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Construction of flat inputs for mechanical systems

Florentina Nicolau∗, Witold Respondek †, and Jean-Pierre Barbot ‡

Abstract

For observed mechanical systems, we study the problem of constructing flat inputs that
are consistent with the mechanical structure of the systems. Such inputs will be called
mechanical flat inputs. We show that contrary to flat inputs, that exist (almost) everywhere,
in general, for the existence of mechanical flat inputs, additional structural conditions are
needed. We provide necessary and sufficient conditions for the existence of mechanical inputs
for observed mechanical systems with n degrees of freedom, where n is arbitrary, and n− 1
measurements.

Keywords: Mechanical systems, flatness, flat inputs, mechanical flat inputs.

1 Introduction

In this paper, we consider observed mechanical systems, with n degrees of freedom, of the form

M:


ẋi=vi

v̇i=−Γijk(x)vjvk+ dij(x)vj+ ei(x),

1 ≤ i ≤ n,
y = h(x), y ∈ Rm, (1)

where (x, v) = (x1, . . . , xn, v1, . . . , vn)> are local coordinates on the tangent bundle TX of the
configuration manifold X and y = (h1(x), . . . , hm(x))> are (everywhere independent) outputs of
the system. We use the Einstein summation convention, i.e., any expression containing a repeated
index (in general, upper and lower) implies summation over that index up to n (whenever the
summation is taken over another indexing set, we use the summation symbol). The expressions
Γijk(x)vjvk correspond to Coriolis and centrifugal terms. The terms dij(x)vj correspond to forces
linear with respect to velocities, like dissipative forces, and e(x) represents an uncontrolled force
(that can be potential or not). It is typically possible to control a mechanical system through
external forces and mechanical control systems form an important class of control systems that
has attracted a lot of attention because of their numerous applications. They form a natural
bridge between mechanics and control theory and are studied, for instance, in [19, 1, 2, 20]. An
important question is how and where controlled external forces should act in order to achieve
a desired property for the resulting input-state-output system. A property that is very useful
in applications (for instance, for trajectory tracking, constructive controllability or trajectory
generation) is that of flatness (see, e.g., [3, 4, 14] and references therein). The problem of
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placing the actuators or the inputs in order to render an observed dynamical system flat has
been introduced by [23, 24] who call those inputs flat inputs.

Flat inputs are objects dual to flat outputs and their construction can been seen as a dual
problem to that of constructing a flat output. One of the motivations to construct a flat input
for a given output is that with such an input, the tracking problem for that output can be solved
with no need to calculate the zero dynamics [8, 22], but constructing flat inputs may be useful for
other problems as well, like parameter identification [21] or private communication [17]. Similarly
to the construction of a flat output (that can be seen as a problem of sensors placement in order
to achieve flatness of the resulting input-state-output system) for which, from a technological
point of view, it is not always possible to place the sensors exactly where we want them, for
constructing flat inputs it may also be technologically difficult to place the actuators at the right
place. This is often the case for mechanical systems for which the states variables are positions
and velocities (denoted, resp., by xi and vi), and thus the derivative of a position always equals
the corresponding velocity, i.e., we always have ẋi = vi and we cannot modify those equations
by adding inputs. Therefore from a physical point of view, it is impossible to build an actuator
that acts directly on the position.

The problem that we are studying in this paper is the construction of flat inputs that are con-
sistent with the mechanical structure of the original dynamical system. More precisely, given the
observed mechanical system (M, h), we want to find mechanical control vector fields g1, . . . , gm
(or equivalently, to place the actuators or the inputs) such that the mechanical control-affine
system

Mc :

{
ẋi=vi

v̇i=−Γijk(x)vjvk + dij(x)vj + ei(x) +
∑m

r=1 g
i
r(x)ur

(2)

associated to M, is flat with the original measurements (h1, . . . , hm)> being a flat output. By
mechanical control vector fields gr we mean that they are consistent with the mechanical struc-
ture of M, i.e., are of the form gr =

∑n
i=1 g

i
r(x) ∂

∂vi
, 1 ≤ r ≤ m. The inputs ur multiplying

the mechanical control vector fields will be called mechanical flat inputs, and the vector fields
g1, . . . , gm will be called mechanical flat-input control vector fields.

