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AN OBSTACLE PROBLEM FOR LINEARLY ELASTIC FLEXURAL SHELLS

In this paper we identify a set of two-dimensional variational inequalities that model an obstacle problem for a linearly elastic flexural shell subjected to a confinement condition expressing that all the points of the admissible deformed configurations remain in a given half-space.

Introduction

In this paper we recover, via a rigorous asymptotic analysis as the thickness approaches zero over a ad hoc three-dimensional model, a set of two-dimensional variational inequalities governing the displacement of a linearly elastic flexural shell subject to remain confined in a half-space. The problem under consideration is an obstacle problem.

The identification of two-dimensional limit models for time-independent linearly elastic shells was extensively treated by Ciarlet and his associates in the seminal papers [START_REF] Ciarlet | A justification of the two-dimensional linear plate model[END_REF][START_REF] Ciarlet | On the ellipticity of linear membrane shell equations[END_REF][START_REF] Ciarlet | Asymptotic analysis of linearly elastic shells. I. justification of membrane shell equations[END_REF][START_REF] Ciarlet | Asymptotic analysis of linearly elastic shells. III. justification of koiter's shell equations[END_REF][START_REF] Ciarlet | Asymptotic analysis of linearly elastic shells: "generalized membrane shells[END_REF][START_REF] Ciarlet | Asymptotic analysis of linearly elastic shells. II. Justification of flexural shell equations[END_REF] for the purpose of justifying Koiter's model. For the justification of Koiter's model in the time-dependent case where the action of temperature is considered, we refer the reader to [START_REF] Piersanti | On the justification of the frictionless time-dependent Koiter's model for thermoelastic shells[END_REF]. In these papers no confinement conditions are imposed.

In the recent papers [START_REF] Ciarlet | Obstacle problems for Koiter's shells[END_REF][START_REF] Ciarlet | A confinement problem for a linearly elastic Koiter's shell[END_REF][START_REF] Ciarlet | Un problème de confinement pour une coque membranaire linéairement élastique de type elliptique[END_REF][START_REF] Ciarlet | An obstacle problem for elliptic membrane shells[END_REF], Ciarlet and his associates fully justified Koiter's model in the case where the linearly elastic shell under consideration is an elliptic membrane shell subject to the aforementioned confinement condition.

The confinement condition we are here considering considerably departs from the Signorini condition usually considered in the existing literature, where only the "lower face" of the shell is required to remain above the "horizontal" plane. Such a confinement condition renders the asymptotic analysis considerably more difficult, however, as the constraint now bears on a vector field, the displacement vector field of the reference configuration, instead of on only a single component of this field.

The recovery of a set of two-dimensional variational inequalities as a result of a rigorous asymptotic analysis conducted on a ad hoc three-dimensional model in the case where the linearly elastic shell under consideration is a flexural shell appears not to have been addressed in the literature yet. The purpose of this paper is exactly to remedy this situation.

The paper is divided into five sections (including this one). In section 2 we recall some background and notation. In section 3 we recall the formulation and the properties of a three-dimensional obstacle problem for "general" linearly elastic shell. In section 4 we specialise the formulation presented in the previous section to the case where the linearly elastic shell under consideration is a flexural shell, and then we scale the three-dimensional obstacle problem in a way such that the integration domain becomes independent of the thickness parameter. The penalised version of the three-dimensional obstacle problem is introduced at the end of this section. Finally, in section 5, a rigorous asymptotic analysis is carried out and the desired set of two-dimensional variational inequalities is recovered.

Geometrical preliminaries

For details about the classical notions of differential geometry used in this section and the next one, see, e.g. [START_REF] Ciarlet | Mathematical Elasticity[END_REF] or [START_REF] Ciarlet | An Introduction to Differential Geometry with Applications to Elasticity[END_REF].

Greek indices, except ε, take their values in the set {1, 2}, while Latin indices, except when they are used for indexing sequences, take their values in the set {1, 2, 3}, and the summation convention with respect to repeated indices is systematically used in conjunction with these two rules. The notation E 3 designates the three-dimensional Euclidean space whose origin is denoted by O; the Euclidean inner product and the vector product of u, v ∈ E 3 are denoted u • v and u × v; the Euclidean norm of u ∈ E 3 is denoted |u|. The notation δ j i designates the Kronecker symbol.

Given an open subset Ω of R n , notations such as L 2 (Ω), H 1 (Ω), or H 2 (Ω), designate the usual Lebesgue and Sobolev spaces, and the notation D(Ω) designates the space of all functions that are infinitely differentiable over Ω and have compact supports in Ω. The notation • X designates the norm in a normed vector space X. Spaces of vector-valued functions are denoted with boldface letters.

The positive and negative parts of a function f : Ω → R are respectively denoted by: f + (x) := max{f (x), 0} and f -(x) := -min{f (x), 0} x ∈ Ω. A domain in R n is a bounded and connected open subset Ω of R n , whose boundary ∂Ω is Lipschitz-continuous, the set Ω being locally on a single side of ∂Ω.

Let ω be a domain in R 2 , let y = (y α ) denote a generic point in ω, and let ∂ α := ∂/∂y α and ∂ αβ := ∂ 2 /∂y α ∂y β . A mapping θ ∈ C 1 (ω; E 3 ) is an immersion if the two vectors a α (y) := ∂ α θ(y) are linearly independent at each point y ∈ ω. Then the image θ(ω) of the set ω under the mapping θ is a surface in E 3 , equipped with y 1 , y 2 as its curvilinear coordinates. Given any point y ∈ ω, the vectors a α (y) span the tangent plane to the surface θ(ω) at the point θ(y), the unit vector

a 3 (y) := a 1 (y) ∧ a 2 (y) |a 1 (y) ∧ a 2 (y)|
is normal to θ(ω) at θ(y), the three vectors a i (y) form the covariant basis at θ(y), and the three vectors a j (y) defined by the relations

a j (y) • a i (y) = δ j i
form the contravariant basis at θ(y); note that the vectors a β (y) also span the tangent plane to θ(ω) at θ(y) and that a 3 (y) = a 3 (y).

The first fundamental form of the surface θ(ω) is then defined by means of its covariant components

a αβ := a α • a β = a βα ∈ C 0 (ω),
or by means of its contravariant components

a αβ := a α • a β = a βα ∈ C 0 (ω).
Note that the symmetric matrix field (a αβ ) is then the inverse of the matrix field (a αβ ), that a β = a αβ a α and a α = a αβ a β , and that the area element along θ(ω) is given at each point θ(y), y ∈ ω, by a(y) dy, where

a := det(a αβ ) ∈ C 0 (ω).
Given an immersion θ ∈ C 2 (ω; E 3 ), the second fundamental form of the surface θ(ω) is defined by means of its covariant components

b αβ := ∂ α a β • a 3 = -a β • ∂ α a 3 = b βα ∈ C 0 (ω),
or by means of its mixed components b β α := a βσ b ασ ∈ C 0 (ω), and the Christoffel symbols associated with the immersion θ are defined by

Γ σ αβ := ∂ α a β • a σ = Γ σ βα ∈ C 0 (ω).
The Gaussian curvature at each point θ(y), y ∈ ω, of the surface θ(ω) is defined by

κ(y) := det(b αβ (y)) det(a αβ (y)) = det b β α (y) 
(the denominator in the above relation does not vanish since θ is assumed to be an immersion). Note that the Gaussian curvature κ(y) at the point θ(y) is also equal to the inverse of the product of the two principal radii of curvature at this point. Given an immersion θ ∈ C 2 (ω; E 3 ) and a vector field η = (η i ) ∈ C 1 (ω; R 3 ), the vector field η := η i a i can be viewed as a displacement field of the surface θ(ω), thus defined by means of its covariant components η i over the vectors a i of the contravariant bases along the surface. If the norms η i C 1 (ω) are small enough, the mapping (θ + η i a i ) ∈ C 1 (ω; E 3 ) is also an immersion, so that the set (θ + η i a i )(ω) is also a surface in E 3 , equipped with the same curvilinear coordinates as those of the surface θ(ω), called the deformed surface corresponding to the displacement field η = η i a i . One can then define the first fundamental form of the deformed surface by means of its covariant components

a αβ (η) :=(a α + ∂ α η) • (a β + ∂ β η) =a αβ + a α • ∂ β η + ∂ α η • a β + ∂ α η • ∂ β η.
The linear part with respect to η in the difference 1 2 (a αβ (η) -a αβ ) is called the linearized change of metric tensor associated with the displacement field η i a i , the covariant components of which are thus defined by

