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Abstract. Community detection in graphs often relies on ad hoc algo-
rithms with no clear specification about the node partition they define as
the best, which leads to uninterpretable communities. Stochastic block
models (SBM) offer a framework to rigorously define communities, and
to detect them using statistical inference method to distinguish structure
from random fluctuations. In this paper, we introduce an alternative def-
inition of SBM based on edge sampling. We derive from this definition a
quality function to statistically infer the node partition used to generate
a given graph. We then test it on synthetic graphs, and on the zachary
karate club network.
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1 Introduction

Since the introduction of modularity by Girvan and Newman [1], it has been
shown that many networks coming from scientific domain as diverse as sociol-
ogy, biology and computer science exhibit a modular structure [2], in the sense
that their nodes can be partitioned in groups characterized by their connectivity.
Yet, there is no universal definition of a community. Many techniques and algo-
rithms have been developed for detecting remarkable node partition in graphs,
most of the time by optimizing a quality function which assigns a score to a
node partition [1], [3], [4]. The problem is that these algorithms rarely account
for random fluctuations and it is thus impossible to say if the communities ob-
tained reflect a real property of the graph under study or are just an artefact. In
particular, it has been shown that even the very popular modularity may find
communities in random graphs [5].

Stochastic block models offer a theoretical framework to take into account
random fluctuations while detecting communities [6]. Since they are probabilistic
generative models, one can perform statistical inference in order to find the most
probable model used to generate a given observed graph. The most common way
to do this inference is to associate to each SBM the set of graphs it may generate:
the larger the set, the smaller the probability to generate each of them [7], [8].
This methodology based on the minimization of entropy has the strength of
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being rigorously mathematically grounded. Yet it suffers from one drawback: as
it considers probability distributions on graph ensembles, the random variable
considered is the whole graph. Thus statistical inference is performed on a single
realization, which leads to overfitting. Although techniques have been introduced
to mitigate this effect, it cannot be totally eliminated and it induces counter-
intuitive behavior in some tricky situations [9].

In this paper, we propose a new quality function for node partitions, based
on stochastic block models defined as probability distributions on a set of edges.
This allows us to use statistical inference method in a more relevant way, relying
on several realizations of the same random variable. To do so, we first define an
edge-based stochastic block model, then use minimum description length method
[10] to infer its parameters from an observed graph. Finally, we test this quality
function on synthetic graphs, plus the Zachary Karate Club network.

2 Methodology presentation

Traditionally, a stochastic block model is defined as a couple (B,M), with B a
partition of the set of nodes [1, n] in p blocks b1, . . . , bp, and M a p×p block adja-
cency matrix whose entries correspond to the number of edges between any two
blocks (or equivalently to the density). These parameters define a set of genera-
ble graphs ΩB,M from which graphs are sampled according to some probability
distribution. As the probability distribution is defined on a set of graphs, we call
the stochastic block models defined in this way generative models of graphs.

In this paper, we will consider stochastic block models as generative models
of edges. It also takes as parameters a set of nodes V = [1, n] partitioned in p
blocks B = b1, . . . , bp, but instead of a block adjacency matrix, it relies on a
p× p block probability matrix M such that:

– ∀i, j,M [i, j] ∈ [0, 1]
–
∑
i,jM [i, j]× |bi||bj | = 1

For a given partition B, the set of all matrices verifying those conditions
will be denoted Mat(B). Given two nodes u and v, belonging respectively to
the block bi and bj , the edge u → v is generated with probability PB,M [u, v] =
M [i, j]. This probability distribution can be seen as a block-constant n × n
matrix, and in the following, the notation PB,M will refer indifferently to the
probability distribution and to the corresponding matrix. We will also denote
by Prob mat(B) the set of all B-constant edge probability matrices on [1, n]2,
defined as:

Prob mat(B) = {P | ∃MP ∈ Mat(B), P = PB,MP
} (1)

Generating a graph G = (V,E) made of m edges e1, . . . , em with such a
generative model of edges means generating each of its edges independently.
Thus, G is generated with probability:

PB,M [G] =

m∏
i=1

PB,M [ei]
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In particular, this means that the same edge u → v can be sampled more than
once, so for the rest of the paper we will work with multigraphs. To simplify
computations, we will consider directed graphs with self-loops. In practice, we
study a graph G made of a set of vertices V = [1, n] and a list E of m edges:
e1 = u1 → v1, . . . , em = um → vm. We suppose that G was generated by a
stochastic block model (B0,M0), thus that all edges in E were independently
sampled from the same probability distribution PB0,M0

, and our objective is to
identify the original parameters B0 and M0 used to generate G.