The problem of constructing flat inputs consistent with the mechanical structure has been first
considered in [24] where they are called physically realizable flat inputs. In [24], it is shown that
a necessary condition for the flat inputs to be physically realizable (according to our definition,
to be mechanical flat inputs) is that the distribution spanned by their associated flat-input
control vector fields is contained in the vertical distribution of the mechanical system. A related
question has then been studied in [7], where the output expression is redesigned, by allowing affine
injections of the input and its derivatives, in order to compute physically realizable flat inputs
for observable implicit nonlinear systems. In this paper, we work with outputs depending on
positions only and we do not modify them to achieve flatness for the resulting mechanical control
system. We notice first that if n (independent) functions hi(x), 1 ≤ i ≤ m = n, are observed (as
many as the degrees of freedom of the system), then we can always construct mechanical flat-
input control vector fields, but if m < n, then even in the simplest possible case (n,m) = (2, 1),
structural conditions have to be satisfied for the existence of mechanical flat-input control vector
fields. Therefore, the goal of the paper is to give necessary and sufficient conditions for the
existence of mechanical flat-input control vector fields for observed mechanical systems with n
degrees of freedom, with n arbitrary, and n − 1 measurements (i.e., m = n − 1). The paper is
organized as follows. In Section 2, we recall the definition of flatness, formalize that of flat inputs
and mechanical flat inputs, and present the first results of the paper. In Section 3, we give our
main results and illustrate them by an example in Section 4.
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2 Definitions and motivations
Consider the control system Ξ : ξ̇ = f(ξ) +

∑m
r=1 gr(ξ)ur, where ξ ∈ RN , u ∈ Rm and g1, . . . , gm

are independent.

Definition 2.1. Ξ is flat at (ξ0, u0) ∈ RN × Rm if there exist a neighborhood O of (ξ0, u0) and
m smooth functions ϕr = ϕr(ξ), 1 ≤ r ≤ m, defined in a neighborhood of ξ0, with the following
property: there exist an integer s ≥ 1 and smooth maps (γ, δ) :O×Rm(s−1)→RN×Rm such that

ξ = γ(ϕ, ϕ̇, . . . , ϕ(s−1)) and u = δ(ϕ, ϕ̇, . . . , ϕ(s)) (3)

for any Cs−1-control u(t) and corresponding trajectory ξ(t) that satisfy (ξ(t), u(t)) ∈ O, where
the m-tuple ϕ = (ϕ1, . . . , ϕm)> is called a flat output.

There exists a more general notion of flatness for which the functions ϕr may depend on the
control and its successive time-derivatives up to a certain order q, i.e., ϕr = ϕr(ξ, u, u̇, . . . , u

(q)).
We do not need this general notion since, in our study, all ϕr depend on the state ξ only and
singularities depend on ξ and/or u (but never on derivatives of u). We send the reader to [7] for
a generalized definition of flat inputs that allows dependence on the input and its derivatives.

Consider the dynamical system

Σ : ξ̇ = f(ξ), y = h(ξ),

whose state ξ ∈ RN (or more generally, ξ belongs on an N -dimensional manifold), together with
the output y = h(ξ) ∈ Rm. In order to emphasize the fact that the system is observed, we will use
the notation (Σ, h). When we say that the dynamical system Σ is observed, this does not mean
that Σ is necessarily observable with respect to the output h. The problem of constructing flat
inputs consists of finding independent control vector fields g1, . . . , gm such that the control-affine
system Σc, associated to Σ, and given by

Σc : ξ̇ = f(ξ) +

m∑
r=1

gr(ξ)ur,

is flat with respect to the original output (h1, . . . , hm)>. In that case, we will say that the pair
(Σc, h) is flat. The inputs u1, . . . , um multiplying, resp., g1, . . . , gm, are called in [23, 24] flat
inputs. The vector fields g1, . . . , gm that render Σ flat will be called flat-input control vector
fields. For the single-output case, according to [23], a flat input can be constructed if and only
if the system Σ together with its output h is observable1 (see [9, 13] for different notions of
observability). The observable multi-output case has been discussed in [24], see also [6] for
another approach based on the notion of unimodularity. In [15, 16] (see also [5]), the authors
solved the unobservable case for which locally, around any point of an open and dense subset of
the state space, we constructed flat-input control vector fields g1, . . . , gm such that the control-
affine system Σc is flat with h being a flat output.

