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SOLVING A CLASS OF BILEVEL PROGRAMS WITH QUADRATIC LOWER1

LEVEL ∗2

MARTINA CERULLI† , ANTOINE OUSTRY†‡ , CLAUDIA D’AMBROSIO† , AND LEO LIBERTI†3

Abstract. We focus on a particular class of bilevel programs with a quadratic lower-level problem, which can be4
obtained by reformulating semi-infinite problems with an infinite number of quadratically parametrized constraints.5
We propose a new approach to solve this class of bilevel programs, based on the dual of the lower-level problem, which6
can lead to a convex or a semidefinite programming problem, depending on the parametrization of the lower level7
with respect to the upper-level variables. This approach is compared with a new tailored cutting plane algorithm,8
which is proved to be convergent. The rate of convergence of this cutting plane algorithm, directly related to the9
iteration index, is derived when the upper-level objective function is strongly convex, and under a strict feasibility10
assumption. We successfully test the two proposed methods on two applications: the constrained quadratic regression11
and a zero-sum game with cubic payoff.12
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1. Introduction. A bilevel programming (BP) problem is an optimization problem where a15

subset of the variables is constrained to take the value of an optimal solution of another given16

optimization problem parameterized by the remaining variables. The former optimization problem17

is defined as the upper-level problem, and the latter as the lower-level problem. Many real situations18

can be modeled as BP programs, in particular when they involve a hierarchical relationship between19

two decision levels.20

Since BP problems are extremely challenging (both theoretically [32, §6] and practically), it is21

not surprising that much of the research in this field has focused on the simplest cases with linear,22

convex quadratic, or general convex objective and feasible region. In this paper, we propose a new23

analysis, and two approaches to solve a special class of bilevel problems, with a possibly non-convex24

quadratic programming (QP) lower-level problem and convex upper-level constraints and objective.25

We assume that the upper-level problem has a continuous convex objective function F (x)26

(where x is an array of upper-level decision variables), and a convex feasible set X ⊂ Rm depending27

only on x. The lower-level problem is a QP in the lower-level decision variables y, with a possibly28

non-convex objective function, but with a feasible set consisting of the polytope29

F = {y ∈ Rn : Ay ≤ b} = {y ∈ Rn : ∀j ≤ r (a>j y ≤ bj)},30

where aj is the j-th row of the matrix A, and r is an integer.31

We make two overarching assumptions on the BP class of interest: (i) F does not depend on x;32

(ii) the upper-level problem depends only on the optimal value of the lower-level problem, rather33

than its optimal solutions.34
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2 M. CERULLI, A. OUSTRY, C. D’AMBROSIO, L. LIBERTI

Thus, the Mathematical Programming (MP) formulation we study is as follows:35 
min
x∈Rm

F (x)

s.t. x ∈ X
h(x) ≤ min

y∈Rn
{ 1

2y
>Q(x)y + q(x)>y | Ay ≤ b},

(BP)36

37

where F , and h, are continuous convex functions in the upper-level variables x, both the n × n38

matrix Q(x) and the n-dimensional vector q(x) depend linearly on x, A a r × n matrix, and b a39

r-dimensional vector.40

Here are the technical assumptions we make on (BP).41

Assumption 1. X is convex.42

Assumption 2. The functions x 7→ q(x) and x 7→ Q(x) are linear.43

Assumption 3. The function x 7→ h(x) is convex and Lipschitz continuous.44

Assumption 4. The set F is compact, and a scalar ρ > 0 is known such that (s.t.) the set F45

is included in the centered l2-ball with radius ρ.46

In the following, given a formulation (P) of an optimization problem, we will use the term47

reformulation to describe a formulation having the same set of optima of (P), i.e., what is defined48

as exact reformulation in [18, Definition 10]. With the term relaxation, we will refer to a formulation49

having a feasible set which contains the feasible set of (P) [18, Definition 13]. Finally, we will use50

the term restriction when referring to a formulation having a feasible set which is included in the51

feasible set of (P).52

As mentioned above, (BP) does not consider the optimal solutions of the lower-level problem,
but only its optimal objective function value. This renders “pessimistic” or “optimistic” interpre-
tations of (BP) meaningless. The BP class (BP) arises in many applications requiring semi-infinite
programming (SIP) problems, i.e. optimization problems with a finite number of variables, and
an infinite number of parametrized constraints of the type ∀y ∈ Y, g(x, y) ≥ 0. Indeed, this is
equivalent to:

0 ≤ min
y∈Y

g(x, y),

which allows the reformulation of the SIP constraints into a lower-level problem of a BP in the class53

(BP), as long as g(x, y) = 1
2y
>Q(x)y + q(x)>y − h(x) and Y = F . We remark that, in a bilevel54

context, the function φ(x) = min
y∈Y

g(x, y) is called optimal value function.55

Our first contribution is an analysis of (BP) which yields a single-level formulation with a finite56

number of constraints. This single-level formulation is obtained by dualizing, using Semidefinite57

Programming (SDP), the problem min
y∈Y

g(x, y), i.e. the problem of finding the most violated con-58

straint among the infinite number of constraints of the corresponding SIP problem. If g(x, y) is59

convex in y, i.e. if Q(x) is positive semidefinite (PSD), our single-level is a reformulation of (BP).60

This analysis yields a new solution approach, consisting in solving the single-level formulation. We61

note that, if g(x, y) were linear in y, our reformulation would be the same as the one mentioned in62

[6, Section 1.3]. Although an extension to nonlinear perturbations is briefly outlined in [6, Section63

1.4], the specific case of quadratic perturbations over an uncertainty polytope is not considered.64

Our second contribution is a tailored cutting plane (CP) algorithm. While such algorithms are65

well known in SIP, we prove its convergence and derive a new convergence rate in terms of the66
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number of iterations, under the additional assumptions that F is strongly convex and that there67

exists an upper-level solution strictly satisfying the constraint involving the lower-level problem.68

The rest of the paper is organized as follows. We review the relevant literature in Section 2. A69

single-level restriction/reformulation of problem (BP) is introduced and discussed in Section 3. A70

tailored CP algorithm for solving formulation (BP) directly is presented in Section 4. Applications71

are introduced in Section 5. Numerical results, obtained by applying both solution approaches to72

these applications, are presented in Section 6: our results illustrate the interest of the proposed73

method. Finally, Section 7 concludes the paper.74

2. Literature review. Bilevel quadratic problems (BQPs) are bilevel problems having either75

one or both the objective functions which can be expressed as quadratic functions. In [4] a BQP76

having a linear upper-level problem and a convex quadratic lower level is considered, and a branch-77

and-bound algorithm to solve it is presented. In [33], an ergodic branch-and-bound method is78

introduced to solve mixed-integer BQPs, having a convex lower-level problem, which is thus replaced79

by its KKT optimality conditions. In [27], a more general class of BQPs is considered, by allowing80

some (not necessarily convex) quadratic upper-level constraints and some convex quadratic functions81

in lower-level constraints. After the reformulation of the problem into a non-convex quadratic single-82

level problem by replacing its lower level by its KKT conditions (which is possible as they assume83

to know a sufficiently large number that bounds the Lagrange multipliers) the authors adopt the84

successive convex relaxation method given by Kojima and Tunçel in [16] for approximating the85

nonconvex feasible region. Then, they present two types of techniques to enhance the efficiency of86

the method used.87

A part of the literature focuses on general nonlinear bilevel problems. For example, in [21], the88

authors aim at solving bilevel mixed-integer optimization problems with lower-level integer variables89

and including nonlinear terms. They assume that, for any fixed upper-level variables, and lower-90

level integer variables, the lower-level problem is convex and satisfies Slater condition. In order to91

solve these bilevel problems, the authors consider an approximate projection-based algorithm for92

mixed-integer linear bilevel programming problems introduced by Yue et al. [34] and propose a93

way of making it exact under the additional assumption that continuous upper-level variables do94

not appear in lower-level constraints.95

A nonconvex lower-level problem is considered in both [19, 22], as well as in [3]. In particular,96

in [19] a BP problem having closed convex feasible sets both in the upper and in the lower level97

(the lower-level one assumed not dependent on the upper-level variables), but eventually non-98

convex objective functions in both levels is reformulated into a single-level problem, using the99

so-called optimal value function transformation. To deal with the non-smoothness introduced by100

the optimal value function, a smoothing projected gradient algorithm is proposed and used to solve101

the bilevel problem if a calmness condition holds, which is a strong assumption, and an approximate102

bilevel program otherwise. In [22], a bounding algorithm for the global solution of nonlinear bilevel103

programs involving non-convex functions in both the upper and lower levels is presented. The104

algorithm is rigorous and terminates finitely to a point that satisfies ε-optimality in both upper and105

lower-level problems. This is possible using the optimal value function of the lower-level problem106

and a piecewise, yet discontinuous, approximation of it. Previously, Bard [3] proposed an algorithm107

(not guaranteed to be convergent) based on a grid search between a lower and an upper bound108

of the optimal value of a bilevel problem (max-max) without upper-level constraints. The upper109

bound is found by solving a relaxation obtained replacing the lower level with its KKT conditions.110

The lower bound is obtained solving the lower level for a fixed value of the upper-level variables111

(i.e. x = x0), and then computing the value of the upper-level function in the point (x0, φ(x0)).112
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This paper focuses on a particular class of BP problems, where there is no argmin operator,113

but a constraint in the upper level involving the lower-level problem’s value. As mentioned before,114

such bilevel programs can be obtained by reformulating SIP problems having an infinite number115

of quadratically parametrized constraints. To solve SIP problems, discretization methods, CP116

methods, and other hybrid methods are used in the literature. The discretization approach [13, 26]117

consists in replacing the infinite constraint parameter set by a finite subset which samples it finely:118

this leads to a relaxation of the original problem, the value of which converges towards the value119

of the original problem when the mesh gets finer. This method is commonly used for parameters120

sets of low dimensions, but deals with the curse of dimensionality when the number of parameters121

increases. Instead of using a fixed subset of constraints, the CP approach [15] consists in iteratively122

generating and adding constraints. The CP algorithm and its refined variants, as the accelerated123

central CP algorithm for instance, are major techniques used for solving linear, quadratic, and124

convex SIP problems [17, 10, 8].125

In this paper, we introduce a tailored CP algorithm which directly solve formulation (BP), and126

we prove that it is convergent. We also do a step further, by proving a rate of convergence for CP127

valid for a specific setting. Our convergence rate is directly related to the iteration index k, which is128

something new w.r.t. what is usually proved in SIP literature, where the linear rate of convergence129

is related to an index which is not controlled by the index k (see [23, Theorem 4.3]).130