To do so, we rely on the minimum description length principle. This prin-
ciple, borrowed from information theory, relies on the fact that any statistical
regularity can be used for compression. Therefore, the quality of a statistical
model can be measured by the compression it allows of the data under study.
Let’s give an example: Alice draws messages independently at random from a
set Ω, with a probability distribution P and she transmits them to Bob through
a binary channel. Each message needs to be encoded through a coding pattern
C : Ω → {0, 1}. For any message x ∈ Ω, we denote by |C(x)| the length of its
code. The expected length of the encoded message will then be:

E
x∈Ω

[|C(x)|] =
∑
x∈Ω

P[x] · |C(x)|

It can be shown that this expected value is minimum when C is such that
∀x, |C(x)| = −log2(P[x]), and in this case, the previous expression is called the
entropy of P. This result means that finding an optimal code C∗ and finding
the original probability distribution P are the same problem, because: P[u, v] =
2−|C

∗[u,v]|. This is what we will use to recover PB0,M0
.

Let’s suppose that Alice does not know P, but that she can draw as many
random messages as she wants from Ω. Then, for any probability distribution Q
on Ω, she can define a code CQ, under which the mean length of the messages
e1, . . . , em transmitted will be:

code len(e1, . . . , em, CQ) = −
∑
x∈Ω

#{k | ek = x}
m

· log2(Q[x]) (2)

And, as we know that #{k|ek=x}
m −→

m→∞
P[x] because of the law of great num-

bers, it means that if m is high enough, the best code C∗ will correspond to a
distribution Q which will be a good approximation of P.

In our case, the messages to be transmitted are the edges of G: {e1, . . . , em},
drawn from the set [1, n]2 with the probability distribution PB0,M0

. We want
to approximate this distribution, to deduce B0 and M0 from it, but to avoid
overfitting, we do not minimize the encoding length of all edges e1, . . . , em at
the same time, we consider them sequentially. It corresponds to a situation in
which Alice observes the edges one at a time and transmits them right away,
updating her code on the fly. At the other end, Bob updates his code in the same
way. When Alice draws the xth edge, Bob only knows edges e1, . . . ex−1, so they
optimize their code on this limited sample. For the remaining m − x edges, as
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they have no information, they suppose they are random. Finally, as they know
that edges are generated by a stochastic block model, they limit themselves to
codes based on B-constant probability distributions, for some partition B. Thus
QB,x is defined as:

argmin
Q∈Prob mat(B)

x · code len(e1, . . . , ex,Q)

m
−

∑
u,v∈[1,n]

(m− x)

m · n2
· log2(Q[u, v])


And the mean code length of the messages sent from Alice to Bob will be:

code len(E,B) = − 1

m

m∑
x=1

log2(QB,x−1[ex]) (3)

Of course, it depends on the partition B used by Alice and Bob. If we now
imagine that each partition B is tested in parallel, we can approximate B0 by:

B∗ = argmin
B

(code len(E,B)) (4)

This partition corresponds to the best sequential compression of edges e1, . . . , em,
and according to the minimum description length principle, it should correspond
to the original partition B0. It should be noted that sequential encoding sup-
pose that edges are ordered, which is typically not the case (except for temporal
graphs). Therefore, we need to choose an order, and it will necessarily be arbi-
trary. Yet, we observe in practice that, although it modifies the precise value of
code len(E,B), fluctuations have a limited impact on the estimation B∗.

3 Tests on synthetic graphs

In order to test this estimator, we generated random graphs using edge-based
stochastic block models, and observed how it behaves for various partitions of the
nodes, in particular with underfitted and overfitted partitions. Before looking at
the estimator itself, we investigated how the prediction probability of the next
edge evolves as Alice draws more and more edges. Then, we tested how the
mean code length behaves on partitions which are a coarsening or a refinement
of the original partition, and on partitions with the same number of blocks as
the original, but blocks of differents sizes, or shifted. Finally, we considered more
complex SBM, with blocks of different sizes and density.