When comparing the problem of existence of flat inputs with that of verifying flatness for con-
trol systems, an interesting phenomenon can be noted: contrary to flat control systems that are
very rare (the class of flat control systems is of codimension infinity among all control systems),
any dynamical system (Σ, h) can be rendered flat (on an open and dense set) by adding suitable
flat-input control vector fields (or equivalently, suitable flat inputs), see [16]. As explained in the
introduction, similarly to the construction of a flat output and the corresponding sensor place-
ment, from a technological point of view, for constructing flat inputs it is not always possible to

1Actually, according to [23], if and only if the codistribution HN−1 = span{dLj−1
f h(x), 0 ≤ j ≤ N − 1} is of

full rank, thus implying local observability of (Σ, h), see [9]. We use that notion of observability in this paper.
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place the actuators exactly where we want them. This is often the case for mechanical systems,
where in general, the controls correspond to an action of forces or torques on the mechanical
system that act on velocities only, enter the system in an affine way and multiply terms that
depend on positions only. Therefore (and keeping in mind that a dynamical observed system
(Σ, h) can always be rendered flat by adding suitable flat inputs), a natural question arises: for
a given observed mechanical system (M, h), is it always possible to construct g1, . . . , gm that
render (M, h) flat and, additionally, are consistent with the mechanical structure of the system,
that is, are of the form gr =

∑n
i=1 g

i
r(x) ∂

∂vi
, 1 ≤ r ≤ m? Such gr’s will be called mechanical flat-

input control vector fields and the inputs u1, . . . , um multiplying them will be called mechanical
flat inputs.

We start with the simplest situation: the answer to the above question is always positive
for observed mechanical systems with n degrees of freedom, for which n (independent) functions
hi(x), 1 ≤ i ≤ n, are measured. In what follows, we denote by f the drift of M, i.e., we have
M : ż = f(z), where z = (x, v). The value of a differential form ω = ωxi (x, v)dxi + ωvi (x, v)dvi

on TX on a vector field η = ηix(x, v) ∂
∂xi

+ ηiv(x, v) ∂
∂vi

on TX is 〈ω, η〉 = ωxi η
i
x + ωvi η

i
v
2. For a

distribution G on TX denote by G⊥ its annihilator, i.e., the codistribution given by G⊥ = {ω ∈
Λ1(TX) : 〈ω, g〉 = 0, ∀g ∈ G}, where Λ1(TX) is the space of smooth differentials one-forms
on TX.

Proposition 2.1. Consider the observed mechanical system (M, h) with m = n. Then (M, h)
admits mechanical flat inputs around any (x0, v0) ∈ TX and all choices of mechanical flat-input
control vector fields g1, . . . , gn that render (M, h) flat are given by

(i) 〈dhi, gj〉 = 0 and 〈dLfhi, gj〉 = Dij(x), 1 ≤ i, j ≤ n, where (Dij(x)) is any smooth
invertible (n× n)-matrix depending on positions only

or, equivalently, by
(ii) vector fields gi = gi(x), 1 ≤ i ≤ n, that generate the distribution G = (span{dhi, 1 ≤

i ≤ n})⊥.

The left-hand side of 〈dLfhi, gj〉 = Dij(x) in (i) may a priori depend on (x, v) but the
right-hand side implies, since Dij = Dij(x), that it depends on x only. Notice also the condition
gi = gi(x), for 1 ≤ i ≤ n, in (ii); without that assumption gi’s need not be mechanical. According
to Proposition 2.1, if all n positions (or independent functions of them) are measured, then
similarly to the results of [24, 16] for general systems, the observed mechanical system (M, h)
always admits mechanical flat inputs and we can always construct mechanical control vector fields
without any structural conditions. The above theorem reminds very much Theorem 3.3 of [16]
and Theorem 4 of [24] treating the case when the considered dynamical system is observable with
respect to h. That was to be expected since in the case when m = n, the mechanical systemM is
obviously observable with respect to h. It is however important to emphasize that the existence
of mechanical flat-input control vector fields is not due to observability, but to the fact that we
have as many measurements as degrees of freedom. This is illustrated by Proposition 2.2 below
treating the case of mechanical systems with n = 2 and m = 1 (which is the simplest non trivial
case). Before stating it, let us introduce some notations that will be used throughout.

