
HAL Id: hal-03339875
https://hal.science/hal-03339875

Submitted on 30 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning student program embeddings using abstract
execution traces

Guillaume Cleuziou, Frédéric Flouvat

To cite this version:
Guillaume Cleuziou, Frédéric Flouvat. Learning student program embeddings using abstract execution
traces. 14th International Conference on Educational Data Mining, International Educational Data
Mining Society, Jun 2021, Paris, France. pp.252-262. �hal-03339875�

https://hal.science/hal-03339875
https://hal.archives-ouvertes.fr

Learning student program embeddings using abstract
execution traces

Guillaume Cleuziou
University of Orléans, INSA Centre Val de Loire,

LIFO EA 4022
Orléans, France

guillaume.cleuziou@univ-orleans.fr

Frédéric Flouvat
University of New Caledonia, ISEA EA 7484

Nouméa, New Caledonia
frederic.flouvat@unc.nc

ABSTRACT
Improving the pedagogical effectiveness of programming trai-
ning platforms is a hot topic that requires the construction
of fine and exploitable representations of learners’ programs.
This article presents a new approach for learning program
embeddings. Starting from the hypothesis that the function
of a program, but also its ”style”, can be captured by analyz-
ing its execution traces, the code2aes2vec method proceeds
in two steps. A first step generates abstract execution se-
quences (AES) from both predefined test cases and abstract
syntax trees (AST) of the submitted programs. The doc2vec
method is then used to learn condensed vector representa-
tions (embeddings) of the programs from these AESs. Ex-
periments performed on real data sets shows that the embed-
dings generated by code2aes2vec efficiently capture both the
semantics and the style of the programs. Finally, we show
the relevance of the program embeddings thus generated on
the task of automatic feedback propagation as a proof of
concept.

Keywords
Representation Learning, Program Embeddings, Neural Net-
works, Educational Data Mining, Computer Science Educa-
tion, doc2vec.

1. INTRODUCTION
Increasingly, programming is being learned through the use
of online training platforms. Typically, learners submit their
code(s) and the platform returns any syntax errors or func-
tional errors (typically based on test cases defined by the
teacher). The exploitation of these data opens up new per-
spectives to monitor and help beginners in learning program-
ming. They can be used, for example, to identify students
who are dropping out, to target bad practices or to prop-
agate teacher feedbacks. These functionalities would allow
the learner to be more autonomous during his learning, and
the teacher to be more reactive and efficient in his interven-
tions. However, this exploitation requires a detailed analysis

of the submitted programs. These training platforms must
go beyond a simple syntactic analysis of the script, and al-
low the associated semantics to be considered. For this pur-
pose, learning program embedding has recently emerged as
a promising area of research [15, 13, 17, 7, 2, 3]. A natural
way to generate such vectorial and condensed representa-
tions is to consider a computer program as a text and to
exploit methodologies inspired by Text Mining.

Text mining has attracted a lot of interest in recent years.
The representation of texts as vectors of real numbers, also
called ”embedding”, has been at the heart of many recent
works. These representations make it possible to project (or
’embed’) a whole vocabulary into a low-dimensional space.
Moreover, such a representation of words allows to exploit
a wide variety of numerical processing methods (neural net-
works, SVM, clustering, etc.). At that stage, one of the
challenges is to capture in these representations the underly-
ing semantic relationships (e.g. similarities, analogies). The
work of [11] based on the use of neural networks has been
a precursor in this area. Their word2vec method is one of
the most referenced in the field. Its principle is based on
the relation between a word and its context (words appear-
ing before and after). To do this, they propose some simple
and efficient architectures to learn word embeddings from a
corpus of texts. For example, the CBOW (Continuous Bag-
Of-Words) architecture trains a neural network to predict
each word in a text given its context. Their results show the
ability of this approach to extract complex semantic rela-
tions (analogies) from simple operations on v() projections,
s.t. v(”king”)− v(”man”) + v(”woman”) ≈ v(”queen”) or
v(”Paris”)− v(”France”) + v(”Italy”) ≈ v(”Rome”).

The transposition of these approaches to computer programs
is not straightforward. The code has certain specificities that
need to be integrated to have such rich representations [1].
Unlike texts, codes are runnable, and small modifications
can have significant impacts on their executions. A pro-
gram can also call other programs that can themselves call
other programs. The context in which an instruction is used
is also particularly important in deducing its role. Finally,
unlike texts, program syntax trees are usually deeper and
composed of repeating substructures (loops). Existing ap-
proaches for building program embeddings only partially in-
tegrate these specificities. They independently exploit the
instructions [3], the inputs/outputs [15], part of the execu-
tion traces [17] or the abstract syntax tree (AST) [2]. They

.py

test case 1

test case 2

test case n

… …

2,4,8,…,7,10

2,…,6,12

2,3,4,…,9

…

If Compare Call_len param1
Eq Constant_int Assign var1
Subscript param1 For var2
Call_range Constant_int
Call_len param1 If Compare
Subscript param1 Lt var1 For
var2 Call_range Constant_int
Call_len param1 If Compare
Subscript param1 Lt var1
Assign var1 Subscript
param1 For var2 Call_range
Constant_int Call_len param1
If Compare Subscript param1
Lt var1 For var2 Call_range
Constant_int Call_len param1
Return var2

AES ID

…
…

…
…

…

…

…
…

test cases
given by teacher execution traces

program from student
to process

AST
AES

feed forward Neural Network
AES embeddings

W

W

U

D

Figure 1: General scheme of the code2aes2vec method for learning program embeddings.

focus more on the function of the program (what it does)
than on its style (how it does). Moreover, most of these ap-
proaches are supervised and build embeddings for a specific
task (e.g. predict errors, predict functionality, etc.).