Another class of algorithms for SIP is based on Lagrangian penalty functions and Trust-Region131

methods [9, 28]. However, in the context of problem (BP), they would require to compute the set of132

all local minima of problem min
y∈Y

g(x, y). In the case where g is not convex with respect to variables133

y, the enumeration of all local minima is intractable even for medium-scale instances.134

3. Single-level restriction/reformulation via dual approach. A possible way to deal135

with the bilevel problem (BP) is what we call dual approach, which consists in replacing the con-136

straint involving the quadratic lower-level problem with one involving its dual. We obtain a strong137

dual from an SDP relaxation of the lower-level problem (or a reformulation if the latter is convex).138

We recall that the lower-level problem of (BP), for any x ∈ X , reads:139

(Px)

{
min
y∈Rn

1
2y
>Q(x)y + q(x)>y

s.t. a>j y ≤ bj , ∀j ∈ {1, . . . , r},
140

where the objective function f(x, y) = 1
2y
>Q(x)y+ q(x)>y is convex if Q(x) is PSD. In Section 3.1,141

we introduce the classical SDP relaxation (reformulation, if the lower level is convex) of the lower-142

level problem regularized by a ball constraint and then, in Section 3.2, we introduce the SDP dual143

of this relaxation (reformulation resp.). Finally, in Section 3.3 we present a single-level formulation144

obtained applying the so-called dual approach to the bilevel problem (BP). This formulation is a145

reformulation of (BP) if Q(x) is PSD for any x ∈ X . Otherwise, it is a restriction.146

3.1. SDP relaxation/reformulation of the lower-level problem. In this section, we147

reason for any fixed value of the upper-level decision vector x ∈ X . Let us define the following148

matrices:149

• Q(x) = 1
2

(
Q(x) q(x)
q(x)> 0

)
,150

• Aj = 1
2

(
0n aj
a>j 0

)
, ∀j ∈ {1, . . . , r},151
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where 0n is the n× n null matrix. We denote by 〈A,B〉 = Tr(A>B) the Froebenius product of two152

square matrices A and B with same size. With this notation, under Assumption 4, the problem153

(3.1)



min
Y ∈R(n+1)×(n+1)

〈Q(x), Y 〉

s.t. 〈Aj , Y 〉 ≤ bj ∀j ∈ {1, . . . , r}
Tr(Y ) ≤ 1 + ρ2

Yn+1,n+1 = 1
Y � 0
rank(Y ) = 1,

154

is a reformulation of (Px), because any feasible matrix Y has the form Y =

(
y
1

)(
y
1

)>
with y ∈ F ,

and, therefore, 〈Q(x), Y 〉 = f(x, y). The constraint Tr(Y ) ≤ 1 + ρ2, derives from Assumption 4 as
follows:

‖y‖22 ≤ ρ
2 ⇔ Tr(yy>) ≤ ρ2 ⇔ Tr(Y ) ≤ ρ2 + 1,

being Tr(Y ) = Tr(yy>) + 1. This constraint does not play any role at this point, but will be useful155

thereafter to come up with a dual SDP problem with no duality gap (see Section 3.2). If we relax156

the non-convex constraint rank(Y ) = 1 in (3.1), we obtain:157

(SDPx)



min
Y ∈R(n+1)×(n+1)

〈Q(x), Y 〉

s.t. 〈Aj , Y 〉 ≤ bj ∀j ∈ {1, . . . , r}
Tr(Y ) ≤ 1 + ρ2

Yn+1,n+1 = 1
Y � 0,

158

which is a SDP relaxation of (Px), as proved in the following Lemma 3.1. If Q(x) is PSD, Lemma 3.1159

states that (SDPx) is a reformulation of (Px), the rank-constraint relaxation notwithstanding.160

Lemma 3.1. Under Assumption 4, val(SDPx) ≤ val(Px). If Q(x) is PSD, then val(SDPx) =161

val(Px).162

For a sake of completeness, we give a proof of this standard lemma.163

Proof. The inequality val(SDPx) ≤ val(Px) follows from the relaxation of the rank-constraint.
We now assume that Q(x) is PSD and prove that val(SDPx) ≥ val(Px) holds. Given a matrix Y
feasible for (SDPx), we denote by u1, . . . , un+1 ∈ Rn+1 a basis of eigenvectors of Y (which is PSD)
and their respective eigenvalues v1, . . . , vn+1 ∈ R+. Let us introduce the two following index sets:

I = {i ∈ {1, . . . , n+ 1} : (ui)n+1 6= 0} and J = {i ∈ {1, . . . , n+ 1} : (ui)n+1 = 0}.

We have then: I ∪ J = {1, . . . , n+ 1}. Moreover,164

• if i ∈ I : we define the nonnegative scalar µi = vi(ui)
2
n+1 and yi ∈ Rn s.t. ui = (ui)n+1

(
yi
1

)
165

• if i ∈ J : we define the nonnegative scalar νi = vi and zi ∈ Rn s.t. ui =

(
zi
0

)
.166

With this notation, we have that

Y =

n+1∑
i=1

viuiu
>
i =

∑
i∈I

vi(ui)
2
n+1

(
yi
1

)(
yi
1

)>
+
∑
i∈J

vi

(
zi
0

)(
zi
0

)>

This manuscript is for review purposes only.
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=
∑
i∈I

µi

(
yiy
>
i yi

y>i 1

)
+
∑
i∈J

νi

(
ziz
>
i 0

0> 0

)
,

where 0 is the null n-dimensional vector, not to be confused with 0n, the n × n null matrix. Let167

us define the vector ȳ =
∑
i∈I

µiyi. Its objective value in (Px) is smaller than the objective value of168

Y in (SDPx). In fact:169

(3.2) 〈Q(x), Y 〉 =
∑
i∈I

µif(x, yi) +
1

2

∑
i∈J

νiz
>
i Q(x)zi ≥

∑
i∈I

µif(x, yi) ≥ f(x,
∑
i∈I

µiyi) = f(x, ȳ).170

The first inequality is due to Q(x) � 0 and νi ≥ 0. The second inequality derives from
∑
i∈I

µi =171

Yn+1,n+1 = 1, and from the convexity of function fx (Jensen inequality). Moreover, since Y is172

feasible in (SDPx), for each j ∈ {1, . . . , r} we have bj ≥ 〈Aj , Y 〉 =
∑
i∈I

µia
>
j yi = a>j ȳ, which173

means that ȳ is feasible in (Px) too. This implies that f(x, ȳ) ≥ val(Px) and together with (3.2),174

that 〈Q(x), Y 〉 ≥ val(Px). This being true for any matrix Y feasible in (SDPx), we conclude that175

val(SDPx) ≥ val(Px). This proves that val(SDPx) = val(Px).176

3.2. Dual SDP problem. As already done in Section 3.1, also in this section we reason for177

any fixed value of x ∈ X . Let E be a (n + 1) × (n + 1) matrix s.t. En+1,n+1 = 1 and Eij = 0178

everywhere else. Let In+1 be the (n+ 1)× (n+ 1) identity matrix. The following SDP problem179

(DSDPx)


max

λ∈Rr+, α∈R+, β∈R
−b>λ− α(1 + ρ2)− β

s.t. Q(x) +
r∑
j=1

λjAj + αIn+1 + βE � 0,
180

is the dual of problem (SDPx), as the following proposition states.181

Proposition 3.2. Formulations (SDPx) and (DSDPx) are a primal-dual pair of SDP problems182

and strong duality holds, i.e., val(SDPx) = val(DSDPx).183

Proof. The Lagrangian of problem (SDPx) is defined over Y ∈ S+
n+1(R), λ ∈ Rr+, α ∈ R+, β ∈184

R and reads185

Lx(Y, λ, α, β) = 〈Q(x), Y 〉+
r∑
j=1

[λj (〈Aj , Y 〉 − bj)] + α(Tr(Y )− 1− ρ2) + β(Yn+1,n+1 − 1)

= −
r∑
j=1

λjbj − α(1 + ρ2)− β +

〈
Q(x) +

r∑
j=1

λjAj + αIn+1 + βE, Y

〉
.

186

The Lagrangian dual problem of (SDPx) is:187

max
λ∈Rr+
α∈R+

β∈R

min
Y ∈S+

n+1(R)
Lx(Y, λ, α, β).188

According to equality above, it can thus be written as189

max
λ∈Rr+
α∈R+

β∈R

−
 r∑
j=1

λjbj + α(1 + ρ2) + β

+ min
Y ∈S+

n+1(R)

〈
Q(x) +

r∑
j=1

λjAj + αIn+1 + βE, Y

〉 .190
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We notice that191

min
Y ∈S+

n+1(R)

〈
Q(x) +

r∑
j=1

λjAj + αIn+1 + βE, Y

〉
=

 0 if

(
Q(x) +

r∑
j=1

λjAj + αIn+1 + βE

)
� 0

−∞ otherwise.