3.1 Prediction probability

We start by considering three graphs G0, G1 and G2. Each of them is made of
n = 128 nodes and m = 2800 edges (density is about 0.17), generated using
three different stochastic block models described in table 1.
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Table 1.

Node partition Block probability matrix

S0 = (B0,M0) ([1, 128])
[

1
n2

]

S1 = (B1,M1) ([1, 64], [65, 128]) 1
n2 ·

[
2 0
0 2

]

S2 = (B2,M2) ([1, 32], [33, 64], [65, 96], [97, 128]) 1
n2 ·


4 0 0 0
0 4 0 0
0 0 4 0
0 0 0 4



Fig. 1. Prediction probability against edge rank for three different graphs

For each of these graphs, we consider the prediction probability of the next
edge QB,x−1[ex] against x for the three different partitions B0, B1 and B2, which
are all a refinement of the previous one. Results are shown on figure 1.

We observe for all three graphs, whatever x, the prediction probability based
on the null partition B0 is constant at 1

1282 ≈ 0.00006. This is logical, as the only
B0-constant probability matrix is the one corresponding to the uniform distri-
bution. Therefore, ∀x,QB0,x =

[
1
n2

]
. For other partitions, the results depend on

the graph. On G0, generated with B0 and thus presenting no block structure,
the probability distributions associated to more refined partitions do no perform
better than the one based on B0. For some edges their prediction probability
is better, but as often it is worse. On average, they have the same prediction
power, they are only more sensible to the random fluctuations due to the order
in which edges are drawn. On the other hand, for G1, generated with B1 (two
blocks), we observe that refining the partition from one block to two allows the
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prediction probability to increase quickly. While it remains 1
n2 for the partition

B0, it rises up to 2
n2 for the partition B1. Yet, refining even more the partition is

worthless, as illustrated by the B2 partition, with 4 blocks, which does not bring
any improvement on average. Finally, considering G2, we observe that refining
the partition brings more and more improvement to the prediction probability.
With B0 it remains stable at 1

n2 , with B1 it rises up to 2
n2 , and with B2 up to

4
n2 .

To investigate further how the prediction probability evolves when refining
the partition, we considered the mean prediction probability

mean prob(E,B) =
1

m
·
m∑
x=1

QB,x−1[ex]

on 10 graphs generated with S2. For each of them, the mean prediction proba-
bility is computed for 8 different partitions Bi, with respectively 1, 2, 4, 8, 16,
32, 64 and 128 blocks. For each i, Bi+1 is obtained by dividing each block of
Bi in two blocks of equal size. The mean prediction probability is then plotted
against the number of communities for each graphs on figure 2.

We observe that the mean prediction probability increases sharply as long
as B is coarser or equal to B2 (the partition used to generate the edges). As
soon as it becomes finer, it keeps increasing or decreasing a bit, according to
the graph considered, but it mainly remains stable. This is due to the fact that
QBi,x tries to converge toward M2. As M2 does not belong to Prob mat(B0)
nor to Prob mat(B1), its convergence is limited for these two partitions, and
therefore the mean prediction probability is limited. On the other hand, for
i ≥ 2, M2 ∈ Prob mat(Bi), so the convergence is not limited, but refining the
partition is pointless, since M2 is B2-constant.

3.2 Mean code length

If we now plot the same curves, replacing the mean prediction probability by
the mean code length, we obtain the results shown on figure 3.

