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Abstract
We present a diabatic representation of the potential energy curves (PECs) for the 4Π states of SH . Multireference, con-
figuration interaction (MRCI) calculations were used to determine high-accuracy adiabatic PECs of both SH and SH+ from 
which the diabatic representation is constructed for SH . The adiabatic PECs exhibit many avoided crossings due to strong 
Rydberg-valence mixing. We employ the block diagonalization method, an orthonormal rotation of the adiabatic Hamiltonian, 
to disentangle the valence autoionizing and Rydberg 4Π states of SH by constructing a diabatic Hamiltonian. The diagonal 
elements of the diabatic Hamiltonian matrix at each nuclear geometry render the diabatic PECs and the off-diagonal elements 
are related to the state-to-state coupling. Care is taken to assure smooth variation and consistency of chemically significant 
molecular orbitals across the entire geometry domain.

Keywords Diabatic · PEC · Ab inito · MRCI · GAMESS · Block diagonalization · Rydberg-valence mixing

1 Introduction

Several recent studies [1–8] have addressed the chemistry 
of SH and SH+ in the interstellar medium (ISM). The pre-
sent work extends our recent calculations [8] related to an 
important destruction mechanism of SH+ and provides an 
overview of the methods we have employed.

Large concentrations of SH+ (sulfanylium) are observed 
in dense [4] and diffuse [2, 3] regions of the interstel-
lar medium (ISM). Astrochemical models have assumed 
that the main formation mechanism of SH+ is the reaction 
of the atomic sulfur ion S + with H 2 [1]. This reaction is 
highly endothermic by 0.86 eV (9860 K). To overcome this 
endothermicity, turbulent dissipation, shocks, or shears are 
invoked. For that reason, the SH+ concentration is thought 
to provide a useful measure of turbulence in the diffuse ISM 
[3, 6]. In the photon-dominated environments in the ISM, 
where H 2 is vibrationally excited, the excess vibrational 
energy may overcome the endothermicity and facilitate the 
formation of SH+ from S + and H 2 [5].

The primary destruction mechanism for SH+ in the ISM 
is thought to be the process of Dissociative Recombination 
(DR) with electrons,

For a full review of DR, which plays a critical role in deter-
mining the concentration of neutral species in many plas-
mas, we recommend books on the topic by Guberman [9, 
10] and by Larsson and Orel [11]. Here we just note that 
a rate constant of 10−6 cm3 s−1 for T = 10 K is assigned to 

(1)SH+
+ e− → S + H.
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the SH+ reaction [Eq. (1)] in astrochemical databases [12, 
13]. We also note that the destruction of SH+ by H 2 [1], the 
most abundant interstellar molecule, is not efficient because 
the reaction is endothermic; therefore, SH+ is not severely 
depleted by this process.

We have investigated the DR of several molecular ions 
[14–16] and recently undertook a careful study of SH+ [7, 
8]. Rigorous calculations are quite complex and generally 
involve two phases. First, accurate potential energy curves 
(PECs) of the ion reactant and the neutral products are 
required. For the neutral products, the PECs and related cou-
pling terms are usually presented using the diabatic formal-
ism, a representation of the electronic Hamiltonian in which 
off-diagonal terms provide the necessary coupling between 
electron–molecular–ion scattering states and the neutral 
product states. These calculations rely on the electronic 
structure techniques of quantum chemistry. The second 
phase involves dynamics calculations, based on the PECs 
and their couplings. Multichannel Quantum Defect Theory 
(MCQDT or MQDT) [17] has been successfully employed 
in this phase to determine cross sections and rate constants 
[9, 18–36] that can be compared directly with experimental 
data.

Figure (1) provides a simplified diagram of the DR pro-
cess and the potential curves necessary to treat it. The left 
panel shows the PEC for the initial molecular ion ( SH+ in 
the present case) and a dissociating neutral state that leads 
to the final products. In fact, our recent work [8] suggests 
that two dissociating neutral states may play roles in the DR 
of SH+ , for reasons described below.

The ground state of SH+ is denoted X3Σ− , and its recom-
bination with an electron can form 2,4Σ , 2,4Π , or 2,4Δ states 
of neutral SH . In our early work on the DR of electrons with 
SH+ [7] we identified a dissociating autoionizing 2Π state 
near the minimum of the SH+

(X3Σ−) PEC (as depicted in 
Fig. (1)), leading us to first consider the doublet states as 

potential DR pathways. At the beginning of this study no 
experimental results for this reaction were available, but by 
the time the calculations were completed [8], we were able 
to compare our theoretical rate constants with experimental 
results obtained from the TSR-storage ring [37]. The theo-
retically determined rate constants for the DR of SH+ with 
electrons through the 2Π states of SH at energies greater than 
∼10 meV match very well with experiment [8]. However, 
at the very low energies of interest for the ISM (less than ∼
10 meV), the calculated rates were about an order of magni-
tude less than the experimental values. This discrepancy led 
us to explore the 4Π states of SH in order to identify addi-
tional pathways for DR. These new calculations are reported 
here; they also show dissociating autoionizing states in the 
region of the ground state of SH+ . It seems likely that includ-
ing the contribution of the 4Π states to DR will improve the 
computed rate constants at low energies.

In the present work, only the electronic structure calcula-
tions and analysis needed to determine a diabatic represen-
tation of the 4Π PECs of SH are reported. Calculations for 
the electronic state couplings, DR cross sections, and rate 
constants are in progress and will be the subject of a future 
publication. When the full analysis is complete, we expect 
it will provide important data for the astrochemical models 
that describe various environments in the ISM.

This paper is organized as follows. Part 2 describes the 
electronic structure techniques employed. The calculations 
include standard configuration interaction (CI) methods, 
which are used to determine adiabatic PECs. The diabati-
zation process relies on our implementation [7, 8, 14–16] 
of the Block Diagonalization Method (BDM) [38, 39]. 
Application of the BDM or related diabatization methods 
[40] requires extra effort to insure the smooth variation of 
molecular orbitals (MOs) as the geometry of the molecule 
is varied. Throughout this article, we will highlight and 
refer to important MO occupations using equation numbers 
to simplify reading. In Part 3, we discuss how we achieve 

A + B+

A + B*

Eion Etot = Eion + Ee

AB+ AB**

KE of products

(excited products)

A + B+

A + B*

AB+ AB**

A + B(n)

vibrationally excited
Rydberg state AB*(v)
is intermediate state

Fig. 1  A generic schematic of the PECs required for modeling the 
two mechanisms for DR of a general ion AB+ with an electron. In 
both panels the red PEC labeled AB∗∗ denotes an excited dissociat-
ing autoionizing neutral state of AB, and the blue PEC labeled AB+ 
denotes the ground state of the ion. In the right panel the black 
dashed line depicts a bound Rydberg state of AB. Horizontal lines in 

the well of the ion and Rydberg state illustrate a low-lying vibrational 
level. The left panel illustrates the direct mechanism, in which the 
molecule can directly dissociate along the AB∗∗ channel. The right 
panel illustrates the indirect mechanism, in which an excited neutral 
Rydberg state facilitates the dissociation process by acting as an inter-
mediate state
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smoothly varying MOs. The determination of the resulting 
diabatic PECs is discussed in Part 4, and Part 5 contains 
concluding remarks.