192

This proves that the dual problem of (SDPx) reads193 
max

λ∈Rr+, α∈R+, β∈R
−b>λ− α(1 + ρ2)− β

s.t. Q(x) +
r∑
j=1

λjAj + αIn+1 + βE � 0,
194

which is the formulation (DSDPx). To prove that val(SDPx) = val(DSDPx), we prove that Slater195

condition holds for the dual problem (DSDPx), exploiting the Lagrangian multiplier associated196

to the constraint Tr(Y ) ≤ 1 + ρ2. In fact, Slater condition is a sufficient condition for strong197

duality [31]. We denote by mx the minimum eigenvalue of Q(x). By definition of mx, matrix198

Q(x) + (1 −mx)In+1 is positive definite. This is why (λ, α, β) = (0, . . . , 0, 1 −mx, 0) is a strictly199

feasible point of (DSDPx). Hence, Slater condition holds.200

3.3. SDP restriction/reformulation of the bilevel problem. Leveraging on Section 3.1201

and Section 3.2, which focus on the lower-level problem (Px), its SDP relaxation (SDPx) and the202

respective dual problem (DSDPx), we propose a single-level restriction of the bilevel programming203

problem (BP). It is a reformulation of (BP) if Q(x) is PSD for any x ∈ X .204

Theorem 3.3. The single-level formulation205 

min
x,λ,α,β

F (x)

s.t. x ∈ X

h(x) ≤ −λ>b− α(1 + ρ2)− β

Q(x) +
∑
j λjAj + αIn+1 + βE � 0

x ∈ Rm, λ ∈ Rr+, α ∈ R+, β ∈ R,

(BPR)206

207

is a restriction of the bilevel programming problem (BP). If Q(x) is PSD for any x ∈ X , (BPR) is208

a reformulation of (BP).209

Proof. Being Feas(BP) and Feas(BPR) the feasible sets of (BP) and (BPR) respectively, since210

(BP) and (BPR) share the same objective function, proving the following implication for any x ∈ Rm211

(3.3)
(
∃ λ ∈ Rr+, α ∈ R+, β ∈ R : (x, λ, α, β) ∈ Feas(BPR)

)
=⇒ x ∈ Feas(BP),212

will prove the first part of the theorem. For any x ∈ X , we have:213

(3.4) h(x) ≤ val(SDPx) =⇒ h(x) ≤ val(Px) ⇐⇒ x ∈ Feas(BP),214

where the first implication stems from Lemma 3.1, which stipulates that val(SDPx) ≤ val(Px).215

Applying Proposition 3.2, we obtain that:216

(3.5) h(x) ≤ val(SDPx) ⇐⇒ h(x) ≤ val(DSDPx).217
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For any x ∈ X , we have that218

(3.6) h(x) ≤ val(DSDPx) ⇐⇒ ∃ λ ∈ Rr+, α ∈ R+, β ∈ R :

 h(x) ≤ −λ>b− α(1 + ρ2)− β

Q(x) +
r∑
j=1

λjAj + αIn+1 + βE � 0
219

The equivalence (3.6) just expresses the fact that the maximization problem (DSDPx) has a value220

exceeding h(x) if and only if it has a feasible solution with value exceeding h(x). Hence, from (3.5),221

and (3.6), the following equivalences hold:222

h(x) ≤ val(SDPx) ⇐⇒ ∃ λ ∈ Rr+, α ∈ R+, β ∈ R :

 h(x) ≤ −λ>b− α(1 + ρ2)− β

Q(x) +
r∑
j=1

λjAj + αIn+1 + βE � 0
(3.7)223

⇐⇒ ∃ λ ∈ Rr+, α ∈ R+, β ∈ R, (x, λ, α, β) ∈ Feas(BPR).224225

The equivalence (3.7), together with implication (3.4), proves the implication (3.3).226

If Q(x) is PSD for any x ∈ X , we can replace the implication (3.4) by the equivalence227

(3.8) h(x) ≤ val(SDPx) ⇐⇒ h(x) ≤ val(Px) ⇐⇒ x ∈ Feas(BP).228

This, together with equivalence (3.7), proves that229

∃ λ ∈ Rr+, α ∈ R+, β ∈ R : (x, λ, α, β) ∈ Feas(BPR) ⇐⇒ x ∈ Feas(BP),

meaning that (BPR) is a reformulation of (BP), since the objective function is the same.230

Assumptions 1, 2, and 3 implies that the single-level problem (BPR) is convex. Let us recall231

the following definition of semidefinite representable (SDr) functions232

Definition 3.4 ([25]). A convex (resp. concave) function f is SDr if and only if its epigraph,233

i.e., (t, x) : f(x) ≤ t (resp. the hypograph (t, x) : t ≤ f(x)), is SDr [7].234

Thus, we further remark that formulation (BPR) is a SDP problem if set X is SDr, as well as235

functions F (x), and h(x).236

4. Cutting plane algorithm. In order to benchmark the results and the performance of237

the single-level approach proposed in Section 3, we introduce in this section a CP algorithm for238

solving the bilevel formulation (BP) directly. We also include a proof of convergence for this tailored239

algorithm in Section 4.1, as well as a convergence rate in Section 4.2, obtained by introducing a240

dual view of the CP algorithm. We make the following further assumption on set X :241

Assumption 5. The set X is compact.242
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Algorithm 4.1 CP algorithm for (BP)

1: Let k = 0. Initialize the relaxation Rk of the bilevel problem (BP), obtained by considering the
upper-level problem only.

2: while true do
3: Solve Rk, obtaining an optimal solution xk.
4: Compute an optimal solution yk of the lower-level problem for x = xk.
5: if h(xk) ≤ 1

2 (yk)>Q(xk)yk + q(xk)>yk then
6: Return (xk, yk).
7: else
8: Define Rk+1 as Rk with the adjoined inequality:

(4.1) h(x) ≤ 1

2
(yk)>Q(x)yk + q(x)>yk.

9: k := k + 1
10: end if
11: end while

At the first iteration of Algorithm 4.1, the relaxed problem R0 is given by:243

(4.2) min
x∈X

F (x),244

which considers minimizing the upper-level objective function subject to the upper-level constraints245

only. This problem has a finite value according to the compactness of set X .246

At each iteration, Algorithm 4.1 defines the feasible set of the upper-level problem by means247

of cuts in the upper-level variables x. The resulting Rk problems are relaxations of (BP), and their248

feasible sets are decreasing in the sense of the inclusion, bounded, because included in the feasible249

set of R0, and closed as intersections of closed sets. Thus, each problem Rk admits a minimum.250

Moreover, the sequence (F (xk)) is increasing, and F (xk) ≤ val(BP) holds for any k. At step 4, the251

problem solved to find a new cutting plane is252

(Pxk) min
y∈Rn
{1

2
y>Q(xk)y + q(xk)>y|Ay ≤ b}.253

This problem is a quadratic program that is either convex or non-convex depending on the positive254

semi-definiteness of the constant matrix Q(xk). In order to find global optima of (Pxk), regardless255

of the definiteness of Q(xk) (in turn depending on the value of xk), a global optimization algorithm256

should be employed. Step 6 returns the optimal solution of the bilevel formulation (BP).257

4.1. Convergence proof. In this section, a convergence proof for Algorithm 4.1 is given.258

First of all, let us define the negative part of a function f as f− := max(0,−f). Since Q(x) and259

q(x) are linear w.r.t. x, the function f : (x, y) 7→ 1
2y
>Q(x)y+ q(x)>y is continuously differentiable,260

and therefore Lipschitz-continuous on the compact set X ×F (see Assumption 4 and 5), with L > 0261

an associated Lipschitz constant.262

Moreover, x 7→ val(Px) is continuous. To show this, let us consider any ω > 0 and any pair
(x, x̃) ∈ X 2 s.t. ‖x− x̃‖ ≤ ω

L . We define y ∈ F an optimal solution of (Px), i.e., val(Px) = f(x, y),
and ỹ ∈ F an optimal solution of (Px̃), i.e., val(Px̃) = f(x̃, ỹ). By definition of val(Px̃) and using
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10 M. CERULLI, A. OUSTRY, C. D’AMBROSIO, L. LIBERTI

the Lipschitz continuity of f , we know that

val(Px̃) ≤ f(x̃, y) ≤ f(x, y) + L ‖
(
x− x̃
y − y

)
‖ ≤ val(Px) + L ‖x− x̃‖ ≤ val(Px) + ω,

and, symmetrically, that

val(Px) ≤ f(x, ỹ) ≤ f(x̃, ỹ) + L ‖
(
x− x̃
ỹ − ỹ

)
‖ ≤ val(Px̃) + L ‖x− x̃‖ ≤ val(Px̃) + ω.

Thus, |val(Px) − val(Px̃)| ≤ ω, which proves that the value function x 7→ val(Px) is continuous at263

any x ∈ X . Based on these observations, we prove the convergence of the algorithm.264

Theorem 4.1. Under Assumptions 4 and 5 Algorithm 4.1 either terminates in K ∈ N? iter-265

ations, in which case xK is the solution of (BP), or generates an infinite sequence (xk)k∈N? with266

the following convergence guarantees:267

• feasibility error: εk =
(
val(Pxk)− h(xk)

)− → 0,268

• objective error: δk = val(BP)− F (xk)→ 0.269

Proof. If Algorithm 4.1 terminates at iteration K ∈ N?, xK is feasible in (BP), i.e., xK ∈ X and270

val(PxK ) ≥ h(xK), which implies that F (xK) ≥ val(BP). At the same time F (xK) = val(RK) ≤271

val(BP), being RK a relaxation of (BP) by definition. Thus, F (xK) = val(BP), and xK is an optimal272

solution of (BP).273

Let us suppose now that the stopping test is never satisfied. In this context, we prove first274

the convergence of the feasibility error εk towards 0. For any k ∈ N?, we have that val(Pxk) =275
1
2y
k>Q(xk)yk + q(xk)>yk = f(xk, yk), thus εk =

(
f(xk, yk)− h(xk)

)−
. Since f , h and the negative276

part function are continuous, and since both xk and yk are bounded, the sequence εk is also277

bounded. According to Bolzano-Weierstrass theorem [1], this bounded sequence has at least a278

convergent sub-sequence. In the following, we define any convergent sub-sequence extracted from279

εk as εψ0(k), where ψ0 : N? 7→ N? is an increasing application. Defining as ε∗ ∈ R the limit of this280

convergent sub-sequence, we will show that this limit value is in fact 0.281

The sequence
(
yψ0(k), εψ0(k)

)
is a sub-sequence of the bounded sequence (yk, εk), therefore it is282

bounded. According to the Bolzano-Weierstrass theorem, the sequence
(
yψ0(k), εψ0(k)

)
has thus a283

convergent sub-sequence
(
yψ(k), εψ(k)

)
. Since εψ(k) is a convergent sub-sequence of εψ0(k), εψ(k) → ε∗284

holds. Because ψ(k − 1) < ψ(k) by definition of ψ, the cut related to yψ(k−1) is a constraint of285

problem Rψ(k) (added by Algorithm 4.1 at iteration k− 1). Thus, f(xψ(k), yψ(t−1))− h(xψ(k)) ≥ 0,286

and287

f(xψ(k), yψ(k))− h(xψ(k)) = f(xψ(k), yψ(k))− f(xψ(k), yψ(k−1)) + f(xψ(k), yψ(k−1))− h(xψ(k))
≥ f(xψ(k), yψ(k))− f(xψ(k), yψ(k−1)).