γ αβ (η) := 1 2 (a α • ∂ β η + ∂ α η • a β ) = 1 2 (∂ β η α + ∂ α η β ) -Γ σ αβ η σ -b αβ η 3 = γ βα (η).
The linear part with respect to η in the difference 1 2 (b αβ (η) -b αβ ) is called the linearized change of curvature tensor associated with the displacement field η i a i , the covariant components of which are thus defined by

ρ αβ (η) := (∂ αβ η -Γ σ αβ ∂ σ η) • a 3 = ρ βα (η) = ∂ αβ η 3 -Γ σ αβ ∂ σ η 3 -b σ α b σβ η 3 + b σ α (∂ β η σ -Γ τ βσ η τ ) + b τ β (∂ α η τ -Γ σ ατ η σ ) + (∂ α b τ β + Γ τ ασ b σ β -Γ σ αβ b τ σ )η τ .
It turns out that, when a generic surface is subjected to a displacement field η i a i whose tangential covariant components η α vanish on a nonzero length portion of boundary of the domain ω, denoted γ 0 in the statement of the next result, the following inequality holds (this inequality plays an essential role in our convergence analysis; cf. the proof of Theorem 5.1). Note that the components of the displacement fields, linearized change of metric tensor and linearized change of curvature tensor appearing in the next theorem are no longer assumed to be continuously differentiable functions; they are instead to be understood in a generalized sense, since they now belong to ad hoc Lebesgue or Sobolev spaces. Throughout the paper the symbol ∂ ν denotes the outer unit normal derivative operator along γ.

Theorem 2.1. Let ω be a domain in R 2 and let an immersion θ ∈ C 3 (ω; E 3 ) be given. Define the space

V K (ω) := {η = (η i ) ∈ H 1 (ω) × H 1 (ω) × H 2 (ω); η i = ∂ ν η 3 = 0 on γ 0 }.
Then there exists a constant c 0 such that

α η α 2 H 1 (ω) + η 3 2 H 2 (ω) 1/2 ≤ c 0 α,β γ αβ (η) 2 L 2 (ω) + α,β ρ αβ (η) 2 L 2 (ω) 1/2
for all η = (η i ) ∈ V K (ω).

The above inequality, which is due to [START_REF] Bernadou | Sur l'ellipticité du modèle linéaire de coques de W. T. Koiter[END_REF] and was later on improved by [START_REF] Bernadou | Existence theorems for twodimensional linear shell theories[END_REF] (see also [START_REF] Ciarlet | Mathematical Elasticity[END_REF]), constitutes an example of a Korn inequality on a general surface, in the sense that it provides an estimate of an appropriate norm of a displacement field defined on a surface in terms of an appropriate norm of a specific "measure of strain" (here, the linearized change of metric tensor and the linearized change of curvature tensor) corresponding to the displacement field considered.

The three-dimensional obstacle problem for a "general" linearly elastic shell

Let ω be a domain in R 2 , let γ := ∂ω, and let γ 0 be a non-empty relatively open subset of γ. For each ε > 0, we define the sets

Ω ε = ω × ]-ε, ε[ and Γ ε 0 := γ 0 × [-ε, ε] , we let x ε = (x ε i
) designate a generic point in the set Ω ε , and we let ∂ ε i := ∂/∂x ε i . Hence we also have x ε α = y α and ∂ ε α = ∂ α . Given an immersion θ ∈ C 3 (ω; E 3 ) and ε > 0, consider a shell with middle surface θ(ω) and with constant thickness 2ε. This means that the reference configuration of the shell is the set Θ(Ω ε ), where the mapping Θ : Ω ε → E 3 is defined by

Θ(x ε ) := θ(y) + x ε 3 a 3 (y) at each point x ε = (y, x ε 3 ) ∈ Ω ε .
One can then show (cf., e.g., Theorem 3.1-1 of [START_REF] Ciarlet | Mathematical Elasticity[END_REF]) that, if ε > 0 is small enough, such a mapping Θ ∈ C 2 (Ω ε ; E 3 ) is an immersion, in the sense that the three vectors

g ε i (x ε ) := ∂ ε i Θ(x ε
), are linearly independent at each point x ε ∈ Ω ε ; these vectors then constitute the covariant basis at the point Θ(x ε ), while the three vectors g j,ε (x ε ) defined by the relations g j,ε (x ε ) • g ε i (x ε ) = δ j i , constitute the contravariant basis at the same point. It will be implicitly assumed in the sequel that ε > 0 is small enough so that Θ : Ω ε → E 3 is an immersion.

One then defines the metric tensor associated with the immersion Θ by means of its covariant components

g ε ij := g ε i • g ε j ∈ C 1 (Ω ε ), or by means of its contravariant components g ij,ε := g i,ε • g i,ε ∈ C 1 (Ω ε ).
Note that the symmetric matrix field (g ij,ε ) is then the inverse of the matrix field (g ε ij ), that g j,ε = g ij,ε g ε i and g ε i = g ε ij g j,ε , and that the volume element in Θ(Ω ε ) is given at each point Θ(x ε ), x ε ∈ Ω ε , by g ε (x ε ) dx ε , where

g ε := det(g ε ij ) ∈ C 1 (Ω ε
). One also defines the Christoffel symbols associated with the immersion Θ by

Γ p,ε ij := ∂ i g ε j • g p,ε = Γ p,ε ji ∈ C 0 (Ω ε ). Note that Γ 3,ε α3 = Γ p,ε 33 = 0. Given a vector field v ε = (v ε i ) ∈ C 1 (Ω ε ; R 3
), the associated vector field ṽε := v ε i g i,ε , can be viewed as a displacement field of the reference configuration Θ(Ω ε ) of the shell, thus defined by means of its covariant components v ε i over the vectors g i,ε of the contravariant bases in the reference configuration.

If the norms v ε i C 1 (Ω ε ) are small enough, the mapping (Θ+v ε i g i,ε ) is also an immersion, so that one can also define the metric tensor of the deformed configuration

(Θ + v ε i g i,ε )(Ω ε ) by means of its covariant components g ε ij (v ε ) :=(g ε i + ∂ ε i ṽε ) • (g ε j + ∂ ε j ṽε ) =g ε ij + g ε i • ∂ j ṽε + ∂ ε i ṽε • g ε j + ∂ i ṽε • ∂ j ṽε .
The linear part with respect to ṽε in the difference

1 2 (g ε ij (v ε ) -g ε ij )
is then called the linearized strain tensor associated with the displacement field v ε i g i,ε , the covariant components of which are thus defined by

e ε i j (v ε ) := 1 2 g ε i • ∂ ε j ṽε + ∂ ε i ṽε • g ε j = 1 2 (∂ ε j v ε i + ∂ ε i v ε j ) -Γ p,ε ij v ε p = e ε j i (v ε ).
The functions e ε i j (v ε ) are called the linearized strains in curvilinear coordinates associated with the displacement field v ε i g i,ε . We assume throughout this paper that, for each ε > 0, the reference configuration Θ(Ω ε ) of the shell is a natural state (i.e., stress-free) and that the material constituting the shell is homogeneous, isotropic, and linearly elastic. The behavior of such an elastic material is thus entirely governed by its two Lamé constants λ ≥ 0 and µ > 0 (for details, see, e.g., [START_REF] Ciarlet | Mathematical Elasticity. Vol. I: Three-Dimensional Elasticity[END_REF]Section 3.8]).