Consider the observed mechanical system (M, h), given by (1), and suppose m = n− 1, that
is, the system has n degrees of freedom and n − 1 independent functions h1(x), . . . , hn−1(x) of
the positions are measured. For 1 ≤ i ≤ n, we denote by ai the functions

ai(x, v) = −Γijk(x)vjvk + dij(x)vj + ei(x), (4)

2The summation convention is used for ω, η, and 〈ω, η〉.
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i.e., we have v̇i = ai(x, v), and recall that f denotes the drift ofM. To the output (h1(x), . . . , hn−1(x))>

we associate the following sequence of codistributions

Hj = span{dLq−1f hi(x), 1 ≤ q ≤ j, 1 ≤ i ≤ n− 1}, (5)

for j ≥ 1. So, we have H1 = span{dhi(x), 1 ≤ i ≤ n−1} and H2 = span{dhi(x),dLfhi(x, v), 1 ≤
i ≤ n − 1} which are of constant rank n − 1 and 2n − 2, resp.. We denote by V the vertical
distribution associated toM, that is,

V = span{ ∂

∂v1
, . . . ,

∂

∂vn
}.

Since the functions h1(x), . . . , hn−1(x) are supposed everywhere independent, we can always
complete them by another function ζ(x) such that the extended point transformation Φ =
(φ,Dφ(x)v), where

φ = (h1(x), . . . , hn−1(x), ζ(x))>,

defines a local (triangular) diffeomorphism that gives new coordinates

x̃ = φ(x), ṽ = Dφ(x)v, (6)

in whichM takes the form ˙̃xi = ṽi, ˙̃vi = ãi(x̃, ṽ), 1 ≤ i ≤ n, with ãi quadratic with respect to
the new velocities ṽi, and which, dropping the “tildes“, gives

M :

 ẋi=vi

v̇i=ai(x, v),
1 ≤ i ≤ n,

with hi = xi, 1 ≤ i ≤ n− 1. (7)

We call (x, v) of (7) to beM-coordinates compatible with h.
Consider now the simplest non trivial case (n,m) = (2, 1).

Proposition 2.2. Consider the observed mechanical system (M, h), with n = 2 and m = 1. We
have

(FI) (M, h) admits a flat input at (x0, v0) if and only if rkH4(x0, v0) = 4, that is, M is
locally observable with respect to h.

(MFI) The system (M, h) admits a mechanical flat input at (x0, v0) if and only if

(C) (H3)⊥ ⊂ V and rkH3(x0, v0) = 3;

or, equivalently,

(C)’ In anyM-coordinates (x,v) compatible with h, the function a1 satisfies:

∂a1

∂v2
≡ 0,

∂a1

∂x2
(x0, v0) 6= 0, (8)

and a2 is any.

Moreover, any mechanical flat-input control vector field, for systems satisfying (C), is given by

LgL
j
fh = 0, for 0 ≤ j ≤ 2, and LgL3

fh = γ(x),

where γ = γ(x) is any smooth function such that γ(x0) 6= 0, and, in particular, by

g(x) = g2(x)
∂

∂v2
, g2(x0) 6= 0,

for any system of the form (7) satisfying (C)’.
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Under (H3)⊥ ⊂ V, the condition rkH3(x0, v0) = 3 of (MFI) is actually equivalent to
rkH4(x0, v0) = 4, showing that the observability rank conditions for (FI) and (MFI) are the
same. The structural condition ∂a1

∂v2
≡ 0 means a1 = Γ1

11(x)v1v1 + d11(x)v1 + e1(x). Condition
(FI) simply says that in the single-output case, a flat input (there is only one since we have
only one output) exists if and only if (M, h) is observable. So, if a system is observable, then it
always admits a (not necessarily mechanical) flat input and for the flat input to be mechanical,
the equivalent conditions (C) or (C)’ of (MFI) have to be satisfied. Thus the above proposition
shows that, even in the simplest case (mechanical systems with two degrees of freedom and one
measurement), the problem of constructing mechanical flat-input control vector fields has non
trivial solutions and that an additional structural condition is needed. Finally, observe that
Proposition 2.2 completely describes the case (n,m) = (2, 1). The goal of the paper is thus to
give necessary and sufficient conditions for the existence of mechanical flat-input control vector
fields for observed mechanical systems with n degrees of freedom, where n ≥ 3 is arbitrary, and
n− 1 measurements (i.e., m = n− 1).

3 Main results
Consider the observed mechanical system (M, h), given by (1), and suppose that n ≥ 3 and
m = n− 1. We denote by Gn−1 the distribution

Gn−1 = (H2)⊥ ∩ V. (9)

The distribution Gn−1 is of constant rank one and we denote it by Gn−1 because, as we will
see below, it actually gives the only candidate for one of the mechanical flat-input control vector
fields (that will be denoted by gn−1). Theorem 3.1 provides necessary and sufficient conditions for
the (local) existence of mechanical flat-input control vector fields g1, . . . , gn−1 such that (Mc, h)
is locally flat.