2  Formalism

The adiabatic PECs result from standard multireference, 
configuration interaction (MRCI) quantum chemistry calcu-
lations. The calculations were completed using the 20 APR 
2017 (R1) version of the GAMESS [41] suite.

2.1  The configuration interaction (CI) method

The configuration interaction (CI) method is well established 
throughout the literature. However, in order to establish the 
notation used throughout this article, we provide a very 
brief summary of the CI method, focusing on the details 
and nomenclature important for this study.

The CI electronic wavefunction for the nth adiabatic state 
Ψn can be written as a linear combination of the N expan-
sion vectors that span the configuration space as shown in 
Eq. (2) [40, 42].

These expansion vectors, denoted by Φi , are the configura-
tion state functions (CSFs), and the coefficient cni is related 
to the contribution of a particular CSF to the overall wave-
function such that 

∑N

i
�cni�2 = 1.

Each CSF results from a linear combination of Slater 
determinants each, of which is constructed from the molecu-
lar orbitals (MOs) [42]. For high-accuracy PECs, like those 
presented in this work, N is a very large number on the order 
of 106–107 . The number of MOs varies based on the atomic 
orbital (AO) basis set but is typically on the order of 102 . 
These MOs are arranged into three subspaces: Frozen core, 
active, and virtual space (core, AS, VS respectively). The 
core consists of low-energy doubly-occupied MOs that are 
close to the nucleus. In the course of the calculation, elec-
trons are never promoted out of the core. Active space MOs 
consist of doubly-occupied, singly-occupied, and un-occu-
pied MOs. Electrons are excited within and out of the active 
space into the initially unoccupied virtual space. Often to 
conserve computer time (by reducing the total number of 
CSFs considered) the highest energy virtual MOs, those cor-
related to the core MOs, are frozen out of the calculation.

We employ two types of MRCI calculations in the pre-
sent study. The most accurate, and time-intensive, CI wave-
function includes single and double excitations from the 
active space into the virtual space; MRCI-singles and dou-
bles or the second-order CI (SOCI). The SOCI was used to 

(2)Ψn =

N∑

i

cniΦi

determine the adiabatic states of SH+ . An alternative to the 
SOCI wavefunction is to use only single excitations from 
the active space into the virtual space; MRCI-singles or the 
first-order CI (FOCI). The FOCI approximation uses far less 
computational resources ( NFOCI ≪ NSOCI ), trading speed for 
accuracy, by losing electron correlation contributions to the 
final CI energies. However, one can still cautiously employ 
the FOCI, recouping some lost accuracy by using an active 
space large enough to regain some of the electronic cor-
relation through double excitations within the active space 
itself [8, 15, 16].

The FOCI approximation was used to calculate the 
ground, valence, and Rydberg states of the SH radical pre-
sented in this article.

2.1.1  Calculation specifics and general MOcConfigurations 
for SH and  SH+

For both SH and SH+ we used an optimized Dunning-style 
correlation-consistent basis set [43, 44] aug-cc-pVTZ (or 
ACCT) on both S and H. All calculations were completed in 
the C2v point group resulting in 73 MOs1: 32 A1 , 7 A2 , 17 B1 , 
and 17 B2 . Use of the ACCT basis set resulted in two � and 
two � molecular Rydberg orbitals having an n = 4 localized 
character on S and one � Rydberg MO having n = 2 charac-
ter localized on H at all values of R, allowing these orbitals 
to be easily identified along the entire geometry domain.

Although our calculations were completed in the C2v 
point group, we use a simplified notation that borrows from 
the C

∞v point group and atomic chemistry notation to com-
municate chemical significance of the MOs. The simplified 
notation is interpreted from the electronic configuration of 
the ion ground state SH+

(X3Σ−) and is related to the afore-
mentioned point groups in Table 1. The numerical super-
scripts indicate electron occupations while the superscript 
“ ∗ ” indicates an antibonding-type orbital. MOs numbered 
1–5 represent the core orbitals that are always doubly occu-
pied. The addition of an extra electron results in one of the 
2,4Π states discussed in this article.

The MOs employed to determine the SH(4Π) states are 
optimized with Multi-Configuration Self-Consistent Field 
(MCSCF) calculations at each geometry of the neutral 
ground state SH(X2Π) ; they are the same MOs used in our 
previous study [8] treating the SH(2Π) states. The SH(4Π) 
adiabatic separated atom limits determined with these opti-
mized MOs showed greater accuracy ( |Δ| ≲ 0.1eV) when 
compared to the spectroscopic levels reported by NIST [45] 
(see Table 3) than those determined with optimized MOs 

1 GAMESS restricts the MO variation space to spherical harmonics 
for the ACCT basis set.
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resulting from an MCSCF on the lowest SH(14Π) dissociat-
ing state.

The MCSCF calculations used to determine the 73 opti-
mized MOs had five orbitals in the core and 10 in the active 
space. Full details of the calculation setup are given by us 
in reference [8]. A summary of how these optimized MOs 
are determined for each R and how we verify consistency at 
each R is given in Sect. 3.3. The resulting MCSCF calcula-
tions had 3 460 CSFs.

The SH(4Π) states were generated using the FOCI approx-
imation to the CI wavefunction. After an exhaustive analysis 
of various FOCI calculation sizes we settled on 5 frozen 
core, 15 active space (that includes the five lowest Rydberg 
and the five 3d MOs), 48 virtual MOs, and 5 frozen virtual 
MOs (those corresponding to the frozen core) by bench-
marking our adiabatic separated atom limits against spec-
troscopic levels reported by NIST. The 4Π FOCI calculation 
resulted in 1 719 948 CSFs reproducing the atomic spectra of 
sulfur with great accuracy as shown in Table 3. The setup of 
the calculation, using the simplified notation, is illustrated in 
Eq. (3). All of the 2,4Π states result from the SH+ configura-
tion plus one extra electron occupying one of the open active 
space MOs.