We will also assume that the shell is subjected to applied body forces whose density per unit volume is defined by means of its covariant components f i,ε ∈ L 2 (Ω ε ), and to a homogeneous boundary condition of place along the portion Γ ε 0 of its lateral face (i.e., the displacement vanishes on Γ ε 0 ). In this paper we consider a specific obstacle problem for such a shell, in the sense that the shell is also subjected to a confinement condition, expressing that any admissible displacement vector field v ε i g i,ε must be such that all the points of the corresponding deformed configuration remain in a half-space of the form

H := {x ∈ E 3 ; Ox • q ≥ 0},
where q is a nonzero vector given once and for all. In other words, any admissible displacement field must satisfy

Θ(x ε ) + v ε i (x ε )g i,ε (x ε ) • q ≥ 0, for all x ε ∈ Ω ε ,
or possibly only for almost all (a.a. in what follows) x ε ∈ Ω ε when the covariant components v ε i are required to belong to the Sobolev space H 1 (Ω ε ) as in Theorem 3.1 below.

We will of course assume that the reference configuration satisfies the confinement condition, i.e., that

Θ(Ω ε ) ⊂ H.
It is to be emphasized that the above confinement condition considerably departs from the usual Signorini condition favored by most authors, who usually require that only the points of the undeformed and deformed "lower face" ω × {-ε} of the reference configuration satisfy the confinement condition (see, e.g., [START_REF] Léger | Mathematical justification of the obstacle problem in the case of a shallow shell[END_REF], [START_REF] Léger | A linearly elastic shell over an obstacle: The flexural case[END_REF], [START_REF] Rodríguez-Arós | Mathematical justification of the obstacle problem for elastic elliptic membrane shells[END_REF]). Clearly, the confinement condition considered in the present paper is more physically realistic, since a Signorini condition imposed only on the lower face of the reference configuration does not prevent -at least "mathematically" -other points of the deformed reference configuration to "cross" the plane {x ∈ E 3 ; Ox • q = 0} and then to end up on the "other side" of this plane.

Such a confinement condition renders the asymptotic analysis considerably more difficult, however, as the constraint now bears on a vector field, the displacement vector field of the reference configuration, instead of on only a single component of this field.

The mathematical modeling of such an obstacle problem for a linearly elastic shell is then clear; since, apart from the confinement condition, the rest, i.e., the function space and the expression of the quadratic energy J ε , is classical (see, e.g. [START_REF] Ciarlet | Mathematical Elasticity[END_REF]). More specifically, let

A ijk ,ε := λg ij,ε g k ,ε + µ g ik,ε g j ,ε + g i ,ε g jk,ε = A jik ,ε = A k ij,ε ,
denote the contravariant components of the elasticity tensor of the elastic material constituting the shell. Then the unknown of the problem, which is the vector field u ε = (u ε i ) where the functions u ε i : Ω ε → R are the three covariant components of the unknown "three-dimensional" displacement vector field u ε i g i,ε of the reference configuration of the shell, should minimize the energy

J ε : H 1 (Ω ε ) → R defined by J ε (v ε ) := 1 2 Ω ε A ijk ,ε e ε k (v ε )e ε i j (v ε ) √ g ε dx ε - Ω ε f i,ε v ε i √ g ε dx ε , for each v ε = (v ε i ) ∈ H 1 (Ω ε
) over the set of admissible displacements defined by:

U (Ω ε ) :={v ε = (v ε i ) ∈ H 1 (Ω ε ); v ε = 0 on Γ ε 0 , (Θ(x ε ) + v ε i (x ε )g i,ε (x ε )) • q ≥ 0 for a.a. x ε ∈ Ω ε }.
The solution to this minimization problem exists and is unique, and it can be also characterized as the unique solution of the following problem:

Problem P(Ω ε ). Find u ε ∈ U (Ω ε
) that satisfies the following variational inequalities:

Ω ε A ijk ,ε e ε k (u ε ) e ε i j (v ε ) -e ε i j (u ε ) √ g ε dx ε ≥ Ω ε f i,ε (v ε i -u ε i ) √ g ε dx ε , for all v ε = (v ε i ) ∈ U (Ω ε
). The following result can be thus straightforwardly proved.

Theorem 3.1. The quadratic minimization problem: Find a vector field

u ε ∈ U (Ω ε ) such that J ε (u ε ) = inf v ε ∈U (Ω ε ) J ε (v ε ),
has one and only one solution. Besides, u ε is also the unique solution of Problem P(Ω ε ).

Proof. Define the space

V (Ω ε ) := {v ε = (v ε i ) ∈ H 1 (Ω ε ); v ε = 0 on Γ ε 0 }.
Then, thanks to the uniform positive-definiteness of the elasticity tensor (A ijk ,ε ) and to the boundary condition of place satisfied on Γ ε 0 = γ 0 × [-ε, ε] (recall that λ ≥ 0, µ > 0, and that γ 0 is a non-empty relatively open subset of γ = ∂ω), it can be shown (see [6, Theorems 3.8-3 and 3.9-1]) that the continuous and symmetric bilinear form

(v ε , w ε ) ∈ H 1 (Ω ε ) × H 1 (Ω ε ) → Ω ε A ijk ,ε e ε k (v ε )e ε i j (w ε ) √ g ε dx ε , is V (Ω ε )-elliptic; besides, the linear form v ε ∈ H 1 (Ω ε ) → Ω ε f i,ε v ε i √ g ε dx ε , is clearly continuous. Finally, the set U (Ω ε ) is nonempty (by assumption), closed in H 1 (Ω ε ) (any convergent sequence in V (Ω ε
) contains a subsequence that pointwise converges almost everywhere to its limit), and convex (as is immediately verified).

The existence and uniqueness of the solution to the minimization problem and its characterization by means of variational inequalities is then classical (see, e.g., [START_REF] Duvaut | Inequalities in Mechanics and Physics[END_REF], [START_REF] Glowinski | Numerical Methods for Nonlinear Variational Problems[END_REF], or [START_REF] Ciarlet | Linear and Nonlinear Functional Analysis with Applications[END_REF]).

Since θ(ω) ⊂ Θ(Ω ε ), it evidently follows that θ(y) • q ≥ 0 for all y ∈ ω. But in fact, a stronger property holds: Lemma 3.1. Let ω be a domain in R 2 , let θ ∈ C 1 (ω; E 3 ) be an immersion, let q ∈ E 3 be a nonzero vector, and let ε > 0. Then the inclusion

Θ(Ω ε ) ⊂ H = {x ∈ E 3 ; Ox • q ≥ 0} implies that inf y∈ω (θ(y) • q) > 0.
Proof. Without loss of generality, assume that |q| = 1. Assume that there exists y 0 ∈ ω such that θ(y 0 ) • q = 0. It is then easily seen that the assumed relation θ(y) • q ≥ 0 for all y ∈ ω implies that a α (y 0 ) • q = 0, which means that the plane {x ∈ E 3 ; ox • q = 0} is tangent to the surface θ(ω) at the point θ(y 0 ). Consequently, either a 3 (y 0 ) = q and then (θ(y 0 ) -εa 3 (y 0 )) • q = -ε < 0, which contradicts (θ(y 0 ) -εa 3 (y 0 )) ∈ Θ(Ω ε ) ⊂ H; or a 3 (y 0 ) = -q and then (θ(y 0 ) + εa 3 (y 0 )) • q = -ε < 0, which contradicts θ((y 0 ) + εa 3 (y 0 )) ∈ Θ(Ω ε ) ⊂ H.

We must therefore have θ(y) • q > 0 for all y ∈ ω; hence inf y∈ω (θ(y)

• q) > 0 since ω is a compact subset of R 2 .
We now consider the "penalized" version of Problem P(Ω ε ). One such penalization transforms the set of variational inequalities in Problem P(Ω ε ) into a set of nonlinear variational equations, where the nonlinearity is defined in terms of the measure of the violation of the constraint. Let κ > 0 denote a "penalty parameter". The "penalized" variational formulation corresponding to Problem P(Ω ε ) takes the following form:

Problem P κ (Ω ε ). Find u ε κ ∈ V (Ω ε
) that satisfies the following variational equations:

Ω ε A ijk ,ε e ε k (u ε )e ε i j (v ε ) √ g ε dx ε - 1 κ Ω ε [Θ + u ε i,κ g i,ε ] • q -(v ε i g i,ε • q) √ g ε dx ε = Ω ε f i,ε v ε i √ g ε dx ε , for all v ε = (v ε i ) ∈ V (Ω ε
). The existence and uniqueness of the solution for Problem P κ (Ω ε ) is classical too, and resorts to the Browder fixed point theorem (cf., e.g., [START_REF] Kikuchi | Contact problems in elasticity: a study of variational inequalities and finite element methods[END_REF] and [START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linéaires[END_REF]).

