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ABSTRACT

We introduce a multi-branch Deep Learning architecture that
allows for the extraction of multi-scale features. Exploiting
the data multi-modality structure through the combined use of
various feature extractors provides high performance on data
fusion tasks. Furthermore, the representation of the multi-
temporality of the data using sensor-specific 3D convolutions
with custom kernel size extracts temporal features at an early
computation stage. Our methodology allows reaching per-
formance up to 0.8876 F1 Score on the development phase
dataset and around 0.8798 on the test phase dataset. Finally,
we demonstrate the contribution of each sensor to the predic-
tion task with the design of data-focused experiments.

Index Terms— Deep Learning, Multi Temporal, Remote
Sensing, Multi Sensor, Classification, Data Fusion Contest

1. INTRODUCTION

In a Big Data context regarding the field of Earth Observa-
tion, a wide variety of satellite sensors become available. This
diversity allows for the creation of multi-sensor application:
thoroughly reviewed in [1], multi-modal classification of re-
mote sensing images has shown its potential in agricultural
[2]] and urban [3]] contexts.

In addition to the increased number of sensors, satellite image
time series become available in a much higher temporal reso-
lution, with shorter revisit times. In this context, a variety of
studies [4} 5] demonstrated the usefulness of remote sensing
time series to characterize and classify various environments
temporally. Both optical [4] and radar [5] were shown to con-
tain critical temporal information for applications such as land
cover classification or crop monitoring.

The convergence of multi-temporality and multi-modality in
remote sensing applications is a matter of interest and has
been studied in [6] where the fusion of High Spatial Reso-
lution and Very High Spatial Resolution satellite image time
series was computed to classify land cover.

2. DATASET PRESENTATION

Fitting into this mix of multi-modality and multi-temporality,
the dataset of the Data Fusion Contest for detection of set-
tlements without electricity (DFC21-DSE) [7]], developed in
parallel of Solaraid’s objectives to electrify isolated regions
of Africa, consists of images from:

e Sentinel 1-A GRD (S1), a 5x20m resolution radar sen-
sor (VV and VH polarisations) resampled to 10x10m
resolution, for four dates;

* Sentinel 2 (S2), 12 channels of reflectance with ground
sampling distances of 10m, 20m, and 60m, for four
dates;

* Landsat 8 (LCO08), 11 channels with ground sampling
distances of 15m, 30m and 100m, for three dates;

» VIIRS, with only Day-Night Band, originating from the
VNP46A1 dataset that provides nocturnal visible and
NIR light measurements at a GSD of 750m resampled
at 500m, for nine dates;

With a total of 98 images split as 60 training, 19 valida-
tion, and 19 test images, all resampled to 10m resolution,
the dataset is supplied with labels of a resolution of 500m,
as 16-by-16 images, including four classes, among which
only one has to be retrieved for algorithm evaluation: Human
settlements without electricity. The distribution of the four
classes is shown in table[Il

Table 1: Classes distribution with color codes
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Designed initially as a semantic segmentation task, as il-
lustrated in Fig.[I] we decided to take advantage of the spatial
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Fig. 1: Dataset Extract (Training Tile #14). Left to right: Sentinel-1 (VV, VH, VV-VH), Sentinel-2 (B04, B03, B02), VIIRS averaged, Labels

resolution of the image labels: a single class maps areas of 50-
by-50 pixels. We assume that a sufficiently negligible amount
of information lies in the spatial arrangement of classes within
the 800-by-800 class arrangement so that splitting the image
into tiles does not impact predictions. Thus, we transformed
the problem into a classification problem where, given an in-
put image of size (50,50,98), we want to predict its class
among the four available categories. Hence, we split each
800-by-800 image into 256 50-by-50 tiles. We obtain 15, 360
labeled samples, 4, 864 validation and 4, 864 test samples.

3. METHODOLOGY

3.1. Multi-Branch Multi-Temporal Architecture
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Fig. 2: Introduced Multi-Branch Multi-Temporal architecture

HEAD LAYERS I

Our model architecture is a Multi-Branch network, as
seen in Fig. 2} Its design incorporates the multi-temporal and
multi-modal aspects of the data.

3.1.1. Multi-temporal Feature Extraction

To tackle the dataset’s multi-temporality, we use a Conv3D
layer as the first step in most of the branches’ computation.
It is designed to reduce the temporal component early on in
the model computation: we do not consider the temporal di-
mension of the data as crucial for the prediction but rather as
a way to limit data noise.

Thus, given a data stack of shape (c, h, w,t) where ¢ corre-
sponds to the number of channels of the stack, & its height, w
its width and ¢ its temporal dimension, we design a Conv3D
layer with a kernel of size (¢,1, 1), and c filters so that it re-
duces only the temporal dimension. The reduced stack is then
passed on to Conv2D layers for spatial feature extraction.

3.1.2. Multi-modal Feature Extraction

The architecture of our model consists of four feature extrac-
tion branches:

* DNB-specific TempCNN Branch: given the low res-
olution of the VIIRS sensor, equal to the label resolu-
tion, our model only extracts temporal features using a
stack of 1D Convolutions, after we spatially averaged
the band’s value over the 50-by-50 image area.

¢ Multi-modal Branch: the leftmost architecture, pre-
sented in Fig. [2] takes as input a batch of images and
does not encode any prior information regarding the
structure of the input data (for example, difference in
sensors). This branch aims at extracting features that
span across any acquisition and any sensor.

e Multi-Unimodal Branch: the center model is also
a multi-branch model that considers both the multi-
sensor and multi-temporal aspects of the input data.
For that matter, we have trained three conceptually
identical sub-branches, each with data specific to a sin-
gle sensor. This blindfolding strategy aims at retrieving
as much information as possible from each sensor sep-
arately. These sensor-specific branches are built using
the same components: we first have a Conv3D layer
as presented in Section [3.1.1] The extracted temporal
features are then passed to a Dropout2D layer before
an EfficientNet B2 [g]].