288

Being the negative part function decreasing,

εψ(k) =
(
f(xψ(k), yψ(k))− h(xψ(k))

)−
≤
(
f(xψ(k), yψ(k))− f(xψ(k), yψ(k−1))

)−
.

Therefore289

(4.3) εψ(k) ≤
∣∣∣f(xψ(k), yψ(k))− f(xψ(k), yψ(k−1))

∣∣∣ .290
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From the fact that f is L-Lipschitz continuous, and Eq. (4.3) we deduce that291

(4.4) εψ(k) ≤ L ‖
(
xψ(k)

yψ(k)

)
−
(
xψ(k)

yψ(k−1)

)
‖ = L ‖yψ(k) − yψ(k−1)‖.292

As yψ(k) is convergent, we know that ‖yψ(k) − yψ(k−1)‖ → 0. Being εψ(k) nonnegative, we deduce293

from Eq. (4.4) that εψ(k) → 0, and thus, ε? = 0.294

We proved that the sequence εk is bounded, and that any converging sub-sequence converge295

towards 0, thus we can conclude that εk converges towards 0 itself, according to a well-known result296

in analysis [1]. Based on this first result, we are now going to prove the second point, i.e., the297

convergence of objective error. We know that298

(4.5) ∀k ∈ N? F (xk) ∈
[
F (x1), val(BP)

]
,299

therefore the increasing sequence F (xk) is bounded, and thus, converging. Since xk bounded, we300

can derive a converging sub-sequence xφ(k) → x? with φ : N? 7→ N? being an increasing function.301

The associated feasibility error is εφ(k) =
(
val(Pxφ(k))− h(xφ(k))

)−
. On the one hand, being εφ(k) a302

sub-sequence of εk which has been proven to converge towards zero, εφ(k) → 0. On the other hand,303

εφ(k) → (val(Px?)− h(x?))
−

holds by continuity of x 7→ val(Px) and h. By uniqueness of the limit,304

(val(Px?)− h(x?))
−

= 0. Therefore, x? ∈ X is feasible in (BP) and F (x?) ≥ val(BP). From (4.5)305

we also know that F (x?) ≤ val(BP), and thus F (x?) = val(BP). We can conclude that F (xk) is306

bounded and admits a unique limit point which is val(BP). Hence, δk → 0.307

4.2. A convergence rate for the CP algorithm. In this section, we give a convergence308

rate of the CP algorithm 4.1, under two additional assumptions on the bilevel problem. First of all,309

let us reformulate the bilevel problem, by moving the function h(x) within the lower-level problem:310  min
x∈X

F (x)

s.t. 0 ≤ min
y∈Rn
{ 1

2y
>Q(x)y + q(x)>y − h(x) | y ∈ F}.(BP)311

312

We introduce then the matrix G(x) = 1
2

(
Q(x) q(x)
q(x)> −2h(x)

)
= Q(x) −

(
0n 0
0 h(x)

)
and we define

the set

P =

{
M(y) =

(
yy> y
y> 1

)
: y ∈ F

}
⊂ R(n+1)×(n+1).

With this notation, we acknowledge that (BP) can be formulated as313 {
min
x∈X

F (x)

s.t. 0 ≤ 〈G(x), Y 〉, ∀Y ∈ P.
(SIP)314

315

We define as K = cone(P) ⊂ R(n+1)×(n+1) the convex cone generated by P, and L(x, Y ) = F (x)−
〈G(x), Y 〉 the Lagrangian function defined over X ×K. We remark that for any x ∈ X , the following
equality holds

sup
Y ∈K

L(x, Y ) =

{
F (x) if 0 ≤ 〈G(x), Y 〉, ∀Y ∈ P
+∞ else.

Hence, problem (SIP) can be expressed as the saddle-point problem min
x∈X

sup
Y ∈K

L(x, Y ). At this point,316

we do the following further assumption.317
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Assumption 6. The upper-level objective function F (x) is µ-strongly-convex.318

Assumptions 6 is quite strong, but we remark that, if the original objective function is just convex,319

it is always possible to enforce this assumption by “regularizing” the bilevel problem adding a320

`2 penalty to the primal objective function, i.e. minimizing F (x) + µ
2 ‖x‖

2 instead of F (x). The321

Lagrangian function L(x, Y ) is linear (thus continuous and concave) w.r.t. Y for all x ∈ X and is322

continuous and convex w.r.t. x for all Y ∈ K. The convexity w.r.t. x follows from Assumptions 2323

and 3 and from the fact that Yn+1,n+1 ≥ 0 for any Y ∈ K. Since the set X is convex (Assumption324

1) and the set K is convex too, the Sion’s minimax theorem is applicable and the following holds:325

min
x∈X

sup
Y ∈K

L(x, Y ) = sup
Y ∈K

min
x∈X

L(x, Y ).326

Defining the dual function θ(Y ) = min
x∈X

L(x, Y ), we know that327

(4.6) val(SIP) = sup
Y ∈K

θ(Y ).328

Notice that the dual function θ(Y ) is concave, as a minimum of linear functions in Y . As a329

direct application of [14, Corollary VI.4.4.5], the dual function θ(Y ) is differentiable because of330

the uniqueness of arg min
x∈X
L(x, Y ), which is, in turn, a consequence of the strong convexity of331

x 7→ L(x, Y ) that follows from Assumption 6. Moreover, the gradient of the dual function is332

∇θ(Y ) = −G(x), where x = arg min
x∈X
L(x, Y ). The differentiability of θ implies, in particular, that333

θ is continuous. We prove now that we can replace the sup operator with the max operator in the334

formulation (4.6), under the following assumption.335

Assumption 7. It exists x̂ ∈ X , s.t., for all y ∈ F , g(x̂, y) = 1
2y
>Q(x̂)y+ q(x̂)>y− h(x̂) > 0.336

Lemma 4.2. Under Assumption 7, the dual problem of (SIP) has an optimal solution Y ∗.337

Proof. We denote by x̂ ∈ X the primal feasible solution s.t. g(x̂, y) = 1
2y
>Q(x̂)y + q(x̂)>y −338

h(x̂) > 0 for all y ∈ F . Since the set F is compact and the function y 7→ g(x̂, y) is continuous and339

positive, it exists c > 0 s.t. g(x̂, y) ≥ c for all y ∈ F . For any Y ∈ K, we have that Y =
p∑
k=1

λkM(yk),340

for an integer p ∈ N, vectors y1, . . . , yp ∈ F and nonnegative scalars λ1, . . . , λp ∈ R+. Since341

〈G(x̂),M(y)〉 = 1
2y
>Q(x̂)y + q(x̂)>y − h(x̂) for any y ∈ F , the following holds by linearity:342

〈G(x̂), Y 〉 =

〈
G(x̂),

p∑
k=1

λkM(yk)

〉
=

p∑
k=1

λk
〈
G(x̂),M(yk)

〉
≥

p∑
k=1

λkc = Yn+1,n+1c.343

344

Moreover, by definition of θ:345

θ(Y ) = min
x∈X

F (x)− 〈G(x), Y 〉 ≤ F (x̂)− 〈G(x̂), Y 〉 ≤ F (x̂)− Yn+1,n+1c,346
347

this for any Y ∈ K. We take then a maximizing sequence (Y k)k∈N of problem (4.6). Defining348

V = val(SIP), we know that θ(Y k)→ V and hence, it exists j ∈ N s.t. for all k ≥ j, θ(Y k) ≥ V − 1.349

This implies that, for all k ≥ j,350

0 ≤ Y kn+1,n+1 ≤
F (x̂)− V + 1

c
.351

This manuscript is for review purposes only.



SOLVING A CLASS OF BILEVEL PROGRAMS WITH QUADRATIC LOWER LEVEL 13

Defining B = F (x̂)−V+1
c , we deduce that ∀k ≥ j, Y k belongs to B conv(F), which is compact. Thus,352

the sequence (Y k)k∈N admits an accumulation point Y ∗, s.t. θ(Y ∗) = V by continuity of θ.353

According to this lemma, the dual version of problem (SIP) thus reads354

(DSIP) max
Y ∈K

θ(Y ).355

This concave maximization problem on the convex cone K is the Lagrangian dual of the problem356

(SIP) i.e. of the bilevel program (BP). Indeed, in this section, we are dualizing the whole bilevel357

problem (BP), contrary to Section 3, where we dualize the lower-level problem only. We are now358

going to see that the CP algorithm 4.1 can be interpreted, from a dual perspective, as a cone359

constrained Fully Corrective Frank-Wolfe (FCFW) algorithm [20] solving the dual problem (DSIP).360

We prove that during the execution of the CP algorithm 4.1, the dual variables obtained when361

solving the relaxation Rk instantiate the iterates of a FCFW algorithm. In the following, the sets362

Bk ⊂ Rn+1×n+1 are finite sets, composed of rank-one matrices of the form M(y).363

First, the initialization of the CP can be seen, in the dual perspective, as the initialization of364

a Frank-Wolfe type algorithm, with B0 ← ∅. Then, the generic iteration k is described in Table 1.