It can also be shown that, in the same spirit of [START_REF] Scholz | Numerical solution of the obstacle problem by the penalty method[END_REF], for each δ > 0 and for each ε > 0, we can find a number κ 0 = κ 0 (δ, ε) > 0 such that, for each 0 < κ < κ 0 , it results

(1)

u ε -u ε κ H 1 (Ω ε ) < δ 2 ,
where u ε and u ε κ respectively denote the solutions of Problem P(Ω ε ) and Problem P κ (Ω ε ).

The scaled three-dimensional problem for a family of flexural shells

In Section 3, we considered an obstacle problem for "general" linearly elastic shells. From now on, we will restrict ourselves to a specific class of shells, according to the following definition (proposed in [START_REF] Ciarlet | Asymptotic analysis of linearly elastic shells. II. Justification of flexural shell equations[END_REF]; see also [START_REF] Ciarlet | Mathematical Elasticity[END_REF]).

Consider a linearly elastic shell, subjected to the various assumptions set forth in Section 3. Such a shell is said to be a linearly elastic flexural shell if the following two additional assumptions are satisfied: first, ∅ = γ 0 ⊂ γ, i.e., the homogeneous boundary condition of place is imposed over a nonzero area portion of the entire lateral face γ 0 × [-ε, ε] of the shell, and second, the space

V F (ω) := {η = (η i ) ∈ H 1 (ω) × H 1 (ω) × H 2 (ω); γ αβ (η) = 0 in ω and η i = ∂ ν η 3 = 0 on γ 0 } contains nonzero functions, i.e., V F (ω) = {0}.
In this paper, we consider the obstacle problem (as defined in Section 3) for a family of linearly elastic flexural shells, all sharing the same middle surface and whose thickness 2ε > 0 is considered as a "small" parameter approaching zero. Our basic objective then consists in performing an asymptotic analysis as ε → 0, so as to seek whether we can identify a limit two-dimensional problem as ε → 0. To this end, we shall resort to a (by now standard) methodology first proposed by Ciarlet, Lods and Miara (cf. Theorem 5.1 of [START_REF] Ciarlet | Asymptotic analysis of linearly elastic shells. II. Justification of flexural shell equations[END_REF] and Theorem 6.2-1 of [START_REF] Ciarlet | Mathematical Elasticity[END_REF]): To begin with, we "scale" each problem P(Ω ε ), ε > 0, over a fixed domain Ω, using appropriate scalings on the unknowns and assumptions on the data. Note that these scalings and assumptions definitely depend on the type of shells that are considered; for instance, those used for the linearly elastic elliptic membrane shells considered elsewhere (cf. [START_REF] Ciarlet | An obstacle problem for elliptic membrane shells[END_REF] and also [START_REF] Ciarlet | Un problème de confinement pour une coque membranaire linéairement élastique de type elliptique[END_REF]) are different.

More specifically, let

Ω := ω × ]-1, 1[ , let x = (x i
) denote a generic point in the set Ω, and let

∂ i := ∂/∂x i . With each point x = (x i ) ∈ Ω, we associate the point x ε = (x ε i ) defined by x ε α := x α = y α and x ε 3 := εx 3 , so that ∂ ε α = ∂ α and ∂ ε 3 = 1 ε ∂ 3 .
To the unknown u ε = (u ε i ) and to the vector fields v ε = (v ε i ) appearing in the formulation of the problem P(Ω ε ) corresponding to a linearly elastic flexural shell, we then associate the scaled unknown u(ε) = (u i (ε)) and the scaled vector fields v = (v i ) by letting

u i (ε)(x) := u ε i (x ε
) and v i (x) := v ε i (x ε ), at each x ∈ Ω. Finally, we assume that there exist functions f i ∈ L 2 (Ω) independent on ε such that the following assumptions on the data hold

f i,ε (x ε ) = ε 2 f i (x) at each x ∈ Ω.
Note that the independence on ε of the Lamé constants assumed in Section 3 in the formulation of problem P(Ω ε ) implicitly constituted another assumption on the data.

In view of the proposed scaling, we define the "scaled" version of the geometrical entities introduced in section 2:

g i (ε)(x) := g i,ε (x ε ) at each x ∈ Ω, g(ε)(x) := g ε (x ε ) and A ijk (ε)(x) := A ijk ,ε (x ε ) at each x ∈ Ω, e α β (ε; v) := 1 2 (∂ β v α + ∂ α v β ) -Γ k αβ (ε)v k = e β α (ε; v), e α 3 (ε; v) = e 3 α (ε; v) := 1 2 1 ε ∂ 3 v α + ∂ α v 3 -Γ σ α3 (ε)v σ , e 3 3 (ε; v) := 1 ε ∂ 3 v 3 , where Γ p ij (ε)(x) := Γ p,ε ij (x ε ) at each x ∈ Ω. Define the space V (Ω) := {v = (v i ) ∈ H 1 (Ω); v = 0 on γ 0 × [-1, 1]},
and define, for each ε > 0, the set

U (ε; Ω) := {v = (v i ) ∈ V (Ω); θ(y) + εx 3 a 3 (y) + v i (x)g i (ε)(x) • q ≥ 0 for a.a. x = (y, x 3 ) ∈ Ω}.
We are thus in a position to introduced the "scaled" version of Problem P(Ω ε ), that will be denoted in what follows by P(ε; Ω). Problem P(ε; Ω). Find u(ε) ∈ U (ε; Ω) that satisfies the following variational inequalities:

Ω A ijk (ε)e k (ε; u(ε)) e i j (ε; v) -e i j (ε; u(ε)) g(ε) dx ≥ ε 2 Ω f i (v i -u i (ε)) g(ε) dx,
for all v ∈ U (ε; Ω). Proof. The variational Problem P(ε; Ω) simply constitutes a re-writing of the variational Problem P(Ω ε ), this time in terms of the scaled unknown u(ε), of the vector fields v, and of the functions f i , which are now all defined over the domain Ω. Then the assertion follows from this observation.

The functions e i j (ε; v) appearing in Problem P(ε; Ω) are called the scaled linearized strains in curvilinear coordinates associated with the scaled displacement vector field v i g i (ε).

For later purposes (like in Lemma 4.1 below), we also let

g i (ε)(x) := g ε i (x ε ) at each x ∈ Ω.
Likewise, one can introduce the "scaled" version of Problem P κ (Ω ε ), that will be denoted in what follows by P κ (ε; Ω).

Problem P κ (ε; Ω). Find u κ (ε) ∈ V (Ω) that satisfies the following variational equations:

Ω A ijk (ε)e k (ε; u κ (ε))e i j (ε; v) g(ε) dx - 1 κ Ω [Θ + u i,κ (ε)g i (ε)] • q -(v i g i (ε) • q) g(ε) dx = ε 2 Ω f i v i g(ε) dx, for all v ∈ V (Ω).
The following existence and uniqueness result can be thus easily proved.

Theorem 4.2. Then the scaled unknown u κ (ε) is the unique solution of the variational Problem P κ (ε; Ω).

Proof. The variational Problem P κ (ε; Ω) simply constitutes a re-writing of the variational Problem P κ (Ω ε ), this time in terms of the scaled unknown u κ (ε), of the vector fields v, and of the functions f i , which are now all defined over the domain Ω. Then the assertion follows from this observation.

A condition similar to (1) can be derived, i.e., for each δ > 0 and for each ε > 0, we can find a number κ 0 = κ 0 (δ, ε) > 0 such that, for each 0 < κ < κ 0 , it results

(2) u(ε) -u κ (ε) H 1 (Ω) < δ 2 ,
where u(ε) and u κ (ε) respectively denote the solutions of Problem P(ε; Ω) and Problem P κ (ε; Ω). Without loss of generality, we restrict ourselves to considering penalty parameters with the following property:

(3) 0 < κ ≤ ε, so that κ → 0 as ε → 0.