Theorem 3.1. Consider the observed mechanical system (M, h), given by (1), together with
(h1(x), . . . , hn−1(x))>.

(i) There exist mechanical flat-input control vector fields g1, . . . , gn−1 such that (Mc, h) is
locally flat at ((x0, v0), u0) if and only if there exists a differential one-form δ on TX of the form
δ =

∑n−1
i=1 δi(x)dLfhi such that δ`(x0) 6= 0, for a certain 1 ≤ ` ≤ n− 1, satisfying

(C) 〈δ, adfgn−1〉 = 0 and Lgn−1µ`(x0, v0) 6= 0, where µ` = L2
fh` +

∑
i 6=`

δi
δ`
ui0, and gn−1 =

gin−1(x) ∂
∂vi

spans the distribution Gn−1, given by (9), and is the vertical lift of a nonzero
vector field gn−1 = gin−1(x) ∂

∂xi
on X.

(ii) For system (7), condition (C) reads as∑n−1
i=1 δi(x) ∂a

i

∂vn ≡ 0, and (10)

∂ν`

∂xn (x0, v0) 6= 0, where ν` = a` +
∑

i 6=` biui0 and bi(x) = − δi
δ`
, for 1 ≤ i ≤ n− 1, i 6= `.

(iii) For system M given by (7) and any δ satisfying (10), mechanical flat-input control
vector fields g1, . . . , gn−1 can be constructed algebraically by formula (12) below, and lead to
the following control system (Mc, h) which is flat at ((x0, v0), u0), and given, in M-coordinates
compatible with h, by

Mc :


ẋi=vi ẋn−1=vn−1

v̇i=ai(x, v) + ui v̇n−1=an−1(x, v) +
∑n−2

i=1 bi(x)ui
1 ≤ i ≤ n− 2, ẋn =vn

v̇n =an(x, v) + un−1,

(11)
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with ∂(an−1−
∑n−2

i=1 bia
i)

∂vn ≡ 0 and ∂νn−1

∂xn (x0, v0) 6= 0, where νn−1 is defined as in (ii) and ` is (after
a permutation) supposed to be ` = n− 1, bi = − δi

δn−1
, 1 ≤ i ≤ n− 2, h = (x1, . . . , xn−1)

>, and

gi =
∂

∂vi
+ bi(x)

∂

∂vn−1
, 1 ≤ i ≤ n− 2, and gn−1 =

∂

∂vn
. (12)

Theorem 3.1 states that, in the case m = n − 1, a necessary and sufficient condition for
the existence of mechanical flat inputs is that the derivatives of the functions ai (associated to
the measured positions) with respect to the velocity vn (whose corresponding position is not
measured) are dependent over the ring of smooth functions depending on configurations only,
see (ii) where condition (C) is given inM-coordinates (x, v) compatible with h. In (i) condition
(C) is expressed in an invariant way. The distribution Gn−1 gives the only candidate for the
mechanical vector field gn−1. The functions bi defining the mechanical flat-input control vector
fields ofMc, given by (11), and the functions δi defining the one-form δ, are obviously related:
indeed, we take bi as bi(x) = − δi(x)

δn−1(x)
, with δn−1(x) being assumed nonzero. The problem of

constructing mechanical flat inputs reduces to the problem of computing the functions δi(x) for
which a system of algebraic equations is provided in Subsection 3.1. Theorem 3.1 applies to both
observable and non observable case (if (M, h) is observable, then introducing bi keep observabil-
ity; if (M, h) is not observable, then introducing bi creates observability). The construction of
the mechanical flat-input control vector fields g1, . . . , gn−1 leading to (Mc, h) can be simplified
for two particular cases treated in Propositions 3.1 and 3.2 below.

By the analysis of M in the form (7), we conclude that if we render it flat, then n − 2 flat
inputs, say u1, . . . , un−2, have to affect (permute hi’s if necessary) ẍ1 = v̇1, . . . , ẍn−2 = v̇n−2,
where xi = hi, 1 ≤ i ≤ n − 2, and the remaining output hn−1 = xn−1 or, more generally, a
function h̃n−1 = Ψ(h1, . . . , hn−1), invertible with respect to hn−1, has to provide information
about vn−1 (with the help of Lf h̃n−1), about xn (with the help of L2

f h̃n−1) and about vn (with
the help of L3

f h̃n−1). In other words dxn ∈ H3, and an interesting property is whether there
exists h̃n−1 such that dxn ∈ H2 + span{dL2

f h̃n−1}, that is, in order to express xn, we use hi = xi

and vi = ẋi, for 1 ≤ i ≤ n−2, as well as h̃n−1 = x̃n, ˙̃xn, and ¨̃xn, that means positions, velocities,
and the second derivative of h̃n−1 only. It follows that expression (3) involves h(j)i , 0 ≤ j ≤ 3,
1 ≤ i ≤ n− 2, and h̃(j)n−1, 0 ≤ j ≤ 4.