Primal perspective:
CP

Link
Dual perspective:

FCFW

Step 1
Solve Rk and

store the solution xk
Duality

Solve the dual problem on cone(Bk), i.e.

max
Y ∈cone(Bk)

θ(Y ),

store the solution Y k, the associated xk

and the gradient ∇θ(Y k) = −G(xk)

Step 2

Solve the lower-level problem Pxk

min
y∈F

1
2y
>Q(xk)y + q(xk)>y

and store the solution yk

Zk = M(yk)

Solve the problem

max
Z∈P

〈∇θ(Y k), Z〉

and store the solution Zk

Step 3a
If h(xk) ≤ 1

2 (yk)>Q(xk)yk + q(xk)>yk,
(xk, yk) is the optimal solution of (BP)

Reformulation
If 〈∇θ(Y k), Zk〉 ≤ 0,

Y k is the optimal solution of (DSIP),
xk is the optimal solution of (SIP)

Step 3b

If h(xk) > 1
2 (yk)>Q(xk)yk + q(xk)>yk,

build Rk+1 as Rk with the adjoined ineq.

h(x) ≤ 1
2 (yk)>Q(x)yk + q(x)>yk

Reformulation
If 〈∇θ(Y k), Zk〉 > 0,

set Bk+1 ← Bk ∪ {Zk}.

Table 1: The k-th iteration of the CP (Algorithm 4.1), and of the FCFW algorithm

365

The different steps summarized in Table 1 can be explicated as follows:366

• Step 1 : At iteration k, set Bk represents, from a dual perspective, the set of CPs in the367

primal relaxation Rk. The dual problem of Rk is in fact a restriction of (DSIP) on cone(Bk),368
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which is a polyhedral subcone of K, since the following holds:369

max
Y ∈cone(Bk)

θ(Y ) = max
Y ∈cone(Bk)

min
x∈X

(F (x)− 〈G(x), Y 〉)

= min
x∈X

max
Y ∈cone(Bk)

(F (x)− 〈G(x), Y 〉)

= min
x∈X
{F (x) s.t. 0 ≤ 〈G(x), Z〉, ∀Z ∈ Bk},

370

which we recognize being the master problem Rk. The absence of duality gap is, also in this371

case, a direct application of Sion’s Theorem. The new dual solution Y k is obtained solving372

this restriction of (DSIP) on cone(Bk), and the primal solution xk = arg min
x∈X
L(x, Y k) gives373

the gradient of the dual function in Y k, i.e., ∇θ(Y k) = −G(xk).374

• Step 2 : Finding the bilevel constraint that is the most violated by xk is equivalent to finding375

the furthest point of P in the direction ∇θ(Y k). Indeed, the following equality holds:376

max
Z∈P

〈∇θ(Y k), Z〉 = −min
Z∈P
〈G(xk), Z〉(4.7)377

= −min
y∈F
{1

2
y>Q(xk)y + q(xk)>y − h(xk)},(4.8)378

379

and any optimal solution Zk in problem (4.7) has the form Zk = M(yk), with yk optimal380

in problem (4.8).381

• Step 3a: The CP feasibility test 1
2 (yk)> Q(xk)yk + q(xk)> yk ≥ h(xk), is equivalent to the382

dual optimality condition 〈∇θ(Y k), Zk〉 ≤ 0, according to the equality ∇θ(Y k) = −G(xk).383

• Step 3b: Increasing the set of atoms Bk+1 ← Bk ∪{Zk} is the dual point of view of adding384

the corresponding CP (with yk s.t. Zk = M(yk)) to Rk, which creates the relaxation Rk+1.385

The following lemma states a property of the iterates Y k.386

Lemma 4.3. For any k ∈ N,〈∇θ(Y k), Y k〉 = 0.387

Proof. This property follows directly from the first order optimality condition at 1 of the dif-388

ferentiable function g :

{
R+ → R
t 7→ θ(tY k)

. Indeed, g′(1) = 〈∇θ(Y k), Y k〉 = 0, because (i) 1 is optimal389

for g since Y k ∈ arg max
Y ∈cone(Bk)

θ(Y ), (ii) 1 lies in the interior of the definition domain of g.390

Based on the dual interpretation of the CP algorithm, we are now going to state a convergence rate391

for this algorithm. We begin with two technical lemmas.392

Lemma 4.4. It exists L > 0 s.t. function θ is L-smooth, i.e., for all Y, Y ′ ∈ K,

‖∇θ(Y )−∇θ(Y ′)‖2 ≤ L‖Y − Y ′‖2.

Proof. For the purpose of this proof, we introduce the linear operator Q?, defined as the adjoint393

operator of the linear (by Assumption 3) operator x 7→ Q(x). With this notation, we have that394

〈Q(x), Y 〉 = x>(Q?Y ). We also denote by ‖Q?‖op the operator norm of Q?. We notice that the395

image of the bounded set X by the subdifferential mapping ∂h(X ) =
⋃
x∈X

∂h(x) is bounded according396

to Theorem 6.2.2 in [14, Chapter VI]. Hence it exists D ≥ 0 such that397

(4.9) ∀x ∈ X , ∀s ∈ ∂h(x), ‖s‖2 ≤ D.398

This manuscript is for review purposes only.



SOLVING A CLASS OF BILEVEL PROGRAMS WITH QUADRATIC LOWER LEVEL 15

Given Y, Y ′ ∈ K, we are now going to prove that ‖∇θ(Y )−∇θ(Y ′)‖2 ≤ L‖Y − Y ′‖2 for a constant399

L that is independent from Y and Y ′. Being iX (x) the indicator function of the set X , we introduce400

the applications w : x 7→ L(x, Y )+ iX (x) and w′ : x 7→ L(x, Y ′)+ iX (x). According to Assumptions401

6, as well as 1, 2, and 3 we remark that application w (resp. w′) is µ-strongly convex because it402

is the sum of the µ-strongly convex function F and the convex function x 7→ −〈G(x), Y 〉 + iX (x)403

(resp. x 7→ −〈G(x), Y ′〉+ iX (x)). Being u (resp. u′) the unique minimum of function w (resp. w′),404

the uniqueness following from the strong convexity, the optimality conditions of function w, and w′405

respectively read406

0 ∈ ∂w(u),(4.10)407

0 ∈ ∂w′(u′).(4.11)408409

We remark that w′(x) = F (x)+iX (x)+Y ′n+1,n+1h(x)−x>(Q?Y ′). The function x 7→ F (x)+iX (x)
is convex as a sum of convex functions; the function x 7→ Y ′n+1,n+1h(x) is convex since h is convex
and Y ′n+1,n+1 ≥ 0 by definition of cone K ; x 7→ −x>(Q?Y ′) is linear and thus convex. The
intersection of the relative interiors of the domains of these convex functions is ri(X ). Since X is a
finite-dimensional convex set, ri(X ) 6= ∅ [29, Proposition 1.9]. Hence the subdifferential of the sum
is the sum of the subdifferentials [24, Theorem 2.1]. In this respect, the subdifferential of function
w′ at u′ reads

∂w′(u′) = ∂(F + iX )(u′)−Q?Y ′ + Y ′n+1,n+1∂h(u′).

Based on this decomposition, it follows from (4.11) that ∃ g0 ∈ ∂(F + iX )(u′), g1 ∈ ∂h(u′) such that410

(4.12) g0 −Q?Y ′ + Y ′n+1,n+1g1 = 0.411

Additionally, we have that412

(4.13) g0 −Q?Y + Yn+1,n+1g1 ∈ ∂w(u′),413

since w(x) = F (x) + iX (x) − x>(Q?Y ) + Yn+1,n+1h(x), and g0 ∈ ∂(F + iX )(u′), g1 ∈ ∂h(u′).414

Combining Eq. (4.12) with Eq. (4.13), we deduce:415

(4.14) Q?(Y ′ − Y ) + (Yn+1,n+1 − Y ′n+1,n+1)g1 ∈ ∂w(u′).416

Applying Theorem 6.1.2 in [14, Chapter VI], the µ-strong convexity of w gives that, for any417

s1 ∈ ∂w(u) and s2 ∈ ∂w(u′), 〈s2− s1, u
′−u〉 ≥ µ‖u−u′‖22. Moreover, due to the Cauchy-Schwartz418

inequality, ‖s1− s2‖2‖u−u′‖2 ≥ 〈s2− s1, u
′−u〉. Therefore, ‖s2− s1‖2 ≥ µ‖u−u′‖2 holds for any419

s1 ∈ ∂w(u) and s2 ∈ ∂w(u′). Since 0 ∈ ∂w(u) according to (4.10), and Q?(Y ′ − Y ) + (Yn+1,n+1 −420

Y ′n+1,n+1)g1 ∈ ∂w(u′) according to (4.14), we deduce that421 ∥∥Q?(Y ′ − Y ) + (Yn+1,n+1 − Y ′n+1,n+1)g1 − 0
∥∥

2
≥ µ‖u− u′‖2.422

According to the triangle inequality423

‖Q?(Y ′ − Y )‖2 + |Yn+1,n+1 − Y ′n+1,n+1| ‖g1‖2 ≥ µ‖u− u
′‖2,424

and thus, since ‖Y − Y ′‖2 ≥ |Yn+1,n+1 − Y ′n+1,n+1|,425

‖Q?‖op‖Y − Y ′‖2 + ‖Y − Y ′‖2 ‖g1‖2 ≥ µ‖u− u
′‖2.426
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Defining B = ‖Q?‖op +D and using the inequality ‖g1‖2 ≤ D, which holds according to (4.9), we427

know that428

B‖Y − Y ′‖2 ≥ µ‖u− u′‖2.429

According to Assumption 3, h is Lipschitz continuous and so are q andQ by the linearity Assumption430

2. Hence, it exists a constant K > 0 such that x 7→ G(x) is K-Lipschitz continuous. We deduce431

that K‖u−u′‖2 ≥ ‖G(u)−G(u′)‖2, and, consequently, ‖Y −Y ′‖2 ≥ µ
BK ‖G(u)−G(u′)‖2. We define432

the constant L = BK
µ , which is clearly independent from Y, Y ′, u and u′. Since ∇θ(Y ) = −G(u)433

and ∇θ(Y ′) = −G(u′), we deduce that434

L‖Y − Y ′‖2 ≥ ‖∇θ(Y )−∇θ(Y ′)‖2,435

which concludes the proof.436

The following lemma is a consequence of the L-smoothness θ.437

Lemma 4.5. Let L denote the smoothness constant associated with θ. For any Y,Z ∈ K and
for any γ ≥ 0,

θ(Y + γZ) ≥ θ(Y ) + γ〈∇θ(Y ), Z〉 − L‖Z‖2

2
γ2.

