuronal population) spike trains. The random signal had sev-
eral variations. We labeled the number of changes as switching frequency,
that is, the number of step variations of the signal. The target number of
step variations defined the equal duration of each discrete state (e.g., 0.1 Hz
switching frequency: 10 s for each discrete state). An example of a random
signal pattern for all switching frequency is depicted in Figure 3. The signal
pattern drove the firing frequency of an input population of simple neu-
rons (see equation 2.1, in which the frequency of the random Poisson term
depends on the step signal’s state), which makes synaptic connections with
the first layer. An example of the resulting activity is depicted in Figure 4 in
the “Neuronal Activity” column.

In this study, we are interested in the astrocytic influence on neuronal
dynamics and plasticity. Our simulations compare «with astrocyte» and
«without astrocyte» conditions. However, as astrocytes appear to be the main
protagonist in extrasynaptic signaling, there could be an imbalance in the
ionotropic receptors’ density, particularly in NMDAR maximal conduc-
tance. To keep a fair comparison between the two conditions, we fixed the
extrasynaptic NMDAR conductance (only effective in the «with astrocyte»
condition) at the maximal conductance described by Destexhe et al. (1998)
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Plasticity and Information in Neuron-Astrocyte Networks 1983

Figure 4: The method used to encode and decode the signal processing through
the network.

(i.e., gmax). As the minimal NMDAR conductance is 0.01 nS, it would be
much lower than the lowest AMPAR conductance (0.35 nS). The NMDAR
contribution to the postsynaptic depolarization would be too low to induce
any significant change. The maximal NMDAR conductance is 0.6 nS, be-
tween the minimal and the maximal AMPAR conductance (0.35 nS to 1 nS),
making its contribution to the postsynaptic depolarization meaningful. The
synaptic NMDAR conductance was

gNMDAR =
{

2gmax, without astrocyte

gmax, with astrocyte.
(2.49)

In this study, we fixed the randomness of each code to perform paired simu-
lation for the «without astrocyte» and «with astrocyte» conditions (i.e., in each
pair of simulation, connectivity, signal, and noise were the same for both
conditions). We performed 30 independent simulations for each «switch fre-
quency» level (i.e., 9 levels; see Figure 3).

2.9 Parameter Analysis. In this study, we recorded several simulation
variables to analyze glial cells’ influence over the network activity. Then we
used the following measures:

• AMPAR density: Average expression of the AMPAR density for a
neuron’s synapses, averaged over the neuronal population layer.

• Population firing rate: Average population instantaneous firing rate
for one layer, computed with a time window of 25 ms. For both
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1984 R. Villaume, J. Lorenzo, S. Binczak, and S. Jacquir

AMPAR density and population firing rate, we computed the cross-
correlation function between these data and the input stimulation sig-
nal (see Figures 3 and 4). To analyze the effects of conditions («without
astrocyte» and «with astrocyte») on these data, we fitted a linear mixed
model (LMM) on the maximal points of each correlation. For firing
rate and AMPAR density correlation with the signal pattern, we kept
the best correlation coefficient and the lag at which it is observed.
The LMM estimated the fixed effect for the simulation conditions
(«without astrocyte» and «with astrocyte»), the switching frequency of
the input signal pattern, the neuronal layer, and the neuron type
(excitatory and inhibitory). The LMM also estimated the random ef-
fect for each simulation combination by condition by switching fre-
quency (i.e., run(30) × condition(2) × switching frequency(9) = 540
individuals).

• Transfer function: The transfer function was computed using the av-
erage population input instantaneous firing rate and the correspond-
ing population output instantaneous firing rate. Then we fitted a
least-square polynomial on the data collected.

• Astrocytic activity: The astrocytic activity was binarized and aver-
aged over the layer’s population. That is, we counted 1 for all astro-
cytes over the gliotransmission threshold (see Table 4), otherwise 0.
Then, for each recorded time point, we averaged by layer the number
of astrocytes in the gliotransmission’s state.