Proposition 3.1. Consider the observed mechanical system (M, h), given by (1), together with
(h1(x), . . . , hn−1(x))>. The following conditions are equivalent:

(i) There exist mechanical flat-input control vector fields g1, . . . , gn−1 such that (Mc, h) is
locally flat at (x0, v0) and admits a flat output (ϕ1, . . . , ϕn−1) verifying span{dϕi, 1 ≤ i ≤ n−1} =

span{dhi, 1 ≤ i ≤ n − 1}, and for which expression (3) involves ϕ(j)
` , 0 ≤ j ≤ 4, for a certain

1 ≤ ` ≤ n− 1, and ϕ(j)
i , 0 ≤ j ≤ 3 only, for i 6= `.

(ii) There exists a differential one-form form δ =
∑n−1

i=1 δi(x)dLfhi satisfying (C) in Theo-
rem 3.1 and moreover, such that the differential one-form ω =

∑n−1
i=1 δi(x)dhi on X, associated

to δ, fulfills ω ∧ dω = 0.
(iii) There exists a map Ψ = Ψ(h1, . . . , hn−1), invertible with respect to h`, for a certain

1 ≤ ` ≤ n − 1, such that ψ(x) = Ψ(h1(x), . . . , hn−1(x)), in M-coordinates compatible with h,
satisfies

n−1∑
i=1

∂ψ

∂xi
∂ai

∂vn
≡ 0 and

∂L2
fψ

∂xn
(x0, v0) 6= 0.

(iv) There exists a map Ψ = Ψ(h1, . . . , hn−1), invertible with respect to h`, for a certain
1 ≤ ` ≤ n− 1 (say, without loss of generality, ` = n− 1), such that in the coordinates in which
x1 = h1(x), . . . , xn−2 = hn−2(x), xn−1 = ψ(x), where ψ(x) = Ψ(h1(x), . . . , hn−1(x)), the system
M takes the form
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
ẋi=vi ẋn−1=vn−1

v̇i=ai(x, v) v̇n−1=an−1(x, v),
1 ≤ i ≤ n− 2, ẋn =vn

v̇n =an(x, v)

(13)

where ∂an−1

∂vn ≡ 0, ∂a
n−1

∂xn (x0, v0) 6= 0, and h = (x1, . . . , xn−2, hn−1(x
1, . . . , xn−1))>.

Moreover, if M satisfies any of the equivalent conditions (i)-(iv), then mechanical flat-input
control vector fields g1, . . . , gn−1 are given for (13), by

gi =
∂

∂vi
, 1 ≤ i ≤ n− 2, and gn−1 =

∂

∂vn
, (14)

i.e., modify only the equations for vi, 1 ≤ i ≤ n − 2, as v̇i = ai(x, v) + ui, and for vn as
v̇n = an(x, v) + un−1.

Proposition 3.1 is analogous to Theorem 3.1, but its conditions are more restrictive than
those of Theorem 3.1. To compute ψ we have to solve a system of PDE’s (we actually have
∂ψ
∂xi

= δi(x)) and therefore integrability conditions have to be satisfied, see Subsection 3.2. The
integrability conditions are expressed as ω ∧ dω = 0 and guarantee the existence of ψ and allow
to avoid calculating ψ. The function ψ is, in fact, another candidate for one of the flat output
components. Indeed, for (Mc, h) obtained from (13) by adding the mechanical flat-input control
vector fields given by (14), it is clear that (h1, . . . , hn−2, ψ) = (x1, . . . , xn−2, xn−1) is also a flat
output, and, moreover, it is actually such that expression (3) uses derivatives up to order three
of hi, for 1 ≤ i ≤ n − 2, and up to order four of ψ (so (h1, . . . , hn−2, ψ) satisfies the same
conditions as the flat output ϕ of Proposition 3.1(i)). The mechanical flat-input control vector
fields constructed with the help of Proposition 3.1 have only n− 1 non zero components (which
is the minimal possible). Proposition 3.1 covers also the case n = 2 and m = 1 (compare it
to Proposition 2.2), and it provides a structural sufficient condition (far from being trivial) for
the existence of mechanical flat inputs, but also a regularity condition. The flatness singularity
∂an−1

∂xn (x0, v0) = 0 depends on the function ψ (we have an−1 = L2
fψ), so different choices of ψ (if

they exist) lead, in general, to different singularities. Finally, remark that the systems M, for
which Proposition 3.1 applies, are necessarily observable with respect to h.