438

Proof. For any Y,Z ∈ K and γ > 0, it holds by integration that439

(4.15) θ(Y +γZ)−θ(Y ) =

∫ γ

t=0

〈∇θ(Y +tZ), Z〉dt = γ〈∇θ(Y ), Z〉+
∫ γ

t=0

〈∇θ(Y +tZ)−∇θ(Y ), Z〉dt.440

Since 〈∇θ(Y +tZ)−∇θ(Y ), Z〉 ≥ − |〈∇θ(Y + tZ)−∇θ(Y ), Z〉| , using Cauchy-Schwartz inequality441

and L-smoothness of θ, we know that442

(4.16) 〈∇θ(Y + tZ)−∇θ(Y ), Z〉 ≥ −‖∇θ(Y + tZ)−∇θ(Y )‖2 ‖Z‖2 ≥ −tL‖Z‖22.443

Combining Eq. (4.15) with Eq. (4.16), we deduce that444

θ(Y + γZ)− θ(Y ) ≥ γ〈∇θ(Y ), Z〉 −
∫ γ

t=0

tL‖Z‖22dt,445

which yields finally that θ(Y + γZ)− θ(Y ) ≥ γ〈∇θ(Y ), Z〉 − L‖Z‖2
2 γ2.446

We define the constant T = max
Y ∈P
‖Z‖2, which is finite by compactness of F , and thus of P. According447

to Lemma 4.2, (DSIP) admits an optimal solution Y ∗. We remark that the dual optimality gap at448

k-th iteration is δk = θ(Y ∗) − θ(Y k) ≥ 0, where δk is the objective error defined in Theorem 4.1.449

We define τ as the last element of the optimal dual solution Y ∗, i.e. τ = Y ∗n+1,n+1. This scalar450

plays a central role in the convergence rate analysis, conducted in the following theorem.451

Theorem 4.6. Under Assumptions 1-7: if Algorithm 4.1 executes the iteration of index k ∈ N,452

then453

(4.17) δk ≤
2LTτ2

k + 2
.454

Otherwise, it exists an index j ≤ k s.t. Y j is optimal for (DSIP), and xj = arg min
x∈X
L(x, Y j) is455

optimal for (SIP).456
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Proof. If the algorithm terminates at iteration j ∈ N, this means that457

(4.18) max
Z∈P

〈∇θ(Y j), Z〉 ≤ 0.458

Defining xj = arg min
x∈X
L(x, Y j), we have that ∇θ(Y j) = −G(xj). Eq. (4.18) is thus equivalent to459

min
Z∈P
〈G(xj), Z〉 ≥ 0. This proves that xj is feasible in (SIP). Moreover 〈G(xj), Y j〉 = 〈∇θ(Y j), Y j〉 =460

0, according to Lemma 4.3, and, therefore, F (xj) = L(xj , Y j) = θ(Y j). Hence xj and Y j are feasible461

solutions in the primal (SIP) and the dual (DSIP) respectively, and have the same value. Therefore,462

xj is optimal for (SIP), and Y j is optimal for (DSIP).463

We focus now on the case where Algorithm 4.1 does not terminates, and prove (4.17) by464

induction.465

Base case: k = 0. Since θ is concave, we have that

δ0 = θ(Y ∗)− θ(Y 0) = θ(Y ∗)− θ(Y 0) ≤ 〈∇θ(Y 0), Y ∗ − Y 0〉 = 〈∇θ(Y 0), Y ∗〉,

the last equality coming from Y 0 = 0. We remark that 〈∇θ(Y 0), Y ∗〉 = 〈∇θ(Y 0) − ∇θ(Y ∗), Y ∗〉
since 〈∇θ(Y ∗), Y ∗〉 = 0 by optimality of Y ∗. Hence,

δ0 ≤ 〈∇θ(Y 0)−∇θ(Y ∗), Y ∗〉 ≤ ‖∇θ(Y 0)−∇θ(Y ∗)‖ ‖Y ∗‖,

where the last inequality is the Cauchy-Schwarz inequality. Using the L-Lipschitzness of ∇θ, we
know that ‖∇θ(Y 0)−∇θ(Y ∗)‖ ≤ L‖Y 0 − Y ∗‖ = L‖Y ∗‖. Finally, we deduce that, since Y ∗ ∈ τP,

δ0 ≤ L‖Y ∗‖2 ≤ LTτ2.

Induction. We suppose that the algorithm runs k + 1 iterations, and that the property (4.17)466

is true for k. Using Lemma 4.5, we can compute a lower bound on the progress made during the467

iteration of index k + 1:468

θ(Y k+1) ≥ θ(Y k + γZk) ≥ θ(Y k) + γ〈∇θ(Y k), Zk〉 − L‖Zk‖2

2
γ2,469

for any γ ≥ 0. Multiplying by −1, and adding θ(Y ∗) to both left and right hand sides of the above470

inequality, and using ‖Zk‖2 ≤ T , we have that471

(4.19) δk+1 ≤ δk − γ〈∇θ(Y k), Zk〉+
LT

2
γ2,472

for any γ ≥ 0. We remark that the value T is independent from k. By concavity of θ, it also holds473

that δk = θ(Y ∗)−θ(Y k) = θ(Y ∗)−θ(Y k) ≤ 〈∇θ(Y k), Y ∗−Y k〉. We notice that 〈∇θ(Y k), Y k〉 = 0,474

according to Lemma 4.3. Thus, δk ≤ 〈∇θ(Y k), Y ∗〉. As Y ∗n+1,n+1 = τ , we know that Y ∗ ∈ τconv(P),475

and, therefore,476

(4.20) δk ≤ max
Z∈τconv(P)

〈∇θ(Y k), Z〉 = max
Z∈τP

〈∇θ(Y k), Z〉 = τ〈∇θ(Y k), Zk〉,477

the last equality following from the definition of Zk. Combining Eq. (4.19) and (4.20), it holds that478

δk+1 ≤ δk − γτ−1δk +
LT

2
γ2,479
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for every γ ≥ 0. Factorizing and doing a change of variable η = γτ−1, for any η ≥ 0:480

(4.21) δk+1 ≤ (1− η)δk +
LTτ2

2
η2.481

We have derived a lower bound on optimality gap at iteration k. We apply then (4.21) with η = 2
k+2 :482

δk+1 ≤ (1− 2

k + 2
)δk +

LTτ2

2

4

(k + 2)2
≤ k

k + 2

2LTτ2

k + 2
+
LTτ2

2

4

(k + 2)2
,483

484

the second inequality coming from the application of (4.17) for k, which is true by induction485

hypothesis. Finally, we deduce that486

δk+1 ≤
2LTτ2

k + 2
(

k

k + 2
+

1

k + 2
) ≤ 2LTτ2

k + 2

k + 1

k + 2
≤ 2LTτ2

k + 2

k + 2

k + 3
=

2LTτ2

k + 3
,487

488

the third inequality coming from the observation that k+1
k+2 ≤

k+2
k+3 . Hence, the property (4.17) is489

true for k + 1 as well. This concludes the proof by induction.490

We remark that the convergence rate defined in (4.17) is directly related to the iteration index k,491

which is something different w.r.t. what is usually proved for existing CP algorithms solving SIP492

problems [8, 17, 23], where the rate of convergence is not directly controlled by k.493

5. Applications. In this section, we present two problems that can be modeled as (BP). For494

each of these, we present both the bilevel formulation, and the corresponding single-level formulation495

(BPR).496

5.1. Constrained quadratic regression. We consider a quadratic statistical model with497

Gaussian noise linking a vector w ∈ Rn of explanatory variables, i.e., the features vector, and an498

output z ∈ R as follows:499

z =
1

2
w>Q̄w + q̄>w + c̄+ ε,500

where Q̄ ∈ Rn×n s.t. Q̄ = Q̄>, q̄ ∈ Rn, c̄ ∈ R and ε ∼ N (0, σ2). Let us suppose that the501

parameters of this model are unknown, but we are given a dataset (wi, zi)1≤i≤P ∈ (Rn × R)P .502

The problem of finding the maximum likelihood estimator for Q̄ ∈ Rn×n, q̄ ∈ Rn, c̄ ∈ R just503

consists in computing the triplet (Q, q, c) ∈ Rn×n × Rn × R that minimizes the least-squares error504
P∑
i=1

(zi− 1
2w
>
i Qwi− q>wi− c)2. We consider that (i) the features vector belongs to a given polytope505

F ⊂ Rn, (ii) the noiseless value 1
2y
>Q̄y+ q̄>y+ c̄ is nonnegative for any y ∈ F . Hence, this inverse506

problem is a “constrained quadratic regression problem” that may be written as:507

(5.1)



min
Q,q,c

P∑
i=1

(zi − 1
2
w>i Qwi − q>wi − c)2

s.t. Q = Q>

1
2
y>Qy + q>y + c ≥ 0 ∀y ∈ F

Q ∈ Rn×n, q ∈ Rn, c ∈ R.