We observe that for all 10 graphs, the mean code length sharply decreases
until i = 2. This is because, as we have just seen, for i ≤ 2, refining the partition
leads to a quick increase of QBi,x−1[ex], and therefore a decrease of the code
length of the xth edges −log2(QBi,x−1[ex]). On the other hand, for i ≥ 2, the
mean code length starts to increase again slowly and then faster, in contrast
with the mean prediction probability that remained stable in this regime. We
have seen that, as i grows larger than 2, QBi,x−1[ex] oscillates more and more
due to random fluctuations. When computing the mean prediction probability,
these oscillations compensate each other, but as logarithm is a concave function:

−log2

(
1

m
·
m∑
x=1

QBi,x−1[ex]

)
< − 1

m

(
m∑
x=1

log2(QBi,x−1[ex]

)
Therefore, the more QBi,x−1[ex] oscillates, the larger the mean code length in
the end.
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Fig. 2. Mean prediction probability against partition refinement

Fig. 3. Mean code length against partition refinement: four communities graphs

Fig. 4. Mean code length against partition refinement: two communities graphs of
various sharpness
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These two phenomenon are very important, because they explain how the
mean code length as a quality function prevents both overfitting and underfitting.
If the partition tested is too coarse with respect to the original partition, QB,x
cannot converge toward the original block probability matrix, and the mean code
length increases. On the other hand, if it is too fine, the convergence occurs but
in a more noisy way, and this too leads to an increase of the mean code length.

Of course, it can work only if the edge generation probabilities are different
enough and if the total number of edges drawn is large enough, for #{k | uk ∈
bi ∧ vk ∈ bj} to be significantly different from one pair of blocks (bi, bj) to
another. To illustrate this, we considered a set of 10 graphs, still with 128 nodes
and 2800 edges, generated by stochastic block models based on the partition B1

(two blocks) and block probability matrices:

Mi =
1

n2
·
[
(2− i

10 ) i
10

i
10 (2− i

10 )

]
Therefore, S0 generates graphs with two perfectly separated communities, while
S9 generates graphs with almost no community structure. For each stochastic
block model, we generate a graph Gi and compute the mean code length for
6 different partitions, B0 to B5, defined as before with 1 to 32 blocks. Results
are plotted on figure 4. We observe that for i = 0, 2, 4, 6, 8, the minimum mean
code length is obtained for the two blocks partition B1, while for the other, it
is obtained for the four blocks partition B2. This shows that fuzzy communities
may lead to limited overfitting, but that the quality function is very robust
against underfitting.

Finally, we considered the performance of the mean code length when mod-
ifing blocks’ sizes or shifting blocks. To do so, we generated 10 graphs with 128
nodes and 2800 edges, made of two perfectly separated communities of equal
size. Then, for each of these graphs, we computed the mean code length for two
sequence of partitions.

– Scut = (B(c) = ([1, c], [c, 128]))c∈{0,8,16,24,...,128}
– Soffset = (B(o) = ([1 + o, 64 + o], [1, o] ∪ [65 + o, 128])o∈{0,4,8,12,...,32})

Results are plotted, respectively against c and o, on figure 5.
We observe that for all graphs, the minimum of mean code length is reached

when c = 64 in the first sequence, and when o = 0 in the second, which both
correspond to the partition B1 used to generate them. This means that mean
code length is robust against shifting blocks and modifying blocks’ sizes.

3.3 Merge / split issue

As of today, the main stochastic block model statistical inference methodology
is based on SBM considered as generative models of graphs, as explained at the
beginning of section 2. The best set of parameters B,M is infered by minimizing
the entropy of the set of generable graphs ΩB,M , as detailed in [6]. In the follow-
ing, this entropy will be denoted by entropy(G,B), and we compute it using the
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Fig. 5. Mean code length against cut (left) and offset (right)

Fig. 6. Three different partitions of the zachary karate club network. Sociological (up-
per left), minimum modularity (upper right), minimum entropy (lower)

Fig. 7. Mean code length for different partitions of the zachary karate club network
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python library graph tools3. It has been shown that this methodology can leed
to a phenomenon of block inversion in graphs made of one large communities
and a set of smaller ones [9]. Here, we will show how the mean code length allows
to overcome the issue.

To illustrate the phenomenon on a simple example, let’s consider a stochastic
block model S1 defined on a set of n = 12 nodes, partitioned in three communi-
ties: B = ([0; 5], [6; 8], [9; 11]) and a probability matrix:

M =

0.026 0 0
0 0.003 0
0 0 0.003


We test two different partitions: the original one, B, and the inverse partition
Bi = ([0; 2], [3; 5], [6; 11]). To do so, we generate 100 graphs Gi made of m = 378
edges with S1 and for each graph, we compute the mean code length and the
entropy for both partitions. Then, for both quality function, we compute the
percentage of graphs for which the original partition is identified as better than
the inverse one. Results are shown in table 2.