Now we consider the unobservable case for which the defect of observability is maximal.

Proposition 3.2. Consider the observed mechanical system (M, h), given by (1), together
with (h1(x), . . . , hn−1(x))>, and suppose that the rank of the observability codistribution H =
span{dLjfhi, 1 ≤ i ≤ n − 1, j ≥ 0} is constant and equals 2n − 2, i.e., H = H2. Then in
M-coordinates compatible with h, we have ẋi = vi, v̇i = ai(x, v), with ∂ai

∂xn = ∂ai

∂vn ≡ 0, for all
1 ≤ i ≤ n − 1. For that form, we construct mechanical g1, . . . , gn−1 such that (Mc, h) is flat at
any ((x0, v0), u0), with u10 6= 0, and is given by

Mc :


ẋi=vi ẋn−1=vn−1

v̇i=ai(x, v) + ui v̇n−1=an−1(x, v) + xnu1,
1 ≤ i ≤ n− 2, ẋn =vn

v̇n =an(x, v) + un−1,

(15)

with ∂ai

∂xn = ∂ai

∂vn ≡ 0, 1 ≤ i ≤ n− 1, h = (x1, . . . , xn−1)>.

Proposition 3.2 applies for the unobservable case for which there are two unobserved variables
xn and vn in the well chosen M-coordinates compatible with h. In that case, mechanical flat
inputs always exist without structural conditions. Moreover, if rkH = 2n− 2 everywhere, there
is no singularity in the state space, i.e., h = (x1, . . . , xn−1)> is a local flat output around any
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(x0, v0) ∈ TX. Notice, however, that the system exhibits a singularity in the control space given
by u10 = 0 that is unavoidable.

3.1 Computation of the functions δi. Consider the systemM inM-coordinates compatible
with h. Since all ai(x, v) are quadratic with respect to the velocities (see (4)), the condition∑n−1

i=1 δi(x) ∂a
i

∂vn = 0 translates into a polynomial of degree one with respect to vi, 1 ≤ i ≤ n,
(whose coefficients are thus functions of x only) being identically zero. This leads to the following
system of n + 1 algebraic equations with unknowns δ1(x), . . . , δn−1(x):

∑n−1
i=1 δi(x)Γijn(x) = 0,

1 ≤ j ≤ n − 1,
∑n−1

i=1 δi(x)Γinn(x) = 0,
∑n−1

i=1 δi(x)din(x) = 0, which may or may not have
nontrivial solutions (we used the symmetry of Christoffel symbols Γinj = Γijn).

3.2 Computation of the function ψ. The existence of ψ is guaranteed by ω ∧ dω = 0.
If we need to compute it, we deduce that ψ has to satisfy the following system of PDE’s:∑n−1

i=1
∂ψ
∂xi

(x)Γijn(x) = 0, 1 ≤ j ≤ n − 1,
∑n−1

i=1
∂ψ
∂xi

(x)Γinn(x) = 0,
∑n−1

i=1
∂ψ
∂xi

(x)din(x) = 0,
which has a nontrivial solution if and only if ω ∧ dω = 0.

4 Example
Consider the following mechanical system with 4 degrees of freedom that can be seen as a
combination of a two-link manipulator and a single link manipulator with joint elasticity [12, 18]:

M :


ẋi=vi ẋi=vi

v̇i=−Γijk(x)vjvk + ei(x), v̇i=ei(x),

1 ≤ i ≤ 2, 3 ≤ i ≤ 4,

(16)

with x ∈ S1 × S1 × S1 × S1 = T4, where x1, x2 denote the angles of the first and the second
link, resp., and x3, x4 denote the angles of the first and the second motor shaft. The only
non-zero Christoffel symbols are Γijk, for 1 ≤ i, j, k ≤ 2; the functions e1(x) and e2(x) depend
explicitly on all positions xi, for 1 ≤ i ≤ 4, while e3(x) (resp., e4(x)) is a function of x1 and x3