508

Formulation (5.1) is a SIP problem, having uncountably many constraints, which are parametrized509

by y ∈ F . We can reformulate this SIP problem as a bilevel problem just replacing the SIP constraint510
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1
2y
>Qy + q>y + c ≥ 0 ∀y ∈ F with the bilevel constraint min

y∈F
{ 1

2y
>Qy + q>y} ≥ −c. This model511

fits in the general setting of formulation (BP), where the matrix Q is itself the upper-level variable512

of dimensions n × n. As in Section 3, we assume that F = {y ∈ Rn : a>j y ≤ bj ,∀j = 1, . . . , r} is513

included in the centered `2-ball with radius ρ > 0, and we use the notation Aj =

(
0n

aj
2

a>j
2 0

)
for514

all j ∈ {1, . . . , r}. Then, the (BPR) formulation corresponding to (5.1) reads:515

(5.2)



min
Q,q,c,λ,α,β

P∑
i=1

(zi − 1
2
w>i Qwi − q>wi − c)2

s.t. Q = Q>

−λ>b− α(1 + ρ2)− β ≥ −c
1
2

(
Q+ 2αIn q

q> 2(β + α)

)
+

r∑
j=1

λjAj � 0

Q ∈ Rn×n, q ∈ Rn, c ∈ R
λ ∈ Rr+, α ∈ R+, β ∈ R.

516

Formulation (5.2) is feasible, because the all-zero solution satisfies every constraint. In general,517

(5.2) is a restriction of (5.1) since Q may not necessarily be PSD. In order to benchmark our518

approaches, we can solve the following relaxation of (5.1) — it is be a reformulation if Q is PSD —519

obtained by replacing the lower-level problem by its KKT conditions:520

(5.3)



min
Q,q,c,y,γ

P∑
i=1

(zi − 1
2
w>i Qwi − q>wi − c)2

s.t. Q = Q>

1
2
y>Qy + q>y ≥ −c

Ay ≤ b
Qy + q +A>γ = 0

γ>(Ay − b) = 0
Q ∈ Rn×n, q ∈ Rn, c ∈ R, y ∈ Rn, γ ∈ Rr+,

521

where γ is the KKT multiplier vector associated to the lower-level constraints Ay ≤ b. This relax-522

ation/reformulation of problem (5.1) is a non-convex polynomial optimization problem involving523

multivariate polynomials of degree up to three.524

5.2. Zero-sum game with cubic payoff. In this section, we are interested in solving a two-525

player zero-sum game that is related to an undirected graph G = (V,E). We assume that player526

1 benefits from a strategical advantage on player 2, which will be explained more precisely later.527

We let n denote the cardinality of V . Each player positions a resource on each node i ∈ V . After528

normalization, we can consider that the action set of both players is ∆n = {x ∈ Rn+ :
n∑
i=1

xi = 1}.529

A two-player zero-sum game is a two-player game s.t., for every strategy x ∈ ∆n of player 1, and for530

every strategy y ∈ ∆n of player 2, the payoffs of the two players sum to zero. If we define Pi(x, y)531

the payoff of player i related to the strategy pair (x, y), we thus have that P1(x, y) = −P2(x, y).532

Since the payoffs sum to zero, we can write the zero-sum game by specifying only one game payoff.533

Player 1 wishes to minimize it, and player 2 wishes to maximize it. The game payoff P (x, y) related534

to the pair of strategies (x, y) ∈ ∆n ×∆n is the sum of:535

• the opposite of a term describing the “proximity” between x and y in the graph, x>My,536

where M ∈ Rn×n is the matrix defined as Mij = 1 if i = j or {i, j} ∈ E, and Mij = 0537

otherwise,538
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• the quadratic costs that player 1 has to pay to deploy his resources on the graph: c1(x) =539
1
2x
>Q1x+ q>1 x,540

• the opposite of the quadratic costs that player 2 has to pay to deploy her resources on the541

graph, and that is influenced by player 1 strategy: c2(x, y) = 1
2y
>Q2(x)y + q>2 y. In this542

sense, player 1 has a strategic advantage over player 2.543

Hence, this zero-sum game can then be written as min
x∈∆n

max
y∈∆n

− x>My + c1(x)− c2(x, y). Loosely544

speaking, player 1 trades off his costs for placing his resource where player 2’s one is (i.e., maximizing545

the proximity) and for augmenting player 2’s costs. In the meantime, player 2 tries to avoid player546

1, while minimizing her own costs. From player 1’s perspective, this problem can be cast as the547

following bilevel formulation:548


min
x,v

1
2
x>Q1x+ q>1 x+ v

s.t. −v ≤ min
y∈∆n

1
2
y>Q2(x)y + (q2 +M>x)>y

x ∈ ∆n, v ∈ R.

(5.4)549

550

This latter formulation clearly fits in the general setting of formulation (BP). Hence, we apply the551

methodology of Section 3 with r = n+ 2, and552

• a1 = 1 and b1 = 1,553

• a2 = −1 and b2 = 0,554

• ∀j ∈ {1, . . . , n} aj+2 = −ej and bj = 0,555

• ρ = 1,556

where ej is the j-th vector of the standard basis in Rn and 1 the all-ones n-dimensional vector. The557

dual variable is λ ∈ Rn+2
+ . In this application, the single-level formulation (BPR) reads558



min
x,v,λ,α,β

v + 1
2
x>Q1x+ q>1 x

s.t. −v ≤ −λ1 − 2α− β

1
2

(
Q2(x) + 2αIn W (x, λ)

W (x, λ)> 2β + 2α

)
� 0

x ∈ ∆n, v ∈ R
λ ∈ Rn+2

+ , α ∈ R+, β ∈ R,

(5.5)559

560

where W (x, λ) = q2 + M>x −
n∑
j=1

λj+2ej + (λ1 − λ2)1. If Q2(x) � 0 is PSD for any x ∈ ∆n,561

formulation (5.5) is a reformulation of (5.4). Otherwise, it is just a restriction of (5.4). In any case,562

such formulation is feasible, because for given vectors x ∈ ∆n, λ ∈ Rn+2
+ and scalar β ∈ R, taking563

arbitrary large scalars α and v, the two constraints are satisfied.564

As for the first application, we benchmark our two approaches with the KKT-based relax-565

ation/reformulation (depending on the convexity of the lower-level problem). Given the KKT566

multipliers γ1 and γ2 associated respectively to the lower-level constraint
n∑
i=1

yi = 1, and the non-567

negativity constraint y ≥ 0, the single-level formulation obtained by replacing the lower level of568
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(5.4) by its KKT conditions, is569



min
x,v,y,γ1,γ2

v + 1
2
x>Q1x+ q>1 x

s.t. −v ≤ 1
2
y>Q2(x)y + (q2 +M>x)>y

Q2(x)y + q2 +M>x+ γ11− Inγ2 = 0

−γ>2 (Iny) = 0

x ∈ ∆n, y ∈ ∆n, v ∈ R, γ1 ∈ R, γ2 ∈ Rn+.

(5.6)570

571

The KKT multiplier γ1 is associated to an equality constraint, hence it can be either nonnegative572

or negative, and we have no complementarity constraint involving it in formulation (5.6). This573

relaxation/reformulation of problem (5.4), as well as (5.6), is a non-convex polynomial optimization574

problem involving multivariate polynomials of degree up to three.575

6. Numerical results. In this section we present the numerical results obtained by testing576

several instances of the two applications presented in Section 5, available online at the public577

repository https://github.com/aoustry/Bilevel-programs-with-QP-as-LL.578

For the constrained quadratic regression (Section 5.1), we solved twenty randomly generated579

instances. Each of these instances was generated by choosing the statistical parameters Q̄, q̄, c̄ at580

random, drawing P = 4000 random features vectors wi ∈ Rn, and then computing the associated581

outputs zi ∈ R with a centered Gaussian noise. Ten instances — named PSD inst# in Table 2 —582

were produced with Q̄ PSD and ten instances — named notPSD inst# in Table 2 — with an583

indefinite Q̄.584

For the zero-sum game with cubic payoff application (Section 5.2), we tested twenty-two in-585

stances where the matrix M is taken from the DIMACS graph coloring challenge1. We randomly586

generatedQ1 in a way such that it is PSD, as well as the coefficients of the linear mapping x 7→ Q2(x)587

such that Q2(x) is PSD for all feasible x in the instances named # PSD in Table 3. Regarding the588

instances named # notPSD in Table 3, no particular precaution was taken to enforce that Q2(x)589

is PSD. Hence, the sign of the eigenvalues of Q2(x) depends on x. The code that generated all the590

instances is available online.591

We implemented the single-level formulations based on the dual approach using the Python592

programming language [30] and solve them with the conic optimization solver Mosek [2]. The593

bilevel formulations were solved using the CP algorithm (Algorithm 4.1 presented in Section 4) and594

implemented using the AMPL modeling language [11]. Both the master problem Rk and the lower595

level problem Pxk were solved using the global optimization solver Gurobi [12]. The tolerance for596

the feasibility error εk = (h(xk) − val(Pxk))+ is set to 10−6. With AMPL, we also implemented597

the traditional relaxation/reformulation approach based on the KKT conditions of the lower-level598

problem. We solved the KKT-based formulations using the global optimization solver Couenne599

[5], chosen after some preliminary computational experiments. These formulations are particularly600

hard to solve for Couenne, mainly because of the complementarity constraints. Indeed, for all the601

tested instances, Couenne does not terminate within the time limit, and we just display, in italic602

font, the LB given by the optimal value of the best relaxation of the KKT formulation found by603

Couenne within the time limit. All the solvers were run with their default settings. The tests were604

performed on a computer with 24 2.53GHz Intel(R) Xeon(R) CPUs and with 49.4 GB of RAM. For605

all the approaches we set a time limit (t.l.) of 18000 seconds (5 hours).606

1 https://mat.tepper.cmu.edu/COLOR/instances.html
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The results for Application 1 and Application 2 are reported in Table 2 and Table 3 respectively.607