Remarks.

(1) Of course, the variational Problem P(ε; Ω) could have been equivalently written as a minimization problem, thus mimicking that found in Theorem 3.1. It turns out, however, that its formulation in Theorem 4.1 as a set of variational inequalities is more convenient for the asymptotic analysis undertaken in Section 5.

(2) It is immediately verified (cf., e.g., [START_REF] Ciarlet | Mathematical Elasticity[END_REF]) that other assumptions on the data are possible that would give rise to the same problem over the fixed domain Ω. For instance, should the Lamé constants (now denoted) λ ε and µ ε appearing in Problem P(Ω ε ) be of the form λ ε = ε t λ and µ ε = ε t µ, where λ ≥ 0 and µ are constants independent of ε and t is an arbitrary real number, the same Problem P(ε; Ω) arises if we assume that the components of the applied body force density are now of the form

f i,ε (x ε ) = ε 2+t f i (x) at each x ∈ Ω,
where the functions f i ∈ L 2 (Ω) are independent of ε.

The next lemma assembles various asymptotic properties as ε → 0 of functions and vector fields appearing in the formulation of Problem P(ε; Ω); these properties will be repeatedly used in the proof of the convergence theorem (Theorem 4.3):

In the next statement, the notation "O(ε)", or "O(ε 2 )", stands for a remainder that is of order ε, or ε 2 , with respect to the sup-norm over the set Ω, and any function, or vector-valued function, of the variable y ∈ ω, such as a αβ , b αβ , a i , etc. (all these are defined in Section 2) is identified with the function, or vector-valued function, of x = (y, x 3 ) ∈ Ω = ω × [-1, 1] that takes the same value at x 3 = 0 and is independent of x 3 ∈ [-1, 1]; for brevity, this extension from ω to Ω is designated with the same notation.

Recall that ε > 0 is implicitly assumed to be small enough so that Θ : Ω ε → E 3 is an immersion. Lemma 4.1. Let ε 0 be defined as in Theorem 3.1-1 of [START_REF] Ciarlet | Mathematical Elasticity[END_REF]. The functions A ijk (ε) = A jik (ε) = A k ij (ε) have the following properties:

A ijk (ε) = A ijk (0) + O(ε), A αβσ3 (ε) = A α333 (ε) = 0,
for all 0 < ε ≤ ε 0 , where A αβστ (0) = λa αβ a στ + µ(a ασ a βτ + a ατ a βσ ),

A αβ33 (0) = λa αβ , A α3σ3 (0) = µa ασ , A 3333 (0) = λ + 2µ,
and there exists a constant C 0 > 0 such that i,j

|t ij | 2 ≤ C 0 A ijk (ε)(x)t k t ij
for all 0 < ε ≤ ε 0 , all x ∈ Ω, and all symmetric matrices (t ij ).

The functions Γ p ij (ε) and g(ε) have the following properties:

Γ σ αβ (ε) = Γ σ αβ -εx 3 (∂ α b σ β + Γ σ ατ b τ β -Γ τ αβ b σ τ ) + O(ε 2 ), Γ 3 αβ (ε) = b αβ -εx 3 b σ α b σβ , ∂ 3 Γ p αβ (ε) = O(ε), Γ σ α3 (ε) = -b σ α -εx 3 b τ α b σ τ + O(ε 2 ), Γ 3 α3 (ε) = Γ p 33 (ε) = 0, g(ε) = a + O(ε),
for all 0 < ε ≤ ε 0 and all x ∈ Ω. In particular then, there exist constants g 0 and g 1 such that 0 < g 0 ≤ g(ε)(x) ≤ g 1 for all 0 < ε ≤ ε 0 and all x ∈ Ω.

The vector fields g i (ε) and g j (ε) have the following properties:

g α (ε) = a α -εx 3 b σ α a σ , g 3 (ε) = a 3 , g α (ε) = a α + εx 3 b α σ a σ + O(ε 2 ), g 3 (ε) = a 3 . Proof.
See the proofs of Theorems 3.3-1 and 3.3-2 in [START_REF] Ciarlet | Mathematical Elasticity[END_REF].

Remark. The various relations and estimates in Lemma 4.1 hold in fact for any family of linearly elastic shells, i.e., irrespective of whether these shells are flexural ones or not.

When one considers a family of linearly elastic flexural shells whose thickness 2ε approaches zero, a specific Korn's inequality in curvilinear coordinates holds over the fixed domain Ω = ω × ]-1, 1[, according to the following theorem. That the constant C 1 that appears in this inequality is independent of ε > 0 plays a key role in the asymptotic analysis of such a family (see part (i) of the proof of Theorem 5.1). Theorem 4.3. Let there be given a family of linearly elastic flexural shells with the same middle surface θ(ω) and thickness 2ε > 0. Define the space

V (Ω) := {v = (v i ) ∈ H 1 (Ω); v = 0 on γ 0 × [-1, 1]}.
Then there exist constants ε 1 > 0 and

C 1 > 0 such that i v i 2 H 1 (Ω) 1/2 ≤ C ε i,j e i j (ε; v) 2 L 2 (Ω) 1/2
for all 0 < ε ≤ ε 1 and all v ∈ V (Ω).

Proof. See Ciarlet, Lods and Miara Theorem 4.1 of [START_REF] Ciarlet | Asymptotic analysis of linearly elastic shells. II. Justification of flexural shell equations[END_REF] or Theorem 5.3-1 of [START_REF] Ciarlet | Mathematical Elasticity[END_REF].

Rigorous asymptotic analysis

The ultimate goal of this paper is to show, in the same spirit as [START_REF] Ciarlet | Asymptotic analysis of linearly elastic shells. II. Justification of flexural shell equations[END_REF] (see also Theorem 6.2-1 of [START_REF] Ciarlet | Mathematical Elasticity[END_REF]), that the solutions u(ε) of the (scaled) three-dimensional problems P(Ω ε ) converge -as ε approaches zero -to the solution of a two-dimensional problem, denoted P F (ω) in what follows.

The proof proposed in [START_REF] Ciarlet | Asymptotic analysis of linearly elastic shells. II. Justification of flexural shell equations[END_REF] (see also Theorem 6.2-1 of [START_REF] Ciarlet | Mathematical Elasticity[END_REF]) resorts, however, to the usage of a specific vector field that was first introduced by Miara and Sanchez-Palencia [START_REF] Miara | Asymptotic analysis of linearly elastic shells[END_REF]. This argument is, in general, not easy to generalize to the context of variational inequalities, for which the test functions are in general chosen in a nonempty, closed and convex subset of a certain space.

In order to overcome this difficulty, we first prove that, under the assumption that κ ≤ ε, the solutions u κ (ε) of Problem P κ (ε; Ω) converge -as ε approaches zero -to the solution of the variational problem P F (ω).

Define the set

U F (ω) := {η = (η i ) ∈ V F (ω); θ(y) + η i (y)a i (y) • q ≥ 0 for a.a. y ∈ ω},
where the space V F (ω) has been defined in section 4. We observe that the set U F (ω) is nonempty, closed and convex in the space V F (ω). The vector fields a i and the functions Γ σ αβ , b αβ , a αβ , a, and γ αβ (η), have been defined in Section 2. We are thus in a position to define the two-dimensional problem P F (ω) as follows:

Problem P F (ω). Find ζ ∈ U F (ω) that satisfies the following variational inequal- ities: 1 3 ω a αβστ ρ στ (ζ)ρ αβ (η -ζ) √ a dy ≥ ω p i (η i -ζ i ) √ a dy, for all η = (η i ) ∈ U F (ω)
, where

a αβστ := 4λµ λ + 2µ
a αβ a στ + 2µ a ασ a βτ + a ατ a βσ and p i :=

1 -1 f i dx 3 .
In the same spirit as Theorem 3.1, it can be show that Problem P F (ω) admits one and only one solution.