(resp., x2 and x4) only, see [18] for their exact expressions. The controlled two-link manipulator
with joint elasticity (MS) : ż = f(z) + u1g1(x) + u2g2(x), with z = (x, v), f the drift of (16),
and control vector fields g1 = 1

J1
∂
∂v3

and g2 = 1
J2

∂
∂v4

, has been considered in [18] from a point
of view of static feedback linearization (see [11, 10]); it has been shown that (MS) is static
feedback linearizable with linearizing outputs x1, x2, but the transformed linear system is not
mechanical since the linearizing diffeomorphism is not mechanical and, moreover, that there
are no linearizing outputs defining a mechanical diffeomorphism (i.e., (MS) is not mechanical
static feedback linearizable, see [18] for a formal definition). It is thus natural to investigate
whether there exist other mechanical control vector fields (equivalently, mechanical flat inputs)
that render M flat and, in particular, mechanical static feedback linearizable. For the system
to fall into the class considered in this paper (that is, n degrees of freedom and n− 1 outputs),
we need 3 outputs. We study two cases: we first consider both linearizing outputs of [18], i.e.,
h1 = x1, h2 = x2, and complete them by h3 = x3, and then we study the case h1 = x1, h2 = x3

and h3 = x4.
Suppose first that h1 = x1, h2 = x2, h3 = x3. Notice that the functions ai are such that:

ai = ai(x, v1, v2), for 1 ≤ i ≤ 2, and ai = ei(x), for 3 ≤ i ≤ 4. Proposition 3.1 is obviously
verified (simply take ψ = h1 = x1) and we define the mechanical g1 = ∂

∂v2
, g2 = ∂

∂v3
, and

g3 = ∂
∂v4

that lead to the mechanical control system

Mc :


ẋ2=v2 ẋ3=v3 ẋ1=v1

v̇2=a2(x, v1, v2) + u1, v̇3=e3(x) + u2, v̇1=a1(x, v1, v2)
ẋ4=v4

v̇4=e4(x) + u3,
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with h = (x1, x2, x3)> a flat output at any (x0, v0) such that ∂a1

∂x4
(x0, v0) 6= 0. Other construc-

tions are possible based on Theorem 3.1. For instance, if we work around a point such that
∂a1

∂x4
(x0, v0) = 0 (that is a flatness singularity for the above form), we can avoid that singularity

by constructing the mechanical control system as follows (which is of the form (11) with b1 = x4,
b2 = 0, equivalently, with δ1 = x4, δ2 = 0, δ3 = 1):

M′c :


ẋi=vi ẋ3=v3

v̇i=ai(x, v1, v2) + ui, v̇3=e3(x1, x3) + x4u1,
1 ≤ i ≤ 2, ẋ4=v4

v̇4=e4(x) + u3,

which is flat with h = (x1, x2, x3)> a flat output around any (x0, v0) ∈ TX and u10 6= 0 (notice the
new singularity in the control space). For both mechanical control systemsMc andM′c proposed
above, a simple calculus shows that their linearizability distribution D1 = span{gi, adfgi, 1 ≤
i ≤ 3} is not involutive, hence none of them is static feedback linearizable (and in particular, not
mechanical static feedback linearizable), although flat. Finally, observe that since no function ai

depends on v4, we can construct a mechanical control system (Mc, h), with h = (x1, x2, x3)>,
by choosing any functions bi(x) (or equivalently, any one-form δ) in Theorem 3.1.

Consider now the case when h1 = x1, h2 = x3 and h3 = x4. We apply Proposition 3.1 with
ψ = h3 = x4, and define the mechanical g1 = ∂

∂v1
, g2 = ∂

∂v3
, and g3 = ∂

∂v2
that lead to the

mechanical control system

M′′
c :


ẋ1=v1 ẋ3=v3 ẋ4=v4

v̇1=a1(x, v1, v2) + u1, v̇3=e3(x) + u2, v̇4=e4(x2, x4),
ẋ2=v2

v̇2=a2(x, v1, v2) + u3,

with h = (x1, x3, x4)> a flat output at any (x0, v0) ∈ TX (since we always have ∂e2

∂x4
6= 0, [18]).

It can be easily verified that M′′c is now static feedback linearizable and moreover, that the
linearizing diffeomorphism is compatible with the mechanical structure yielding a linear mechan-
ical control system, the measurements h = (x1, x3, x4)> being also the mechanical linearizing
outputs.
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