Table 2. Percentage of correct match for heterogeneous graphs

SBM mean code length entropy

S1 96% 0%
S2 100% 0%

While the mean code length almost always correctly identifies the original
partition, the entropy of the microcanonical ensemble never does so. The graphs
considered here had a very high density, which makes them not very realistic,
but the same results can be obtained with low density graphs. Let’s consider
a stochastic block model S2 on n = 256 nodes, partitioned in 33 communities:
one of size 128, and 32 of size 4. The internal probability of the big community
is 0.00006, the one of the small communities is 0.00076, and the probability
between communities is null. As before, we generate 100 graphs with S2 and
test for each of them the original partition and the inverse partition obtained by
splitting the big community in 32 small ones and merging the small ones in one
big. The percentage of graph for which the mean code length (resp. the entropy)
is smaller for the original partition than the inverse one is shown in table 2. In
this case too, the mean code length always recovers the original partition, while
minimum entropy never does.

3 https://graph-tool.skewed.de
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4 Zachary Karate Club

Finally, we test the mean code length quality function on the zachary karate club
network. We study three different partitions of it. First of all, the sociological
partition, B100, which is the partition described in the original paper as corre-
sponding to the sociological ground truth about communities in the karate club.
B200 is the partition obtained by minimizing the modularity using the louvain
algorithm, and B300 the partition obtained by minimizing the entropy using the
graph tool library. Those partitions are illustrated on figure 6.

For each of these partitions, we compute the mean code length. We also do
so for 100 random partitions of the graph, with 1 to 5 blocks, and for each of
these partitions, we compute the mean code length for 99 random refinement of
them, obtained by randomly dividing each block in two. Results are plotted on
figure 7.

We observe that the mean code length is minimum for the minimum entropy
partition. All studied partitions perform better than the random ones, so the
mean code length captures the fact that they reproduce part of the structure
of the network. Yet, for B100 and B200 many of there random refinements im-
prove the compression, sometimes by a large amount, indicating that they are
not optimal. This is not the case for the minimum entropy partition B300. There
are only 2 refinements out of 99 which perform a little better, an issue we have
seen may happen due to random fluctuations. These results are coherent with
previous work showing that B100 is actually not fully supported by statistical
evidence in the network. In the case of B200, modularity is defined based on
nodes’ degree, so the selected partition compensate for node degrees, which are
not considered here. Finally, minimizing the entropy without correcting for the
degree leads to the identification of two blocks of hubs, at the center of each
sociological communities, and two blocks corresponding to their periphery. This
is not necessarily what we expect, because we are used to communities defined
with an implicit or explicit degree correction, but as we have not imposed con-
straints so far, this result corresponds to the statistical evidence present in the
network.

5 Conclusion

In conclusion, in this paper, we have defined a new quality function, the mean
code length, to evaluate node partitions. It relies on an alternative definition of
the stochastic block model, as a probability distributions of edges. We make the
hypothesis that the edges of the graph G under study were sampled indepen-
dently from the same stochastic block model probability distribution. Then, we
make use of the law of great numbers and of the minimum description length
principle to derive a statistical estimator of the partition used to generate G.
The mathematical derivation of this estimator allows a clear interpretation of
the partition identified. What is more, it is a basis for mathematicaly proving
properties about it, for example its convergence toward the original partition.
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We then test this estimator on synthetic graphs, generated with a known
block structure. It shows that mean code length is able to correctly identify
blocks of nodes whose internal connections are homogeneous, avoiding both the
tendancy to merge distinct communities which leads to underfitting, and to split
communities in smaller blocks, which leads to overfitting. Finally, we test it on
different partition of the zachary karate club and the result were coherent with
previous results based on statistical inference of the stochastic block model.

Those results are preliminary. This quality function should be tested more
thoroughly, against graphs of various sizes and densities, with heterogeneous
communities. In particular, it would be interesting to measure the density thresh-
olds that allows stochastic block models to be recovered using this method, as
at been done for other methodology.
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