We are now ready to show that, under the assumption that κ ≤ ε, the solutions u κ (ε) of Problem P κ (ε; Ω) converge -as ε approaches zero -to the solution of Problem P F (ω).

Theorem 5.1. Let ω be a domain in R 2 , let θ ∈ C 3 (ω; E 3 ) be the middle surface of a flexural shell, let γ 0 be a non-zero length portion of the boundary γ (cf. Section 4) and let q ∈ E 3 be a non-zero vector given once and for all. Let us consider the non-trivial space (cf. Section 4)

V F (ω) := {η = (η i ) ∈ H 1 (ω) × H 1 (ω) × H 2 (ω); γ αβ (η) = 0 in ω and η i = ∂ ν η 3 = 0 on γ 0 },
and let us define the set

U F (ω) := {η = (η i ) ∈ V F (ω); θ(y) + η i (y)a i (y) • q ≥ 0 for a.a. y ∈ ω}.
Let there be given a family of linearly elastic flexural shells with the same middle surface θ(ω) and thickness 2ε > 0, and let u κ (ε) ∈ V (Ω) denote for each ε > 0 the unique solution of Problem P κ (ε; Ω), where the penalty parameter κ is assumed to be as in [START_REF] Bernard | Density results on Sobolev spaces whose elements vanish on a part of the boundary[END_REF].

Then there exists u ∈ H 1 (Ω) independent of the variable x 3 and satisfying

u = 0 on Γ 0 = γ 0 × [-1, 1] , u(ε) → u in H 1 (Ω) as ε → 0.
Define the average

u = (u i ) := 1 2 1 -1 u dx 3 . Then u = ζ,
where ζ is the unique solution to the two-dimensional variational Problem P F (ω).

Proof. Strong and weak convergences as ε → 0 are respectively denoted by → and . For brevity, we let

e i j (ε) := e i j (ε; u κ (ε)).
The outline of the proof is to a large extent inspired by the proof of Theorem 6.2-1 of [START_REF] Ciarlet | Mathematical Elasticity[END_REF] (itself adapted from Theorem 5.1 in Ciarlet, Lods and Miara [START_REF] Ciarlet | Asymptotic analysis of linearly elastic shells. II. Justification of flexural shell equations[END_REF]), where no confinement condition was imposed. This is why some parts of the proof are reminiscent of those in [START_REF] Ciarlet | Mathematical Elasticity[END_REF]; otherwise, considering the confinement condition requires extra care.

(i) There exists a subsequence, still denoted (u(ε)) ε>0 , and there exists u ∈ H 1 (Ω) and there exist e 1 i j ∈ L 2 (Ω) satisfying

u = 0 on Γ 0 = γ 0 × [-1, 1]
and such that u(ε) u in H 1 (Ω) and thus u(ε) → u in L 2 (Ω), (θ(y) + u i (y, x 3 )a i (y)) • q ≥ 0 for a.a. x = (y, x 3 ) ∈ Ω, 1 ε e i j (ε) e 1 i j in L 2 (Ω).

Letting v = u κ (ε) in the variational equations of Problem P κ (ε; Ω). Combining the uniform positive-definiteness of the tensor (A ijk (ε)), the Korn inequality of Theorem 4.3, the asymptotic behavior of the function g(ε) (Lemma 4.1), and the fact that

- 1 κ Ω [Θ + u i,κ (ε)g i (ε)] • q -(u i,κ (ε)g i (ε) • q) g(ε) dx = - 1 κ Ω [Θ + u i,κ (ε)g i (ε)] • q -(Θ + u i,κ (ε)g i (ε) • q) g(ε) dx + 1 κ Ω [Θ + u i,κ (ε)g i (ε)] • q -(Θ • q) g(ε) dx ≥ 0,
for all κ > 0 and all ε > 0, we obtain for ε > 0 sufficiently small:

C -2 1 ε 2 i u i (ε) 2 H 1 (Ω) ≤ i,j e i j (ε) 2 L 2 (Ω) ≤ C 0 √ g 0 Ω A ijk (ε)e k (ε)e i j (ε) g(ε) dx ≤ ε 2 C 0 √ g 0 Ω f i u i (ε) g(ε) dx ≤ ε 2 C 0 g 1 g 0 i f i 2 L 2 (Ω) 1/2 i u i (ε) 2 L 2 (Ω) 1/2
. This chain of inequalities first shows that the norms u i (ε) H 1 (Ω) are bounded independently of ε, secondly, that the terms ε -1 e i j (ε) L 2 (Ω) are bounded uniformly with respect to ε and, finally, that the terms (4)

1 κε 2 [Θ + u i,κ (ε)g i (ε)] • q - L 2 (Ω)
are uniformly bounded with respect to ε as well (recall that κ = O(ε) by assumption).

Hence there exist a subsequence, a vector field u ∈ H 1 (Ω), and functions e 1 i j ∈ L 2 (Ω), such that:

(5)

u(ε) u in H 1 (Ω), 1 ε e i j (ε) e 1 i j in L 2 (Ω), 1 κ [Θ + u i,κ (ε)g i (ε)] • q -→ 0 in L 2 (Ω), [Θ + u i,κ (ε)g i (ε)] • q -→ 0 in L 2 (Ω).
The fact that u(ε) → u in L 2 (Ω) is a consequence of the Rellich-Kondrašov Theorem (Theorem 6.6-3 of [START_REF] Ciarlet | Linear and Nonlinear Functional Analysis with Applications[END_REF]). Combining the latter with the last convergence in [START_REF] Ciarlet | Mathematical Elasticity[END_REF] gives:

(θ(y) + u i (y, x 3 )a i (y)) • q ≥ 0, for a.a. x = (y, x 3 ) ∈ Ω.
That u = 0 on γ 0 × [-1, 1] follows from the continuity of the trace operator tr :

H 1 (Ω) → L 2 (γ × [-1, 1]). Indeed, for all i, we have that for all v ∈ H 1 (Ω) such that v = 0 on Γ -Γ 0 , 0 = Γ0 u i (ε)v dΓ → Γ0 u i v dΓ,
so that a density result proved by Bernard [START_REF] Bernard | Density results on Sobolev spaces whose elements vanish on a part of the boundary[END_REF] (see also Theorem 6.7-3 of [START_REF] Ciarlet | Linear and Nonlinear Functional Analysis with Applications[END_REF]) gives u i = 0 on Γ 0 .

(ii) The weak limits u i ∈ H 1 (Ω) found in (i) are independent of the variable x 3 ∈ [-1, 1], in the sense that they satisfy

∂ 3 u 3 = 0 in L 2 (Ω) and ∂ 3 u 3 = 0 in D (Ω).
Besides, the average u satisfies u ∈ U F (ω), namely,

u = (u i ) ∈ H 1 (ω) × H 1 (ω)×H 2 (ω) and u i = ∂ ν u 3 = 0 on γ 0 , γ αβ (u) = 0 in ω, θ(y) + u i (y)a i (y) • q ≥ 0 for a.a. y ∈ ω.
Apart from the latter property, the proof is identical to that of part (ii) of the proof of Theorem 6.2-1 in [START_REF] Ciarlet | Mathematical Elasticity[END_REF]. Let us thus prove that θ(y) + u i (y)a i (y) • q ≥ 0 for a.a. y ∈ ω.

By part (i), we have that (θ(y) + u i (y, x 3 )a i (y)) • q ≥ 0 for a.a. x = (y, x 3 ) ∈ Ω. Since u = (u i ) is independent of x 3 , we have that (θ(y) + u i (y, x 3 )a i (y)) • q = θ(y) + 1 2

1 -1 u i (y, x 3 ) dx 3 a i (y) • q, so that u = (u i ) ∈ U F (ω).
(iii) The weak limits e 1 i j ∈ L 2 (Ω) and u ∈ H 1 (Ω) found in (i) satisfy a αβ e 1 α β in Ω.