The SOCI wavefunction is used to determine the X3Σ , 11Δ , 
and 13Π adiabatic states of SH+ in the same basis as above. 
For the SH+ SOCI the 3d MOs shown in Eq. (3) were moved 
to the virtual space leaving 5 frozen core, 10 active space, 
53 virtual, and 5 frozen virtual MOs. These SOCI calcula-
tions resulted in 1 112 351 CSFs for the X3Σ , 694 078 CSFs 
for the 11Δ , and 1 121 913 CSFs for the 13Π state. Opti-
mized MCSCF MOs for each ion state were generated by the 
method outlined above in the state’s respective symmetry. 
However, because we are only interested in the lowest ionic 
state for each respective symmetry, we only included five 
MOs in the MCSCF active space.

(3)

(core)10

⏟⏟⏟
Frozen on S

5ValenceMOs

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

(3s)2(SH)2(�x)1(�y)1|(SH ∗)

5MOs

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

(Rydberg)…

5MOs

⏞⏞⏞

(3d)…
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

FOCICalculationActive Space (15MOs)

53MOs

⏞⏞⏞

(VS)…

The SOCI was also employed to compute the adiabatic 
energy of SH(X2Π ) at R = 1.36Å and also to determine the 
vertical ionization potential (Te) from this ground state (see 
Ref. [8]) to the minimum of the ion SH+ ( R = 1.36Å [8, 46, 
47]) in order to correctly position the SOCI-calculated SH+ 
PECs relative to the FOCI-calculated SH PECs. Determina-
tion of Te and the vertical adjustment to the ion PECs is 
detailed in Sect. 4.2. This SOCI included 10 active space 
MOs, moving the five 3d MOs shown in Eq. (3) to the virtual 
space, resulting in 3 114 864CSFs

The standard quantum chemistry calculations described 
above produce the adiabatic PECs. For applications like DR, 
where the states of interest are often embedded in the con-
tinuum, a rigorous diabatic representation rendering PECs 
like those illustrated in Fig. (1), as well as the state-to-state 
couplings, are required. In Sect. 4 we present the diabatic 
PECs for the 4Π states of SH.

2.2  Block diagonalization method (BDM)

The block diagonalization method (BDM) [38, 39], a 
method we have successfully employed in previous work 
[7, 8, 14–16], allows us to rigorously transform the large 
adiabatic Hamiltonian into a diabatic representation from 
which we determine the diabatic PECs and associated state-
to-state coupling.

The number of CSFs comprising the CI (adiabatic) Ham-
iltonian is large (on the order of 106 − 107 ). However, we can 
usually identify a small set of N� CSFs or linear combina-
tions of CSFs (Table 2 details the CSFs in the present study) 
that make a dominant contribution to N� electronic states of 
interest. Then, N� is the dimension of the square diabatic 
Hamiltonian �dia.

The diabatic Hamiltonian (N� × N�) is a sub-block of the 
much larger (N × N) CI Hamiltonian. This block results from 
a series of rotation operations done on the CI Hamiltonian 
as illustrated in Fig. (2).

We arrive at �dia using the results of the conventional 
CI. First we construct a matrix � of the N� CI coefficients 
(or linear combination of coefficients) cni that comprise the 

Table 1  Electronic occupation 
of the SH+

(X3Σ−) (ground) state 
in the traditional C2v , C∞v

 , and 
the “simplified” notation used 
throughout the remainder of this 
article

The numerical superscripts indicate electron occupations while the superscript “ ∗ ” indicates an antibond-
ing-type orbital. The (SH) represents an sp-hybridized bonding-type MO and the (SH∗ ) represents an sp∗
-hybridized antibonding-type MO. The 1s, 2s, and 2p atomic notation is used because these MOs resemble 
atomic orbitals (AOs) centered on sulfur

MO #: 1 2 3 4 5 6 7 8 9 10

C
2v: A2

1
A2

1
A2

1
B2

1
B2

2
A2

1
A2

1
B1

1
B1

2
A0

1

C
∞v: 1�2

2�2
3�2

1�2

x
1�2

y
4�2

5�2
2�1

x
2�1

y
6�0

Simplified: 1s2 2s2 2p2
z

2p2
x

2p2
y

3s2 (SH)2 �1

x
�1

y
(SH∗)0

(core)10 3s2 (SH)2 �1

x
�1

y
(SH∗)0
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N� states of interest. We use � to construct the orthonormal 
matrix � defined by Eq. (4), where (†) represents the adjoint.

The diabatic Hamiltonian �dia is then given by Eq. (5)

where � represents the diagonal matrix with the adiabatic 
energies from the conventional MRCI. The diagonal ele-
ments of �dia are the resulting diabatic energies. The off-
diagonal elements are related to the coupling between the 
diabatic states.

A successful application of the BDM requires that the 
MOs used in the final MRCI calculation vary smoothly as 
a function of nuclear geometry. In the next section (Sect. 3) 
we provide a detailed discussion about the interpretation and 
application of the MOs used in this study.

3  Electronic states of SH and smooth 
variation of MOs

In this section we schematically outline the electronic con-
figurations (MO occupations) that give rise to the various 
states of interest using the simplified notation introduced in 
Sect. 2.1.1. We conclude the section by discussing how we 
assure a smooth transition from the chemical region (small 
internuclear separation R) to the separated atom limit (large 
R).

3.1  Valence states of SH

The bound ground state of the neutral complex, SH(X2Π) , 
is characterized by the configuration given in Eq. (6). The 
bound nature results from the doubly occupied (SH)-bond-
ing MO and the unoccupied (SH∗)-antibonding MO.

(4)� = �
−1
(
��

†
)1∕2

(5)�dia = �
†
��

(6)(core)10 (3s)2 (SH)2 (�x)
1
(�y)

2
(SH∗

) (Rydberg) …

Promotion of one of the electrons from the (SH) bonding 
MO to the (SH∗ ) antibonding MO results in the valence dis-
sociating states, as indicated below in Eq. (7).

Dissociating states always have the (SH∗ ) MO occupied. In 
the present work, as well as in the 2Π study [8], the lowest 
dissociating states, those of interest for DR of SH+ with elec-
trons, maintain the same electronic configurations (occupied 
MOs) at every geometry. As the neutral complex transforms 
from a molecule to separated atoms the MOs numbered 7–10 
in Table 1 smoothly transition from MOs to AOs centered 
on S or H. This transition is fully discussed in Sect. 3.3. At 
the separated atom limit the electronic configuration describ-
ing the lowest dissociating states (Eq. (7) in the molecular 
region) remains the same but the MOs have transformed into 
those shown in Eq. (8).