* Temporal-Merged Branch: This Temporal-Merged
branch performs the same temporal reduction as the
Multi-Unimodal model. The temporally-reduced stack
of each sensor data are then concatenated, channel-
wise, and fed to an EfficientNet B7 [§]].

This design removes the potential temporal redundancy
within each sensor data before extracting features that
may span across multiple sensors.

After features extraction from each of the model’s branches,
we flatten and concatenate them to a common feature vector
which is then passed to a stack of fully connected layers.



3.2. Environment

As presented in Fig. 3] our model fits into a custom training
environment. We empirically designed it to match the require-
ments of the task and of the dataset.

Loss: We combine in our loss function a Categorical
Cross-Entropy (CCE) function to extract semantic informa-
tion specific to each of the four classes as well as a Soft-F1
Loss function to focus the learning on the correct classifica-
tion of the class of interest, in a 1-vs-all fashion.

Augmentation: As the amount of data is relatively small,
we decided to opt for a heavy augmentation strategy. We use
Flips (Horizontal + Vertical), Rotations (mod 7/2), Noisy-
Labels with randomly shifted cropping, same-class cut mix
[9], with an augmentation factor of 16.

Ensembling: The training set is randomly split into three
Folds, implying three separately trained models, one for each
fold. Every model are then ensembled and we perform test-
time augmentation before averaging their prediction.

4. EXPERIMENTAL DESIGN

The biggest challenge of the competition is to be able to lever-
age each of the available modalities. To measure their con-
tribution to the final prediction, we designed two sets of ex-
periments. In the context of the DFC21-DSE dataset [7], we
can consider the four classes as the intersection of two bi-
nary classes, as presented in table|I} first, we need to detect
if any settlement is present in the 50 x 50 image. Then, we
need to analyze whether the region is electrified. Considering
the sensor data provided, we assume that optical and radar
sensors tend to focus on the detection of settlements and that
the VIIRS sensor assesses the electrification status of the re-
gion. The fusion of SAR and optical features were shown to
have high performance and complementarity when applied to
building detection [10]. Regarding VIIRS sensor data, pre-
liminary results of the application of VIIRS DNB data to de-
tect a power outage in India [[11]] show encouraging results for
the application of VIIRS sensor data to the task.

4.1. VIIRS Day/Night Band for electricity detection

When assessing VIIRS DNBs’ ability to detect electrified re-
gions on our dataset, we obtain the results displayed in table[2]
To generate these results, we isolate the DNB-specific Tem-
pCNN branch of our model to classify if a 50-by-50 image is
electrified (positive class) or not (negative class). We can con-

Table 2: VIIRS training for electricity detection F1 score

Subset Fold 1 Fold 2 Fold 3

Train Val Train Val Train  Val
VIIRS 0.712 0.718 0.765 0.462 0.674 0.75

clude that a correlation exists between VIIRS DNB data and

the presence of electricity within a scene. Hence, this sensor
is crucial to classify non-electrified settlements.

4.2. Assessment of optical and radar contribution to the
final prediction task

To evaluate the contribution of the other 3 sensors at this task,
we studied their mutual contribution to the final prediction by
designing series of data-focused experiments where we select
a subset of the available sensor data to comparatively evaluate
their respective performance. Two conclusions can be made

Table 3: Data Subset experiments with local validation F1 score

Subset Fold 1 Fold 2 Fold 3
Train  Val Train  Val Train  Val
S1, VIIRS 0.681 0.653 0.657 0.665 0.677 0.672
LC8, VIIRS 0.766 0.758 0.750 0.745 0.768 0.776
S2, VIIRS 0.834 0.817 0.822 0.824 0.850 0.859
S1,S2,LCS8, VIIRS 0.893 0.854 0.900 0.853 0.878 0.872

from the results displayed in table [3] The first, least surpris-
ing, is that the use of all data available provides the highest
performance of all sensor combinations. The second is the
apparent superiority of S2 which can be linked to multiple
factors: S2’s higher resolution than LCO8, especially in visi-
ble light bands, provides it with better tools to detect isolated
and small settlements; the dimension of buildings of around
10m makes them difficult to perceive within the speckle of
S1; However, the addition of SAR interferometric informa-
tion, with, for instance, S1 Single-Look Complex imagery,
would probably improve its contribution to the classification
task. Hence, the task of assessing electrification of isolated
regions may benefit both from advanced Deep Learning mod-
els and the use of more expert remote sensing data.

5. FINAL RESULTS OF THE MULTI-BRANCH
ARCHITECTURE

Table 4: Winning model submission F1 Score

Fold 1 Val
0.8547

Fold 2 Val
0.8533

Fold 3 Val
0.8722

Dev Phase  Test Phase
0.8877 (1st) 0.8798 (3rd)

When combining the training strategy presented in Fig.[3]
the multi-branch model used in Fig. 2] and every sensor data
available, we obtain the results presented in table ]

6. CONCLUSION

In this paper, we present our winning method for the DFC21-
DSE 2021 by detailing the custom model built for the task and
the training and inference setup used for the model. Besides,
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Fig. 3: Description of the model training and inference environment

we also explore each sensor contribution to detecting settle-
ments without electricity, with the objective that our results
may generalize to other regions of Earth. With the presented
method, we obtain an F1 Score of 0.8877 on the development
phase dataset and 0.8798 on the test phase dataset, thus rank-
ing us at the 3rd place of this competition.
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