The headings are the following: “n” is the dimension of the lower-level variable y (or, equivalently,608

for Application 1 of the matrix Q, for Application 2 of the upper-level variable x); for the single-level609

formulation approach “obj” is the optimal value found by Mosek (i.e., either the bilevel optimal610

value, or an upper bound of it); for the KKT approach, “LB”, reported in italics, is the best LB611

of the KKT formulation value found by the solver Couenne within the time limit, which is a lower612

bound for the bilevel optimal value too; for the CP approach “obj/LB-UB” is, respectively, either613

the optimal value of the bilevel formulation, or a pair of values corresponding to: the best lower614

bound (LB) and the best feasible solution, i.e., upper bound (UB), found by the algorithm within615

the time limit; “time(s)” is the computing time in seconds; “it” is the number of CP iterations,616

i.e., the number of times Rk and (Pxk) are solved; “% time (Pxk)” is the percentage of the total617

computing time, i.e. time(s), used to solve (Pxk). In Table 2, the “Avg LSE”, which is the average618

least-squares error of the regression, is reported as well. In Table 2 and Table 3, the best objective619

values and minimum required times are reported in bold for each instance.620

Instances Single-level formulation KKT approach CP approach
Name n obj Avg LSE time(s) LB obj/LB–UB Avg LSE time(s) it % time (Pxk )

PSD inst1 5 358.64 0.08966 0.19 355.78 358.64 0.08966 1.21 6 3.9
PSD inst2 5 365.60 0.09140 0.26 363.85 365.60 0.09140 0.63 3 4.1
PSD inst3 5 363.43 0.09086 0.07 359.16 363.43 0.09086 2.62 8 18.0
PSD inst4 5 353.90 0.08847 0.07 353.19 353.90 0.08847 1.93 5 32.2
PSD inst5 10 391.21 0.09780 0.37 359.48 391.21 0.09780 23.5 17 0.7
PSD inst6 10 397.59 0.09940 0.41 353.55 397.59 0.09940 24.2 17 0.7
PSD inst7 13 440.84 0.11021 0.36 358.19 440.84 0.11021 64.3 19 0.3
PSD inst8 13 382.22 0.09555 0.34 345.52 381.81 – 383.34 0.09545 t.l. 5 99.9
PSD inst9 15 572.77 0.14319 0.92 351.95 557.71 – 1362.6 0.13943 t.l. 4 100.0
PSD inst10 15 528.93 0.13223 1.37 346.43 526.22 – 544.90 0.13156 t.l. 8 100.0
notPSD inst1 5 493.19 0.12330 0.14 345.12 358.47 0.08962 0.38 2 5.8
notPSD inst2 5 425.14 0.10628 0.15 370.89 378.28 0.09457 0.39 2 5.7
notPSD inst3 5 345.81 0.08645 0.06 345.81 345.81 0.08645 0.33 1 4.0
notPSD inst4 5 353.25 0.08831 0.07 353.25 353.25 0.08831 0.19 1 3.6
notPSD inst5 10 743.81 0.18595 0.55 360.42 503.88 0.12597 28.3 19 12.9
notPSD inst6 10 637.62 0.15940 0.28 357.48 482.96 0.12074 412 41 86.6
notPSD inst7 13 903.44 0.22586 0.35 351.31 647.08 0.16177 657 57 69.7
notPSD inst8 13 932.21 0.23305 0.30 358.28 588.19 0.14705 3825 77 92.9
notPSD inst9 15 1592.60 0.39815 0.99 345.44 1126.44 0.28161 15002 99 95.5
notPSD inst10 15 897.89 0.22447 0.83 350.60 580.60 0.14515 2537 56 87.0

Table 2: Numerical results of the first application

As expected, the dual approach leads to a single-level formulation which is a restriction for621

most of the BP problems with a non-convex lower level, but for the instances notPSD inst3 and622

notPSD inst4 of Table 2, where the bilevel global optimal solution is attained using both the two623

approaches, despite the matrix Q is indefinite. It is clear that, in terms of computational time, the624

dual approach is more efficient than the CP approach, not only when Mosek deals with a restriction625

of the original BP but also when a reformulation is solved. This is the main reason why the dual626

approach is promising, even if a restriction of the original BP program is solved. In fact, it let627

us compute either the bilevel optimal solution or an upper bound of such solution within a small628

CPU time. As concerns the computation of lower bounds, we see that the CP algorithm provides629

much tighter lower-bounds than the best lower bound of the KKT relaxation computed by Couenne630

within the time limit. Indeed, this formulation is particularly hard to solve mainly because of the631

complementarity constraints. To understand the causes of the long computational time required632
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Instances Single-level formulation KKT approach CP approach
Name n obj time(s) LB obj/LB–UB time(s) it % time (Pxk )

jean PSD 80 -0.0760 18.4 -4.5808 -0.0760 4.68 186 38.5
myciel4 PSD 23 -0.3643 0.06 -1.9429 -0.3643 14.3 422 26.8
myciel5 PSD 47 -0.3164 1.45 -4.0081 -0.3164 85.4 752 9.2
myciel6 PSD 95 -0.2841 41.4 -9.1222 -0.2841 2781 2323 1.0
myciel7 PSD 191 -0.2608 4359 -14.9495 -0.2608 – -0.2608 t.l. 3565 0.4
queen5 5 PSD 25 -0.5536 0.10 -5.6076 -0.5536 4.16 161 44.3
queen6 6 PSD 36 -0.4619 0.38 -5.6353 -0.4619 34.4 512 18.3
queen7 7 PSD 49 -0.4054 1.47 -7.8210 -0.4054 155 969 7.8
queen8 8 PSD 64 -0.3614 4.22 -12.7220 -0.3614 742 1651 3.1
queen8 12 PSD 96 -0.3000 34.8 -16.0606 -0.3000 – -0.3000 t.l. 4082 0.4
queen9 9 PSD 81 -0.3247 14.4 -14.5807 -0.3247 3544 2578 0.8
jean notPSD 80 3.2708 17.4 -8.5541 2.3979 37.6 6 99.7
myciel4 notPSD 23 0.8668 0.07 -2.5166 0.5198 466 44 99.9
myciel5 notPSD 47 1.9571 1.27 -7.4343 1.2779 315 32 99.8
myciel6 notPSD 95 3.9171 39.2 -13.9108 2.9378 2735 38 100
myciel7 notPSD 191 7.8030 3419 -∞ 6.2486 – 6.2486 t.l. 19 100
queen5 5 notPSD 25 0.8112 0.08 -4.7699 0.3800 326 53 99.8
queen6 6 notPSD 36 1.3876 0.37 -9.7370 0.8511 15872 71 100.0
queen7 7 notPSD 49 1.9740 1.56 -12.4690 1.3510 852 42 99.9
queen8 8 notPSD 64 2.6032 5.79 -15.0751 1.8123 10410 42 100
queen8 12 notPSD 96 3.8131 41.0 -31.4660 2.8102 7035 30 100
queen9 9 notPSD 81 3.2449 17.3 -17.4348 2.2975 – 2.2996 t.l. 23 100

Table 3: Numerical results of the second application

by the CP algorithm, we can look at the last column of Table 2 and 3. For the first application,633

the time required to perform step 4 of the CP algorithm (i.e. to solve Pxk) is longer than the time634

required to perform step 3 (i.e. to solve Rk) only for the bigger instances (n ≥ 13 for instances with635

a convex lower level and n ≥ 10 for instances with a non-convex lower level). In fact, when n grows,636

more time is needed to solve a possibly non-convex QP problem having Q and q as coefficients,637

rather than a convex QP having Q and q as variables. When n is small, it is different: even if638

the inner problem is quadratic non-convex, it has a small size so it is not harder to solve than the639

master problem. For the second application, the time required to solve the lower-level problem is640

longer than the time required to solve the outer relaxation only for the instances having a non-641

convex lower level, i.e., the second half of the Table 3 rows. In fact, problem Rk has a convex642

quadratic objective function, since the matrix Q1 is always PSD, while the inner problem has a643

convex quadratic objective function only when the matrix Q2(xk) is PSD. When Q2(xk) is not644

PSD, problem Pxk is possibly non-convex and it becomes harder to solve than the master problem.645

Figures 1 and 2 are aggregated plots showing, for all the tested instances, the trend of the646

feasibility error εk over the iterations of the CP algorithm indexed by k. As already said, we set647

a tolerance of 10−6: for most of the instances, the algorithm stops when εk reaches or is less than648

such value. For the instances where the algorithm reaches the time limit, the curve ends at a value649

of εk greater than 10−6. For all the instances, anyhow, we can see that the sequence of εk converges650

towards 0, as proved in Theorem 4.1.651

7. Conclusion. We focus on a class of bilevel programs having a possibly non-convex qua-652

dratic programming problem at the lower level. These bilevel programs are, in fact, linear semi-653

infinite programming problems with an infinite number of quadratically parameterized constraints.654

From the point of view of Robust Optimization, it is about handling constraints with quadratic655

perturbations and a polytopic uncertainty set. We propose two independent approaches to deal656
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Fig. 1: Constrained quadratic regression Fig. 2: Zero-sum game with cubic payoff

with such bilevel problems. First, a convex single-level formulation obtained via the dual approach657

provides a feasible solution, which is optimal in the case where the quadratic lower-level problem658

is convex. Second, a cutting plane algorithm enables one to solve directly the bilevel formulation659

with a guaranteed convergence rate, at the price of solving possibly non-convex quadratic inner660

problems. At each iteration, such algorithm provides a lower bound on the value of the bilevel661

program, which allows one to bound the optimality gap of the feasible solution obtained with the662

dual approach. Our computational experiments on small and medium-scale instances show the su-663

periority, in terms of solution time, of the dual approach for the instances with a convex lower-level664

problem. As concerns the cases with a non-convex lower-level problem, the two approaches are665

complementary: the dual approach is faster but provides “only” a feasible solution, the cutting666

plane approach is slower, but solves the bilevel problem to optimality with good accuracy. A pos-667

sible extension of our work could be implementing a cutting plane algorithm with the lower-level668

problem solved with an “on-demand” accuracy at each iteration. Regarding the dual approach, the669

sparse structure of the lower-level problem would be worth exploiting with the celebrated cliques670

decomposition technique. These possibilities will be addressed in future works.671
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