3.2  Rydberg states of SH

Promotion of any of the electrons from the valence space 
into one of the Rydberg MOs results in a neutral state with 
Rydberg character. In this study, we encounter two types of 
Rydberg states: bound Rydberg states (a neutral state with an 
unoccupied anti-bonding MO and an occupied Rydberg MO) 
and dissociating states with Rydberg character (the anti-
bonding MO and a Rydberg MO are occupied). The bound 
Rydberg states fall into two categories, ion core Rydberg and 
excited-state ion core Rydberg states.

Ion core Rydberg states consist of a ground-state ion core 
with a highly excited electron occupying an n = 4 Rydberg 
MO localized on S. Eq. (9) depicts the MO occupations 
for SH(14Π) in the chemical region (small internuclear 
distances).

As noted for the valence states, at larger atomic distances the 
MOs smoothly transition, specifically the (SH) and (SH∗ ) 
to AOs centered on S and H respectively. This transition 
of MOs results in different MO occupations describing 
the same electronic state at different geometries. The MO 

(7)(core)10 (3s)2 (SH)1 (�x)
1
(�y)

2
(SH∗

)
1
(Rydberg) …

(8)

Sulfur Ground State: S(3P)

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

(core)10 (3s)2 (3pz)
1
(3px)

1
(3py)

2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Was (SH)1(�x)

1(�y)
2

| (Rydberg)…

Atomic H(2S)

⏞⏞⏞⏞⏞

(1sH)
1

⏟⏟⏟
Was (SH∗

)1

(9)

SH(14Π) Rydberg State

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

(core)10 (3s)2(SH)2(�x)
1
(�y)

1
(SH∗

)
0
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Fig. 2  Graphical interpretation of the block diagonalization method 
(BDM)
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and configurational transformation of the bound ion core 
Rydberg state illustrated by Eq. (9) is given in Eq. (10).

We call attention to the initially doubly occupied (SH)-
bonding MO transitioning to a singly occupied 3pz AO cen-
tered on S and the initially un-occupied (SH∗)-antibonding 
MO transitioning to a singly occupied 1s AO centered on H. 
This transition is fully discussed in Sect. 3.3. The 14Π ion 
core Rydberg PEC and its ion parent SH+

(X3Σ−) are colored 
green in Fig. (7). The corresponding 22Π ion core Rydberg 
PEC and the same parent ion are colored green in Fig. (8).

Excitation of electrons occupying the valence (SH) and 
� MOs in conjunction with an occupation of a Rydberg 
MO results in what we call the excited-state ion core 
Rydberg states. The configurations characterizing these 
states are depicted in Eqs. (11) and (12). Physically, the 
SH(32Π) Rydberg state has an SH+

(11Δ) excited-state core 
as described by Eq. (11). The PECs of these states are 
colored red in Fig. (8).

The SH(34Π) Rydberg state has an SH+
(13Π) excited-state 

core as described by Eq. (12). The PECs of these states are 
colored blue in Figs. (7) and (8).

Last are the dissociating states with Rydberg character. 
These are dissociating electronic states characterized by 
an occupied Rydberg MO. We untangled these types of 
Rydberg states during the analysis of the 4Π states. We did 
not discover any in the analysis of the 2Π states [8]. Eq. (13) 
provides an example of a dissociating Rydberg characteriza-
tion. States of this nature typically have a singly occupied 
(SH∗ ) MO with one of the (4p) Rydberg MOs centered on 
S occupied.

(10)

Excited Sulfur: S(5P)
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1
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⏞⏞⏞
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)0
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SH+

(13Π) Ion Core

| (4s)1

The dissociating states with Rydberg character are labeled 
D 2 through D 4 in Fig. (7).

Understanding the MOs, how they are populated, and 
how they change as a function of geometry are prerequisite 
for obtaining a diabatic representation from the adiabatic 
PECs. The qualitative discussion above results from a rigor-
ous understanding of the MOs generated by traditional meth-
ods. In the next section, we outline how assure a smooth 
transition of MOs from the small R chemical region to the 
large R separated atom limit.

3.3  Smooth variation of MOs

By examining isosurface plots [48], we found that the 
optimized MCSCF orbitals calculated at R = 6.00 Å cor-
responded very well with the separated-atom orbitals identi-
fied chemically in Sect. 3 (the respective atomic orbitals on 
S and H). Then, starting at R = 6.00 Å, we stepped down to 
smaller values of R by performing each new MCSCF using 
the orbitals from the previous step as the initial guess. We 
verified that this procedure gave smoothly varying orbitals 
by directly calculating pseudo-overlap matrix elements Oij 
between the MOs at each geometry and those at the pre-
viously calculated geometry. Oij is defined as the overlap 
between the ith MO at a given geometry and a “translated” 
orbital formed by using the coefficients of the jth MO at the 
previous geometry. The smoothness of the variation of the 
MOs is related to the extent to which Oij ≈ �ij (the Kronecker 
delta function). For the calculations we did, we found that 
||Oii

|| ≥ 0.97.
We use the absolute value sign because of the occasional 

unwanted sign changes. At several stages of the calculation, 
GAMESS checks the normalization of the MOs and sets the 
largest coefficient of each MO to be positive. Since the rela-
tive magnitude of the MO coefficients may depend on the 
internuclear separation, abrupt sign changes occasionally 
appeared as a function of R. Also, we found |||Oi≠j

||| ≤ 0.03 , 
with typical values |||Oi≠j

||| ≲ 10−4 . We took these results to 
be a confirmation that the MOs were sufficiently smooth 
allowing us to claim electronic configurational uniformity 
for each FOCI calculation.

Figure (3) illustrates the smooth variation of the molecu-
lar orbitals (SH) and (SH∗ ). In the chemical region (small R), 
these orbitals are bonding and antibonding, respectively. As 
R increases they make a smooth transition to a 3pz centered 
on S and a 1s centered on H.

As first discussed in Sect. 3.2, the MO transformation 
shown in Fig.  (3) results in geometry dependent elec-
tronic configurations when describing the Rydberg states. 
The two limits of the SH(14Π) ion core Rydberg state are 

(13)(core)10 (3s)2 (SH)1 (�x)
1
(�y)

1
(SH∗

)
1
(4p)1 …
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depicted below where the underlined orbitals depict the 
geometry dependent occupations.