-∂ 3 e 1 α β = ρ αβ (u) in L 2 (Ω),
The equality -∂ 3 e 1 α β = ρ αβ (u) in L 2 (Ω) follows from Theorem 5.2-2 of [START_REF] Ciarlet | Mathematical Elasticity[END_REF]. Let v = (v i ) ∈ V (Ω) be arbitrarily chosen. It is known (cf., e.g., part (iii) of Theorem 6.2-1 of [START_REF] Ciarlet | Mathematical Elasticity[END_REF]) that

εe α β (ε; v) → 0 in L 2 (Ω), εe α 3 (ε; v) → 1 2 ∂ 3 v α in L 2 (Ω), εe 3 3 (ε; = ∂ 3 v 3 for all ε > 0.
These relations, combined with the boundedness of the terms ε -1 e i j (ε) L 2 (Ω)

independently of ε > 0 (part (i)) and the asymptotic behavior of the functions A ijk (ε) and g(ε) as ε → 0 (Lemma 4.1), give 4) and ( 5)),

Ω A αβστ (ε) e σ τ (ε) ε + A αβ33 (ε) e 3 3 (ε) ε εe α β (ε; v) g(ε) dx → 0 as ε → 0, Ω 4A α3σ3 (ε) e σ 3 (ε) ε εe α 3 (ε; v) g(ε) dx → Ω 2µa ασ e 1 σ 3 v α √ a dx as ε → 0, Ω A 33στ (ε) e σ τ (ε ε ) + A 3333 (ε) e 3 3 (ε) ε εe 3 3 (ε; v) g(ε) dx → Ω λa στ e 1 σ τ + (λ + 2µ)e 1 3 3 v 3 √ a dx as ε → 0, - 1 κ Ω [Θ + u i,κ (ε)g i (ε)] • q -(v i g i (ε) • q) g(ε) dx → 0 as ε → 0 (cf. (
ε 2 Ω f i v i g(ε) dx → 0 as ε → 0. Consequently, Ω (2µa ασ e 1 σ 3 )v α + λa στ e 1 σ τ + (λ + 2µ)e 1 3 3 v 3 √ a dx = 0.
Since this inequality holds for any vector field v = (v i ) ∈ V (Ω), it follows that e 1 σ 3 = 0 and λa στ e 1 σ τ + (λ + 2µ)e 1 3 3 = 0 in L 2 (Ω). In particular, the latter gives:

e 1 3 3 = - λ λ + 2µ
a αβ e 1 α β in L 2 (Ω).

(iv) The weak limit u = (u i ) is the solution of Problem P F (ω).

Given any η ∈ U F (ω), define the vector field w(ε; η) = (w i (ε; η)) by:

w α (ε; η) := η α -εx 3 (∂ α η 3 + b σ α η σ ), w 3 (ε; η) := η 3 .
We have that w(ε; η) ∈ V (Ω). Following the same steps as in part (iv) of [START_REF] Ciarlet | Mathematical Elasticity[END_REF], observe that

w(ε; η) →η in H 1 (Ω), 1 ε e α β (ε; w(ε; η)) →{-x 3 ρ αβ (η)} in L 2 (Ω), 1 ε e α 3 (ε; w(ε; η)) ε>0 converges in L 2 (Ω).
For each ε > 0, define

Λ(ε) := Ω A ijk (ε) 1 ε e k (ε) -e 1 k 1 ε e i j (ε) -e 1 i j
g(ε) dx, so that, combining the uniform positive-definiteness of the three-dimensional elasticity tensor and the asymptotic behavior of the function g(ε) with the variational equations of Problem P(ε; Ω) specializing v = w(ε; η) -u κ (ε), we obtain:

0 ≤ i,j 1 ε e i j (ε) -e 1 i j 2 L 2 (Ω) ≤ C 0 √ g 0 Λ(ε).
This gives (6)

0 ≤ Λ(ε) = Ω A ijk (ε) 1 ε e k (ε) 1 ε e i j (ε) g(ε) dx -2 Ω A ijk (ε) 1 ε e k (ε) e 1 i j g(ε) dx + Ω A ijk (ε)e 2 k e 1 i j g(ε) dx ≤ Ω A ijk (ε) 1 ε e k (ε)} 1 ε e i j (ε; w(ε; η)) g(ε) dx - 1 κ Ω [Θ + u i,κ (ε)g i (ε)] • q -(w i (ε; η) -u i,κ (ε)g i (ε) • q) g(ε) dx -2 Ω A ijk (ε) 1 ε e k (ε) e 1 i j g(ε) dx + Ω A ijk (ε)e 1 k e 1 i j g(ε) dx - Ω f i (w i (ε; η) -u i (ε)) g(ε) dx.
The asymptotic behavior of the functions w(ε; η) and 1 ε e i j (ε; w(ε; η)), the asymptotic behavior of the three-dimensional elasticity tensor A ijk (ε) and g(ε)

(Lemma 4.1), the weak convergences 1 ε e i j (ε) e 1 i j in L 2 (Ω) established in part (i), and the relations satisfied by e 1 i 3 (part (iii)) together give:

Ω A ijk (ε) 1 ε e k (ε)} 1 ε e i j (ε; w(ε; η)) g(ε) dx → Ω (A αβστ (0)e 1 σ τ + A αβ33 (0)e 1 3 3 ){-x 3 ρ αβ (η)} √ a dx, 2 Ω A ijk (ε) 1 ε e k (ε) e 1 i j g(ε) dx - Ω A ijk (ε)e 1 k e 1 i j g(ε) dx → Ω A ijk (0)e 1 k e 1 i j √ a dx = Ω a αβστ e 1 σ τ e 1 α β √ a dx, Ω f i (w i (ε; η) -u i (ε)) g(ε) dx → Ω f i (η i -u i ) √ a dx = ω p i (η i -u i ) √ a dy.
Finally, we observe that the asymptotic behavior of the functions g(ε), w i (ε; η) and (4) gives that the limit as ε → 0 of

Ω [Θ + u i,κ (ε)g i (ε)] • q - ε 2 κ [(w i (ε; η) -u i,,κ (ε))g i (ε) • q] g(ε) dx = Ω [Θ + u i,κ (ε)g i (ε)] • q - ε 2 κ [(Θ + w i (ε; η)g i (ε)) • q] g(ε) dx - Ω [Θ + u i,κ (ε)g i (ε)] • q - ε 2 κ [(Θ + u i,κ (ε)g i (ε)) • q] g(ε) dx
exists and is nonnegative.

We have yet to take into account the relations ρ αβ (u) = -∂ 3 e 1 α β in L 2 (Ω) established in part (iv). Since u is independent of x 3 (part (ii)), these relations show that the functions e 1 α β are of the form e 1 α β = Υ αβ -x 3 ρ αβ (u) with Υ αβ ∈ L 2 (ω). The asymptotic behaviors observed in (6), Lemma 3.1, and the uniform positivedefiniteness of the fourth order two-dimensional elasticity tensor (a αβστ ) in turn imply

0 ≤ lim ε→0 Λ(ε) ≤ - ω p i (η i -u i ) √ a dy - Ω A ijk (0)e 1 k e 1 i j √ a dx + Ω A ijk (0)e 1 k {-x 3 ρ αβ (η)} √ a dx = - ω p i (η i -u i ) √ a dy - 1 2 Ω a αβστ Υ στ Υ αβ √ a dx + 1 2 ω a αβστ x 2 3 ρ στ (u)ρ αβ (η -u) √ a dx ≤ 1 3 ω a αβστ ρ στ (u)ρ αβ (η -u) dy - ω p i (η i -u i ) √ a dy.
In conclusion, the latter yields

0 ≤ ω a αβστ Υ στ Υ αβ √ a dy ≤ 1 3 ω a αβστ ρ στ (u)ρ αβ (η-u) dy- ω p i (η i -u i ) √ a dy,
which establishes that u is the unique solution for Problem P F (ω).

(v) The weak convergences 1 ε e i j (ε)

e 1 i j in L 2 (Ω) established in part (i) are in fact strong, i.e., 1 ε e i j (ε) → e 1 i j in L 2 (Ω).
Besides, the limits e 1 i j are unique; hence these convergences hold for the whole family 1 ε e i j (ε) ε>0

.