3 Results

3.1 Activity: Neuronal’s Firing Rate and Signal Pattern Correlation.
The higher-order interaction of the LMM (simulation condition, «switch
frequency», layer, neuron type; see section 2.9) is not significant (p = .075).
However, we performed a post-hoc analysis (Tukey’s honestly significant
difference, HSD; Tukey, 1977) to spot significant differences in the simula-
tion condition. The significant differences are highlighted with stars (*) on
Figure 5. Our main results are that neuronal activity in the network «without
astrocyte» is often more correlated with the input signal pattern than in the
network «with astrocyte». More specifically, the maximum correlation coef-
ficient decreases in the condition «with astrocyte», which is significant for
lower switching frequency, up to 3.2 Hz. For excitatory neurons, these dif-
ferences arise for layers 2 and 3, while for inhibitory neurons, it appears at
all layers. The latter differences are presumably due to the synaptic connec-
tivity for inhibitory neurons, which connect only to the same population’s
neurons (see section 2.6). We fitted the same model on the lag at which the
maximum correlation coefficients occur. However, it did not provide any
significant results, meaning that there are no significant differences involv-
ing time for these correlation coefficients.
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Plasticity and Information in Neuron-Astrocyte Networks 1985

Figure 5: Maximum correlation coefficients between firing frequency and sig-
nal pattern, by simulation condition and «switch frequency». Top panels are ex-
citatory neurons (Exc.); bottom panels are inhibitory neurons (Ini.). Stars (*)
indicate a significant difference between the simulation condition.

3.2 Plasticity: AMPAR Trafficking and Signal Pattern Correlation.
The higher interaction of the LMM (simulation condition, «switch fre-
quency», layer, neuron type; see section 2.9) is not significant (p = .36). In
the same way as section 3.1, we performed a post-hoc analysis (Tukey’s
HSD) to spot significant differences in the simulation conditions, displayed
in Figure 6. The significant differences do not underline a strong tendency in
impairing or increasing the correlation coefficient regarding the simulation
conditions («without astrocyte» or «with astrocyte»). However, as displayed
in Figure 6, differences arose only for the lowest switch frequencies in the
signal pattern. These differences are slightly in favor of a higher correlation
coefficient in the «with astrocyte» condition. As in the previous section, we
fitted the same model on the lag at which the maximum correlation coeffi-
cients occur. It did not provide any significant results.

3.3 Discussion. These two results show that astrocyte influence leads to
decorrelate neuronal activity from the input signal pattern. The correlation
coefficients displayed in Figure 7 support this idea. In panels a («without
astrocyte») and b («with astrocyte»), the correlation between the neuronal fir-
ing rate and the signal pattern tends to fade across the layers. The decrease
of the correlation coefficient through the layer is higher for the «with astro-
cyte» condition. However, as depicted in panel c (neuronal firing rate and
astrocyte activity correlation), the higher correlation coefficient at negative
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Figure 6: Maximum correlation coefficients between AMPAR density ex-
pression and signal pattern, by simulation condition and «switch frequency».
Top panels are excitatory neurons (Exc.); bottom panels are inhibitory neu-
rons (Ini.). Stars (*) indicate a significant difference between the simulation
condition.

lag (meaning that neuronal activity precedes astrocyte activity) at lower
«switch frequency» in the first layer tends to vanish through the layer. In
the second and third layers, correlation coefficients increase around zero
lag for all switching frequency. The latter modulation highlights a low-
frequency modulation of astrocytic activity on neuronal processing. The
same effect seems to appear in panel d (AMPAR density expression and
astrocyte activity correlation), with a slightly higher amplitude. The lack of
significant differences between the simulation condition (see Figure 6), for
AMPAR density expression, could be due to the high-frequency dynamics
of AMPAR expression (see section 2.3).

Furthermore, Figure 8 underlines a sustained transfer function through
the layer in the «with astrocyte» condition, while it tends to fade for higher
rates in the «without astrocyte» condition. As it does not seem to be the same
for inhibitory neurons’ transfer function (see Figure 9), we could conclude
that astrocyte-induced modulation of the transfer function mainly affects
the interneuronal population signaling, as excitatory and inhibitory neu-
rons do not share the same connectivity pattern (see section 2.6).

The analysis of astrocytic activity confirms that astrocytes are more at-
tuned to low-frequency varying signals. For high-frequency varying sig-
nals, the astrocytic activity is mostly decorrelated (see Figure 7e). These
results are congruent with previous studies showing astrocytes’ attunement
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Plasticity and Information in Neuron-Astrocyte Networks 1987

Figure 7: (a) «without astrocyte» mean correlation coefficient of the neuronal’s
firing rate (excitatory and inhibitory) with the input signal pattern. (b) «with
astrocyte» mean correlation coefficient of the neuronal’s firing rate (excitatory
and inhibitory) with the input signal pattern. (c) neuronal’s firing rate (exci-
tatory and inhibitory) mean correlation coefficient with the astrocytic activity.
(d) AMPAR density expression’s mean correlation coefficient with the astrocytic
activity. (e) Astrocytic activity (see section 2.9) mean correlation coefficient with
the input signal pattern. The dashed line indicates the lag of higher correlation
coefficients average.

to low-frequency activity (Perea et al., 2016; Sardinha et al., 2017). Further-
more, it confirms that the astrocytic activity is better correlated to the low-
varying input signals’ variations, around 2 to 4 seconds of positive lags,
which is consistent with Kastanenka et al.’s (2020) observations.