Bonding Region characterized by MO occupation:

Separated Atom Region characterized by MO occupation:

To assure that the occupations of the transforming MOs 
describing the SH(14Π) ion core Rydberg state varies 
smoothly with geometry, we track the occupation of the three 
MOs in question [(SH) → (3pz), (SH

∗
) → (1sH), and 4py] . 

Figure (4) shows the initially doubly occupied (SH) and 
unoccupied (SH∗ ) MRCI natural MOs transitioning to a sin-
gly occupied ( 3pz ) on S and (1s) on H, respectively. The ( 4py
-Ryd) remains singly occupied at all R giving the electronic 
state its Rydberg character. Occupancy of the other MOs 
remain independent of geometry.

The occupations of the chemically transitioning MOs 
vary in a smooth predictable manner while the electronic 
state retains its Rydberg character through the entire geom-
etry domain. Understanding this transition becomes impor-
tant when tracking the CSFs resulting from the FOCI calcu-
lations across all geometries. The geometry dependence of 
the electronic occupations results in a geometry dependence 
of the CSFs (Fig. 5).

The geometry dependence of the CSFs describing the 
lowest 4Π Rydberg states followed a predicable pattern that 
we can model through use of a geometry-dependent mixing 
angle � defined in Eq. (16) where the quantity in brackets 
represents the quotient of the respective MO occupancies 
at each geometry. The empirical model employed here is 
similar, in practice, to the model employed for the triple �
-bond breaking in the co-linear N2H system [16].

(14)
(core)10(3s)2 (SH)2 (�x)

1
(�y)

1
(SH∗

)
0
(4s)0 (4px)

0
(4pz)

0
(4py)

1
…

(15)
(core)10(3s)2 (3pz)

1
(3px)

1
(3py)

1
(1sH)

1
(4s)0 (4px)

0
(4pz)

0
(4py)

1
…

The contribution from the bound to separated atom elec-
tronic configurations (Eqs. (14), (15) respectively) to the 
overall lowest 4Π ion core Rydberg electronic wavefunction 
can be modeled as a two CSF system as shown in Eq. (17) 
where ΦCR denotes the chemical region CSF characterized 

(16)𝛾(R) = arctan

[
(SH⋆

)

(SH)

]2

Fig. 3  Both rows of this figure show isosurface plots of two opti-
mized MCSCF MOs in the active space of the FOCI calculation. For 
small R, the MO in the upper row corresponds to the SH-bonding 
(SH) orbital. As R increases this orbital smoothly transforms to a 3p

z
 

atomic orbital centered on S. The MO in the second row corresponds 

to the antibonding orbital (SH∗ ). For large R this orbital transforms to 
a 1s atomic orbital centered on H. The two MOs shown above display 
the greatest variation between the chemical and the separated atom 
limits. These MOs suggest that R = 4.2 Å is nearly the separated limit
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0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

M
R
CI

N
at
ur
al
M
O

O
cc
up
at
io
n

Molecular to Separated Atomic Orbitals

(SH) → 3p on S
(SH∗) → 1s on H
(4py) on S

Fig. 4  Occupations of the MRCI natural MOs describing the 4Π core-
Rydberg state as a function of geometry. We observe a smooth transi-
tion from the initially doubly occupied (SH) bonding MO to a singly 
occupied 3p

z
 AO centered on S. Similarly we observe a smooth tran-

sition from the initially unoccupied (SH∗)-antibonding MO to a sin-
gly occupied 1s AO centered on H. The 4p

y
 Rydberg MO (localized 

on S) remains singly occupied through the entire geometry domain 
giving the electronic state its Rydberg character. None of the other 
occupancies show geometry dependence
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by Eq. 14 and ΦSA denotes the separated atom CSF charac-
terized by Eq. (15)

In Fig. (6), we compare the prediction from this model and 
the actual contribution of the respective CSFs as determined 
by the final FOCI calculations. The electronic occupations 
that comprise the dominant CSFs describing R 1 are shown 
in Table 2.

4  Diabatic potential energy curves

4.1  Application of BDM to adiabatic PECs of SH

As discussed in Sect. 2.2, to employ the BDM one needs 
to identify N� CSFs that make a dominant contribution to 
N� eigenstates of the CI Hamiltonian across all geometries. 
Selecting the CSFs that have a dominant contribution to the 
states described in the diabatic subspace requires careful 

(17)�Ryd(R) = cos [2�(R)]ΦCR + sin [�(R)]ΦSA

analysis and consideration of many individual CSFs. The 
specific CSFs that make large contributions to a given adi-
abatic state vary with geometry, making it challenging to 
choose a set that is satisfactory for all values of R.

In order to handle this situation we define what we call 
“super-CSFs”. This technique has proven useful in previous 
work by us [7, 8, 16]. A super-CSF is a linear combination 
of several CSFs combined in a way that gives a clear picture 
of the chemistry. Mathematically speaking, defining a super-
CSFs is no more than a change of basis in a linear vector 
space. Super-CSFs became easier to identify from geometry 
to geometry than any one dominant CSFs because small sets 
of CSFs corresponding to the same MO occupancies often 
appeared with the same relative coefficients in several eigen-

vectors. In the simplest case, two CSFs, one can relate the 
relative coefficients to a mixing angle � , that is independent 
of R, and then define d

where Φ+ and Φ− represent the “super-CSFs” considered. 
The super-CSFs describing the states reported in Fig. (7) are 
of the form shown in Eq. (18) with mixing angles of �∕4 and 
are detailed in Table 2.

Table 2 lists the 13 individual CSFs (represented as kets) 
that are used to define the N� = 10 diabatic space across the 
entire geometry domain. States labeled D 1–D3 are described 
well by single CSFs while D 4 is represented well by a super-
CSF (in a form like Eq. (18)).

The CSF combinations labeled 3d-R are attributed to a 
Rydberg state with an occupied 3d MO. The 3d MOs are not 
well described by our AO basis set so this adiabatic state is 
less accurate relative to the other states considered. Specifics 
about this state are not included in the results of this study. 