Let Λ(ε) be as in part (v). Since u ∈ U F (ω), we define a vector field w(ε) ∈ V (Ω) as follows:

wα (ε) := u α -εx 3 (∂ α u 3 + b σ α u σ ), w3 (ε) := u 3 .
Specializing v = w(ε) -u κ (ε) in the variational equations of Problem P(Ω ε ) and repeating the same computations as in part (iv) gives:

0 ≤ lim sup ε→0 Λ(ε) ≤ - ω a αβστ Υ στ Υ αβ √ a dy ≤ 0.
In conclusion, by the uniform positive-definiteness of the two-dimensional fourthorder elasticity tensor (Lemma 4.1), we obtain Υ αβ = 0 and lim ε→0 Λ(ε) = 0. These relations in turn imply that the strong convergence 1 ε e i j (ε) → e 1 i j in L 2 (Ω) holds. The functions e 1 α β are uniquely determined, since they are given by e 1 α β = -x 3 ρ αβ (u) and the vector field u is uniquely determined as well. That the functions e 1 i 3 are uniquely determined then follows from the relations established in part (iv).

(vi) The weak convergence u

(ε) u in H 1 (Ω) established in part (i) is in fact strong, i.e., u(ε) → u in H 1 (Ω).
The proof is identical to that of part (vi) of the proof of Theorem 6.2-1 of [START_REF] Ciarlet | Mathematical Elasticity[END_REF] and for this reason is omitted.

The theorem is thus completely proven.

The convergence as ε → 0 of the solutions (u(ε)) of Problem P(ε; Ω) to the solution ζ of Problem P F (ω) can thus be established as a corollary of Theorem 5.1.

Corollary 5.2. Let ω be a domain in R 2 , let θ ∈ C 3 (ω; E 3 ) be the middle surface of a flexural shell, let γ 0 be a non-zero length portion of the boundary γ (cf. Section 4) and let q ∈ E 3 be a non-zero vector given once and for all. Let us consider the non-trivial space (cf. Section 4)

V F (ω) := {η = (η i ) ∈ H 1 (ω) × H 1 (ω) × H 2 (ω); γ αβ (η) = 0 in ω and η i = ∂ ν η 3 = 0 on γ 0 },
and let us define the set U F (ω) := {η = (η i ) ∈ V F (ω); θ(y) + η i (y)a i (y) • q ≥ 0 for a.a. y ∈ ω}.

Let there be given a family of linearly elastic flexural shells with the same middle surface θ(ω) and thickness 2ε > 0, and let u(ε) ∈ U (ε; Ω) denote, for each ε > 0, the unique solution of Problem P(ε; Ω).

Then, we have that

1 2 1 -1 u(ε) dx 3 → ζ, in H 1 (ω) as ε → 0,
where ζ is the unique solution to the two-dimensional variational Problem P F (ω).

Proof. The conclusion of Theorem 5.1 reads as follows: For each δ > 0 there exists a number ε 2 > 0 such that for all 0 < ε < ε 2 it results (7) 1 2

1 -1 u i,κ (ε)(•, x 3 ) dx 3 -ζ i H 1 (ω) < δ 2 ,
where u κ (ε) = (u i,κ (ε)) is the unique solution of Problem P κ (ε; Ω), and ζ = (ζ i ) is the unique solution of Problem P F (ω), and κ is as in [START_REF] Bernard | Density results on Sobolev spaces whose elements vanish on a part of the boundary[END_REF]. As a result of ( 2) and ( 7), it can be shown that for each δ > 0 there exists a number ε > 0 such that for all 0 < ε < ε it results In order to prove [START_REF] Ciarlet | A justification of the two-dimensional linear plate model[END_REF], fix δ > 0 and take ε := ε 2 . For each 0 < ε < ε 2 , we have that an application of the triangle inequality and ( 7) gives ( 9)

1 2 1 -1 u i (ε) dx 3 -ζ i H 1 (ω) ≤ 1 2 1 -1 u i,κ (ε)(•, x 3 ) dx 3 -ζ i H 1 (ω) + u i (ε) -u i,κ (ε) H 1 (Ω) < δ 2 + δ 2 = δ,
for all 0 < κ ≤ min{κ 0 (δ, ε), ε}. The estimate [START_REF] Ciarlet | On the ellipticity of linear membrane shell equations[END_REF] means that the solutions u(ε) of Problem P(ε; Ω) converge to the solution of Problem P F (ω) as ε → 0, as it had to be proved. It remains to "de-scale" the results of Theorem 5.1 and corollary 5.2, which apply to the solutions u(ε) of the scaled problem P(ε; Ω). This means that we need to convert these results into ones about the unknown u ε i g i,ε : Ω ε → E 3 , which represents the physical three-dimensional vector field of the actual reference configuration of the shell. As shown in the next theorem, this conversion is most conveniently achieved through the introduction of the averages 1 2ε ε -ε u ε i g i,ε dx ε 3 across the thickness of the shell, a procedure which also clearly highlights the striking difference (in terms of function spaces) between the asymptotic behaviors of the tangential and normal components of the displacement field of the middle surface of the shell.

Theorem 5.3. Let the assumptions on the data be as in Section 4 and let the assumptions on the immersion θ ∈ C 3 (ω; E 3 ) be as in Theorem 4.3. Let u ε = (u ε i ) ∈ U (Ω ε ) denote for each ε > 0 the unique solution of the variational Problem P(Ω ε ) and let ζ ∈ U F (ω) denote the unique solution to the variational inequalities in Problem P F (ω). Then

1 2ε ε -ε u ε α g α,ε dx ε 3 → ζ α a α , in H 1 (ω) as ε → 0, 1 2ε ε -ε u ε 3 g 3,ε dx ε 3 → ζ 3 a 3 , in H 1 (ω) as ε → 0.
Proof. The proof is analogous to that of Theorem 6.4-1 in [START_REF] Ciarlet | Mathematical Elasticity[END_REF] and for this reason is omitted.

In view of the scalings, viz., u ε i (x ε ) = u i (ε)(x) at each x ε ∈ Ω ε , and of the assumption on the data, viz., f i,ε (x ε ) = f i (x) at each x ε ∈ Ω ε , made in Section 4, it is natural to also "de-scale" the unknown appearing in the limit two-dimensional problem found in Theorem 

f i dx 3 = ε -ε f i,ε dx ε 3
instead of their scaled counterparts p i = 1 -1 f i dx 3 . In this fashion, it is immediately found that ζ ε = (ζ ε i ) ∈ U F (ω) is the unique solution to the variational inequalities

ε 3 3 ω a αβστ ρ στ (ζ ε )ρ αβ (η -ζ ε ) √ a dy ≥ ω p i,ε (η i -ζ ε i ) √ a dy,
for all η = (η i ) ∈ U F (ω). These inequalities now display the factor ε 3 3 , which always appears in the left-hand sides of equations modelling flexural shells.
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 41 Then the scaled unknown u(ε) is the unique solution of the variational Problem P(ε; Ω).

1 u

 1 i (ε)(•, x 3 ) dx 3 -ζ i H 1 (ω) < δ,where u(ε) = (u i (ε)) is the unique solution of Problem P(ε; Ω) and ζ = (ζ i ) is the unique solution of Problem P F (ω).
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 1 Figure 1. Geometrical interpretation of Corollary 5.2. Let δ > 0 be fixed and let 0 < ε < ε 2 , where ε 2 is the parameter found in Corollary 4.2. Let ζ denote the solution to Problem P F (ω). If κ > κ 0 (δ, ε), it might happen (Theorem 4.2) that the distance between the averaged solution of Problem P κ (ε; Ω) (i.e., the vector field ζ κ(ε)) and the averaged solution of Problem P(ε; Ω) (i.e., the vector field ζ(ε)) is, with respect to the H 1 (ω) norm, strictly greater than the fixed number δ. If, however, we replace the penalty parameter κ by a new parameter κ ≤ min{ε, κ 0 (δ, ε)}, then we can find an element ζ κ (ε) whose distance from both ζ κ(ε) and ζ(ε) is strictly less than δ/2.
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 11 4.3, by letting ζ ε i (y) := ζ i (y) at each y ∈ ω, and by using in its formulation the contravariant components p i,ε := ε 3
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