4 Conclusion

In this study, we addressed the recent problem of gliotransmission influ-
ence on synaptic plasticity and neuronal activity. Recent studies show that
astrocytes are critical players in extrasynaptic activity (Papouin & Oliet,
2014). The influence of gliotransmission, discussed in Pittà (2020), is that
astrocytes can modulate the inductions of long-term potentiation (LTP) and
long-term depression (LTD).

The neural activity in «with astrocyte» condition is less correlated with the
input signal pattern than in the «without astrocyte» condition. However, the
correlation increases with astrocyte activity as it decreases with the signal
pattern, which leads the neuronal activity in the «with astrocyte» condition
to be correlated with both the signal pattern and the astrocytic activity. In
artificial intelligence, the artificial neural network (ANN) parameters are
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Figure 8: Excitatory neuron’s average transfer function by layer and «switch
frequency» condition.

Figure 9: Inhibitory neuron’s average transfer function by layer and «switch fre-
quency» condition.
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Plasticity and Information in Neuron-Astrocyte Networks 1989

adjusted through backpropagation algorithms to perform computational
tasks (e.g., classification, autoassociation). The transformation between the
input stimulus and the ANN’s output could be compared to the decorrela-
tion between neuronal activity and the input signal pattern through the lay-
ers. The fact that astrocyte activity transforms the neuronal activity would
match the trained AI processing. As astrocytes are characterized by slow
dynamics, our results mean that astrocytic activity induces a low-frequency
modulation of neuronal activity. This result is consistent with a recent hy-
pothesis by Kastanenka et al. (2020), in which the authors are interested in
the role that astrocytes could play in complex cognitive functions. The as-
trocytic low-frequency modulation of neuronal activity could link several
sessions of brief information processing in time.

One limitation that arises from our results is the low correlation between
the signal pattern and the data (see Figure 7). We believe that their ampli-
tude is mainly due to the relatively small number of neurons and astrocytes
in our simulation (i.e., 100 per layer; see section 2.6). However, simulations
with a larger population would drastically increase the computational cost
and storage capability as well. To perform such simulation at a larger scale
would require adapting from other work, such as the study of Lenk et al.
(2020), which should scale better with a larger population. Nonetheless, the
paired comparison of «without astrocyte» and «with astrocyte» conditions (see
section 2.8) provides a strong indication on the astrocytic modulation of
neuronal activity and plasticity. Though some of these results could at first
appear contradictory to previous studies, they complete them by extending
the study of a neuron-astrocyte network in complex signal processing.

As previously investigated by Alvarellos-González et al. (2012) and Saje-
dinia & Hélie (2018), there is a computational gain of a neuron-astrocyte
network in AI tasks. In this study, we focused on only the fast-varying
plasticity (i.e., AMPAR density expression). The influence of long-term plas-
ticity on complex signal processing is a topic that needs study. NMDAR traf-
ficking at the synaptic and extrasynaptic locations would be much slower
than AMPAR trafficking. Still, under the influence of the low-frequency as-
trocytic activity, it could induce an activity pattern through long time-scales.
The network would display consistent activity patterns in similar condi-
tions, distant in times, similarly to the generalization tasks in AI.

This approach would lead to a better understanding of astrocyte involve-
ment and contribution to higher cognitive tasks.

Although we did not model all astrocytic influences (e.g., presynaptic
and purinergic signaling, potassium buffering), these results again under-
line that astrocytes could play a decisive role in neuronal activity and, by
extension, cognition. Future studies should focus on the dynamics of as-
trocytes at defined activity patterns to measure their influence over the
neuronal activity on a large scale. Furthermore, they should include modu-
lation of the extrasynaptic NMDAR expression to study how astrocytic ac-
tivity modulates the neuronal processing. These approaches could include
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different neuronal states as simulation conditions, such as wake and sleep
states of neuronal activity.
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