(18)
Φ

+
= cos �Φ1 + sin �Φ2

Φ
−
= − sin �Φ1 + cos �Φ2
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Fig. 5  Graphical depiction of the geometry-dependent mixing angle 
from the empirical model shown in Eq.  (16). The angle shows a 
smooth transition from the bonding to the separated atom limit

Fig. 6  The left panel shows 
the prediction of the model in 
Eq. (17) for the contribution of 
the geometry-dependent CSFs 
to the 4Π ion core Rydberg state 
as a function of geometry. The 
right panel shows the resulting 
contributions obtained from 
the final FOCI calculations. In 
both panels we denote the two 
CSFs as ΦCR : the dominant CSF 
describing the lowest Rydberg 
in the chemical region (small 
R); and ΦSA : the dominant CSF 
describing the lowest Rydberg 
in the separated atom (large R) 
region
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Table 2  CSFs and super-CSFs used in the diabatization process

The state labels are the same labels used in Fig. (7) and Table 3. At 
small R, the CSF that gives the largest contribution to Rydberg state 
R
1
 is denoted “R

1
 (small R)”; the other similar labels have analogous 

meanings. The numerals indicate electron occupations of the valence 
MOs of the MRCI AS outlined in Eq.  (3). For clarity, we omit the 
always-occupied core and never-occupied VS MOs. The valence, 
Rydberg, and 3d MOs are separated by semicolons. The Rydberg and 
3d MOs in this study are only ever singly occupied so instead of a 
numeral we indicate which respective MO is occupied by providing 
its label

Label CSFs and super-CSFs

D
1
 : �21121;0;0 ⟩

D
2
 : �21111;(4py);0 ⟩

D
3
 : �12121;0;0 ⟩

D
4
 :

√
2

2
�21201;(4px);0 ⟩

−
√
2

2
�21021;(4px);0 ⟩

R
1
 (small R) : �22110;(4py);0 ⟩

R
1
 (large R) : �21111;(4py);0 ⟩

R
2
 (small R) :

√
2

2
�21120;(2s);0 ⟩ +

√
2

2
�21120;(4s);0 ⟩

R
2
 (large R) :

√
2

2
�22101;(4s);0 ⟩ −

√
2

2
�20121;(4s);0 ⟩

3d-R (small R) : �22110;0;(3d-B
2
) ⟩

3d-R (large R) : �21111;0;(3d-B
2
) ⟩
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C1 : S+ 4S◦
)
+H

C2 : S+ 2D◦)+H

R1 : S 5P
)
+H

D1 : S 3P
)
+H

R2 : S 3D◦)+H
D2

D3

D4

Adiabatic (dashed) & Diabatic (solid colors)

SH+(X3Σ−)

SH+(13Π)

Fig. 7  The high-accuracy adiabatic 4Π curves are shown with black 
dashed lines. The diabatic PECs (the diagonal elements of �dia 
Eq.  (5)) are overlaid with solid colored lines. The SH+ adiabatic 
ground state ( X3Σ− ) denoted  C1 is colored green and the excited 
adiabatic state ( 13Π ) denoted  C2 is colored blue. The solid green 
and blue diabatic Rydberg states are built on the corresponding ion 
cores  C1 and  C2 . The adiabatic states exhibit many, some very large, 
avoided crossings typical of adiabatic PECs. The separated atom elec-
tronic configurations for all of the diabatic states (D1–D4, R1 , and R2 ) 
as well as the adiabatic ionic states (C1 and C2 ) are listed in Table 3

Table 3  Comparison of excitation energies near the separated atom 
limits ( R = 6.0 Å) for the SH(4Π ) and corresponding ion states com-
pared to the atomic excitation energies reported on the NIST Atomic 
Spectra Database [45]

In the right most column, we present the difference computed by 
Δ ≡ NIST −MRCI . The PEC Labels in the left most column corre-
spond to the PECs in Fig.  (7). The neutral PECs are diabatic calcu-
lated with the FOCI. The ion PECs are adiabatic calculated with the 
SOCI. The calculated separated-atom ionization energy is 10.1001 eV 
which is in good agreement with the NIST’s reported value of 
10.3600 eV

PEC Label: Spectroscopic state MRCI NIST Δ

(eV) (eV) (eV)

D
1
 : S(3s2 3p4 3P

2
) + H 0.0000 0.0000 0.0000

R
1
 : S(3s2 3p3(4S◦) 4p1 5P

1
) + H 7.7610 7.8663 +0.1053

D
2
 : S(3s2 3p3(4S◦) 4p1 3P

1
) + H 8.1822 8.0452 − 0.1370

R
2
 : S(3s2 3p3(2D◦) 4s1 3D◦

1
) + H 8.6206 8.4082 − 0.2124

D
3
 : S(3s1 3p5 3P◦

2
) + H 9.0505 8.9298 − 0.1207

D
4
 : S(3s2 3p3(2D◦) 4p1 3D

2
) + H 9.6750 9.6896 +0.0146

C
1
 : S+ (3s2 3p3 4S◦

3∕2
) + H 0.0000 0.0000 0.0000

C
2
 : S+ (3s2 3p3 2D◦

3∕2
) + H 1.9530 1.8415 − 0.1115
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Excitations from SH(X2Π) to 2,4Π Rydbergs
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24Π-R1

12Π-R1

22Π-R2

34Π-R2

SH+(3Σ)

SH+(1∆)
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Fig. 8  In this figure, we present the diabatic 2Π ground and Rydberg 
PECs as dash-dot lines; these PECs were previously reported by 
Kashinski et al. [8]. The solid lines are the newly calculated 4Π dia-
batic lowest dissociating state (D1 ) and Rydberg states. The parent 
ion adiabatic states are shown as dashed lines. The SH(3 2Π) Rydberg 
(shown in dash-dot red) corresponds to the SH+

(11Δ) ion shown in a 
red dash-dot line. The same color code is used in Fig. 7. The dotted 
vertical line is placed at R = 1.36 Å and corresponds to the minimum 
of the ground state of the ion SH+

(X 3Σ−) . The vertical excitations 
reported in Table 4 are along this vertical line
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However, the 3d-R combination was required in the diaba-
tization process because it represents a state that mixes with 
the well-described R 2 state in the chemical region.

The two Rydberg states, R 1 and R 2 , as well as the state 
represented by the combination labeled 3d-R have the added 
complication of geometry dependent coefficients of the 
CSFs and super-CSFs as discussed in Sect. 3.2 and illus-
trated for R 1 in Figs. (4) and (6). We resolve this complica-
tion by digaonalizing the 6 × 6 Rydberg sub-block of the 
10 × 10 diabatic matrix �dia after the formal diabatization 
process defined in Eq. (5). We previously employed this 
post-diabatization diagonalization of the Rydberg sub-block 
when treating the lowest 2Π Rydberg state [8]. Presently, the 
Rydberg sub-block consists of the small and large R CSFs 
and super-CSFs for R 1 , R 2 , and 3d-R (six CSFs and super-
CSFs in total). The two lowest eigenvectors of this diago-
nalization produce sensible R 1 and R 2 Rydberg states across 
the entire geometry domain.

