MULTI-BRANCH DEEP LEARNING MODEL FOR DETECTION OF SETTLEMENTS WITHOUT ELECTRICITY - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

MULTI-BRANCH DEEP LEARNING MODEL FOR DETECTION OF SETTLEMENTS WITHOUT ELECTRICITY

Résumé

We introduce a multi-branch Deep Learning architecture that allows for the extraction of multi-scale features. Exploiting the data multi-modality structure through the combined use of various feature extractors provides high performance on data fusion tasks. Furthermore, the representation of the multitemporality of the data using sensor-specific 3D convolutions with custom kernel size extracts temporal features at an early computation stage. Our methodology allows reaching performance up to 0.8876 F1 Score on the development phase dataset and around 0.8798 on the test phase dataset. Finally, we demonstrate the contribution of each sensor to the prediction task with the design of data-focused experiments.
Fichier principal
Vignette du fichier
DTIS21174.pdf (2.55 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03340290 , version 1 (10-09-2021)

Identifiants

  • HAL Id : hal-03340290 , version 1

Citer

Thomas Di Martino, Maxime Lenormand, Elise Colin Koeniguer. MULTI-BRANCH DEEP LEARNING MODEL FOR DETECTION OF SETTLEMENTS WITHOUT ELECTRICITY. IGARSS 2021, Jul 2021, BRUXELLES, Belgium. ⟨hal-03340290⟩
70 Consultations
81 Téléchargements

Partager

More