Determining which adiabatic electronic states to include 
in the diabatization also required careful consideration. 
At small values of R, both the valence and Rydberg states 
are approaching the repulsive wall, and we see very strong 
Rydberg-valence mixing between the states of interest (those 
described by our basis set) and those resulting from the 
MRCI calculation but not represented by electron occupa-
tions of active space MOs. We calculated the magnitude of 
the projection of each adiabatic state in the space spanned by 
the CSFs and super-CSFs. This procedure provided quanti-
tative guidance for selecting the most appropriate adiabatic 
states. By trying several sets of CSFs with different values 
of N� , and selecting the set of adiabatic states with the larg-
est projection values, we could systematically determine the 
appropriate parameters for the diabatization.

The coefficients of the CSFs in each adiabatic eigenvec-
tor were dependent on geometry, introducing uncertainty 
into the diabatization process. As the atomic separation (R) 
changed, the projections of some of the high-energy (adi-
abatic) eigenvectors onto the diabatic space changed; these 
states were therefore swapped in and out of the diabatization 
process. Whenever one of the higher adiabatic states in the 
diabatization changed, there was an unavoidable disconti-
nuity in the diabatic curves. However, since these higher 
adiabatic states were only indirectly coupled to the states of 
interest, the effect was slight. To address this uncertainty we 
did extensive testing with different numbers of states (vary-
ing N� ) to eliminate as many anomalies as possible without 
introducing new anomalies.

4.2  Results: diabatic PECs

By carefully crafting a set of chemically significant MOs and 
employing the technique of super-CSFs we are able to inter-
pret the adiabatic results of the large FOCI calculations to 

produce a sensible diabatic representation of the 4Π states of 
SH . The resulting absolute diabatic energies are presented in 
Table 5 found in the appendix of this article. These absolute 
energies are the diagonal elements of �dia defined by Eq. (5), 
as described in Sect. 2.2, at each respective geometry. The 
off-diagonal elements of �dia are related to the state-to-state 
coupling that is required for the MQDT treatment of the DR 
process. These couplings and the MQDT calculations for 
the 4Π states of SH will be the focus of a future publication.

In Fig. (7), we graphically present our results for the 4Π 
diabatic PECs of SH . The adiabatic PECs resulting from the 
large active space calculations are shown with dashed lines, 
and the diabatic PECs are overlaid in solid colors. Figure (7) 
also shows the adiabatic SOCI potentials of SH+ . The abso-
lute energies of the SH+ SOCI PECs, which are provided in 
Table 6 in Appendix, are shifted up by 0.024384 Hartree 
(0.66352 eV) to accurately depict their positions relative to 
the adiabatic SH(X2Π) ground state. This shift was deter-
mined by computing a large SOCI for the SH(X2Π) state at 
the equilibrium position of the ion ( R = 1.36 Å) then deter-
mining the energy value required to match the vertical ioni-
zation energy of the SHFOCI(X

2Π) to SH+

SOCI
(X3Σ−) excita-

tion determined to be 0.347427563 Hartree (9.45399 eV) to 
the more accurate SHSOCI(X

2Π) to SH+

SOCI
(X3Σ−) excitation 

determined to be 0.37181154 Hartree ( 10.11751 eV), which 
is in good agreement with Dunlavey et al.’s [47] experi-
mental value of 10.37 eV and Park and Sun’s [49] computed 
value of 9.8657 eV.

In the region of the repulsive wall (R < 1.12Å) the dis-
sociating autoionizing states and the bound Rydberg states 
[colored solid curves shown in Fig. (7)], experience strong 
Rydberg-valence mixing with highly excited states not well 
described by our AO basis set or the MRCI AS as defined 
in Eq. (3). The adiabatic PECs display many avoided cross-
ings and up to 50 eigenvectors were needed to determine 
the extent of the mixing in this region as well as at larger 
separations. The adiabatic curves shown in Fig. (7) (23 of 
the 50+ roots calculated by GAMESS) represent the adiaba-
tic states of interest as well as the continuum in which the 
quasi-discrete states are embedded. The network of adiabatic 
curves between C1 and  C2 and above  C2 are described by 
a host of CSFs (five or more) with electron occupations in 
highly excited virtual space MOs. The rest of the adiaba-
tic states seen show no direct coupling to the final diabatic 
states of interest.

5  Concluding remarks

Large-scale MRCI electronic structure calculations have 
been completed to determine the X3Σ− , and 13Π adiaba-
tic PECs of SH+ and the 4Π adiabatic PECs of SH . Due to 
strong Rydberg-valence coupling the adiabatic PECs of SH 
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displayed many strongly avoided crossings. By employing 
the block diagonalization method, with an understanding of 
the smoothly varying and well-crafted MOs, we were able to 
untangle the strongly mixed Rydberg and valence states and 
determine a sensible diabatic representation of the standard 
adiabatic SH PECs. The sensibility of the diabatic PECs is 
benchmarked by the good agreement of our vertical excita-
tion energies (Te) at the ion minimum ( R = 1.36 Å shown in 
Table 4) when compared to other theoretical treatments of 
SH [46, 49, 50] and the near separated-atom limit (shown in 
Table 3) when compared to experimental results [45] found 
in the literature. This good agreement validates our diaba-
tization procedure.

Our previous work [8], focusing on the DR of SH+ with 
electrons through the 2Π states of SH , resulted in theoreti-
cal DR rate constants showing good agreement with experi-
ment except for energies of interest for the ISM (less than 
∼10 meV), were the rate constants fall below experimental 
values by about an order of magnitude. This discrepancy 
led us to explore the 4Π states of SH in order to identify 
additional pathways for the DR process.

Through careful analysis of the geometry-dependent 
CSFs our diabatization method was able to uncover two 
bound low-lying 4Π Rydberg states (R1 and R 2 ) that result 
from two different ion cores (the 3Σ− (C1 ) and the 3Π (C2 ) 

respectively). Our method also uncovered several diabatic 
dissociating autoionizing states, including the lowest one, 
D 1 , that crosses near the minimum of C 1 , R 1 , and R 2 as well 
as three others (D2 through D 4 ) that cross near the minimum 
of C 2 . These 4Π PECs of SH are presented in Fig. (7).

Analysis of these PECs suggest an additional DR path-
way through the dissociating autoionzing state D 1 due to its 
position relative to the minimum of ion C 1 and Rydbergs R 1 
and R 2 . R 1 and R 2 result from different ion cores highlight-
ing the importance of multi-core effects on the DR process 
at low energies. We suggest the 4Π states of SH will have a 
significant contribution to the DR of SH+ with electrons at 
low energies.

Work is in progress to extend our earlier calculations by 
applying the MQDT method to include contributions from 
the 4Π states of SH to the DR of SH+ with electrons using 
the diabatic PECs presented in the present work and their 
associated state-to-state couplings. The results of these cal-
culations will be the focus of a future publication.

Appendix

See Tables 5 and 6.

Table 4  Comparison of excitation energies near the SH+ minimum ( R = 1.36 Å) from the SH(X2Π ) diabatic PEC to the indicated diabatic 2,4Π 
SH states

The 2Π PECs were previously reported by Kashinski et al. [8]. The excitations reported below are along the dotted vertical line in Fig. (8). Com-
parisons of the current MRCI calculated SH and SH+ PECs to are made to values found in the indicated literature (Lit) sources. In the right most 
column we present the difference computed by Δ ≡ Lit −MRCI . The calculated adiabatic ionization potential (Te) is 10.11751 eV which is in 
good agreement with Dunlavey et al.’s [47] experimental value of 10.37 eV and Park and Sun’s [49] computed value of 9.8657 eV
aSee Table 7 in Ref: [50]
bSee Table 2 in Ref: [49]. Referenced energy minimum is located at R = 1.38Å
cSee Table 2 in Ref: [46]. Referenced energy minimum is located at R = 1.497Å
dSee Table 6 in Ref: [50]
eSee Table 3 in Ref: [49]. Referenced energy minimum is located at R = 1.38Å

PEC State–Figure Label MRCI Lit Δ

(eV) (eV) (eV)

SH(X 2Π)–Ground 0.0000 0.0000 0.000
SH(1 4Π)–R

1
7.8120 7.83a

+0.018
SH(2 2Π)–R

1
8.1920 8.10a −0.092

SH(2 4Π)–D
1

8.9511 9.032b −0.0814
SH(3 2Π)–R

2
9.2857 9.37a

+0.084
SH(3 4Π)–R

2
9.6882 – –

SH
+(X 3Σ−) 0.0000 0.0000 0.0000

SH
+(1 1Δ) 1.3178 1.263c −0.0548

1.28d −0.0378
1.326e 0.0082

SH
+(1 3Π) 3.9030 3.8253b −0.0777

4.2032e 0.3002
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This appendix contains tables with our computation-
ally determined results for the absolute diabatic potential 
energy values for the SH(4Π) states as well as the absolute 
adiabatic energy values for the lowest SH+ states of indicated 
symmetry.
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Table 5  Here we present the absolute diagonal elements of �dia 
defined in Eq.  (5) resulting from our application of the block diag-
onalization method to the SH(4Π) adiabatic potential energy curves 

(PECs). The numerical ordering of the 4Π states is the order of occur-
rence vertically at R = 1.36 Å. These diabatic PECs are plotted in 
Fig. (7)

R(Å) 1
4Π (R

1
) 2

4Π (D
1
) 3

4Π (R
2
) 4Π (D

2
) 4Π (D

3
) 4Π (D

4
)

1.00 − 397.841439793 − 397.698711949 − 397.765271536 − 397.356038500 − 397.381633431 − 397.284260202
1.12 − 397.919531327 − 397.799758455 − 397.844203610 − 397.478704149 − 397.497760139 − 397.426169621
1.25 − 397.955609979 − 397.877245635 − 397.885552237 − 397.557246410 − 397.599639405 − 397.492402396
1.36 − 397.963797965 − 397.921934854 − 397.894847869 − 397.612434202 − 397.644482985 − 397.551153450
1.50 − 397.958062208 − 397.987074150 − 397.890682743 − 397.668760661 − 397.711714399 − 397.610253815
1.60 − 397.948504633 − 398.012909226 − 397.881686452 − 397.701542560 − 397.735577739 − 397.644222200
1.80 − 397.925293969 − 398.055322846 − 397.861074551 − 397.748171704 − 397.753952406 − 397.694695950
2.00 − 397.901669008 − 398.084280075 − 397.846923084 − 397.778652664 − 397.773794481 − 397.724398017
2.15 − 397.886259322 − 398.098319364 − 397.836518318 − 397.794116429 − 397.780961044 − 397.739807869
2.40 − 397.866756990 − 398.112626960 − 397.822256967 − 397.808531342 − 397.784408386 − 397.755662274
2.78 − 397.851039446 − 398.122224463 − 397.812680468 − 397.817884889 − 397.791351353 − 397.764952491
3.00 −397.847028378 − 398.124547496 − 397.810537446 − 397.819319702 − 397.792912269 − 397.768646825
3.20 − 397.845017354 − 398.125665024 − 397.809041922 − 397.820072284 − 397.791914051 − 397.768352823
3.60 − 397.843167633 − 398.126489320 − 397.809276072 − 397.819680074 − 397.792695145 − 397.768924647
4.20 − 397.842236182 − 398.126735597 − 397.810511497 − 397.819930720 − 397.793989446 − 397.768580746
6.00 − 397.841970400 − 398.126771660 − 397.810552603 − 397.819901890 − 397.794212924 − 397.768900462

Table 6  Here we present the absolute adiabatic energies for the low-
est SH+ states of indicated symmetry. The PECs for the SH(X3Σ−) 
and SH(11Δ) states were previously plotted in ref. [8]. We add 
0.24384 Hartree (0.66352 eV) to these absolute energies before super-
imposing them on the diabatic SH(4Π) PECs plotted in Fig. (7). This 
vertical shift is discussed in Sect. 4.2

R(Å) X
3Σ−

1
1Δ 1

3Π

1.00 − 397.786731143 − 397.737869081 − 397.624970392
1.12 − 397.864337892 − 397.815670068 − 397.707007122
1.25 − 397.899981110 − 397.851434205 − 397.749290760
1.36 − 397.907813410 − 397.859385762 − 397.764380186
1.50 − 397.902345252 − 397.853891731 − 397.769573512
1.80 − 397.869371180 − 397.819841822 − 397.760177694
2.00 – – − 397.749398545
2.15 – – − 397.741302645
2.40 − 397.810142133 − 397.754051957 − 397.729166674
2.78 − – − 397.717039109
3.00 − 397.786739391 − 397.720762083 − 397.713143283
3.20 – – − 397.710917613
3.60 − 397.780845635 − 397.710092345 –
3.80 – – − 397.707994769
4.20 − 397.779393990 − 397.707606781 –
4.40 – – − 397.707147109
4.50 – – − 397.707073114
5.00 – – − 397.706831643
6.00 − 397.780465630 − 397.708694992 − 397.706673565

http://creativecommons.org/licenses/by/4.0/
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