In view of these limitations, we propose the code2aes2vec
method, exploiting instructions, code structure and execu-
tion traces of programs, in order to build finer program
embeddings. Figure 1 schematizes the overall approach
code2aes2vec we propose. The first step of this method
consists in generating Abstract Execution Sequences (AES)
from traces obtained on test cases executions and program
ASTs. The second step uses the doc2vec1 neural network [8]
to learn program embeddings from AESs. Contrary to ex-
isting approaches, we therefore propose a generic and unsu-
pervised method that learns program embeddings by using
functional, stylistic and execution elements. This aspect is
crucial in our application to be able to differentiate programs
answering to the same exercise (i.e. implementing the same
functionality) but in different ways (in terms of strategy or
efficiency). Our approach is validated on two real data sets,
composed of several thousands of Python programs from
educational platforms. On these datasets, we show that em-
beddings generated with code2aes2vec allow to efficiently
detect the function and the style of a program. In addition,
we present a proof of concept of the use of such embeddings
to propagate teacher feedbacks.

To summarize, the main contributions of this paper are :

1. the definition of a new (intermediate) program repre-
sentation, called Abstract Execution Sequences (AES),
allowing to capture more semantics,

2. exploiting these (intermediate) representations with
doc2vec to build program embeddings in an unsuper-
vised way,

3. the diffusion to the community of two enhanced
datasets from educational platforms in computer sci-
ence,

1a method derived from word2vec that allows to learn a
document embedding from its words.

4. a proof of concept on the use of such program em-
beddings for feedback propagation for educational pur-
poses.

The next section details existing works in the field and
the originality of our approach in relation to it. Section 3
presents our two-steps method: the construction of abstract
execution sequences (AES) and the learning of embeddings
from them. Section 4 is devoted to the qualitative and
quantitative evaluations of the learned representations be-
fore drawing up the many perspectives of this work (sec-
tion 5).

2. RELATED WORKS
Learning representations from programs is at the heart of
many recent works. They aim to embed this data in a se-
mantic space from which further analysis can be conducted,
because the generated representations (vectors of real val-
ues) are directly exploitable by a large part of the learning
algorithms. To do this, recent work relies heavily on meth-
ods developed to build word embeddings in texts, while try-
ing to integrate the specificities of the code.

These program embeddings are then used for prediction
or analysis tasks related to the software development (de-
bugging, API discovery, etc.) and teaching (learning pro-
gramming). Two types of embeddings are more particularly
studied: embeddings of the elements composing a program
(words, tokens, instructions, or function calls) [12, 6, 7] and
embeddings of the programs themselves [15, 17, 3, 4].

Nguyen et al. [12] study API call sequences to derive an
API embedding that is independent of the programming
language (thus allowing translation from one language to
another). This embedding is learned by word2vec [11] from
call sequences from several million methods. This method
allows to build a word embedding from words appearing
nearby in each text (i.e. its context). Two datasets derived
from the Java JDK and from more than 7000 recognized
C# projects from GitHub (more than 10 stars) are used for
learning.

De Freez et al. [6] have a close objective, namely to build
an embedding of functions used in a code in order to find

synonymous functions. However, the function calls made in
each program are extracted in the form of a graph depending
on the control structures. Random walks are then performed
in this graph for each function, and the extracted paths are
used as input to word2vec [11] to derive an embedding of
functions. An extract of two million lines of the Linux kernel
is used to learn the embedding.

In [7], the authors propose a relatively similar approach but
replace function calls with abstract instructions. Each in-
struction sequence represents a path in the code depending
on conditional instructions. In this way, it is similar to a
trace even if the code is never executed. All possible paths
are extracted but loop repetitions are ignored and only the
most frequent instructions are considered (a threshold of
1000 occurrences is used in the experiments). Moreover,
only certain constant values are considered to limit the size
of the vocabulary. An embedding of these program instruc-
tions is then learned by the GloVe method [14] based on the
co-occurrence matrix of the words. The authors also use a
corpus of 311,670 procedures (in C language) from the Linux
kernel, and evaluate it on a data set of 19,000 pre-identified
analogies.

In many applications, it is not just a matter of consider-
ing the program’s components but the program as a whole.
Recent work has therefore focused on the construction of
program embeddings.

Following a ’teaching’ motivation, Piech et al. [15] construct
student program embeddings and use them to automatically
propagate teacher feedbacks (using the k-means algorithm).
The embedding space is built from a neural network trained
to predict the output of a program using its input. It thus
captures the functional aspect of the code. The authors also
try to capture the style of programs, using a recursive neu-
ral network based on the program’s AST. Contrary to other
approaches, the generated embeddings are matrices, not vec-
tors, thus limiting their exploitation as inputs for next data
analyses. They also don’t consider learner-defined variables.
The obtained representations actually capture quite well the
code function, but fail in capturing the style of codes. The
analyzed programs (from the Hour of Code site and a course
at Stanford) are written in a language similar to Scratch and
allow operations in a labyrinthine world.

In [17], the authors highlight the limitations of syntax-based
approaches to capture the semantics of a program. Instead,
they propose to consider the trace resulting from the code
execution, and more precisely the values of the most fre-
quent variables. Different representations are proposed and
used to train a recurrent neural network whose objective is
to predict errors made by students in a programming course.
The embeddings of the programs corresponds to one of the
neural network’s layers. The authors put forward one rep-
resentation more particularly, considering the trace of each
variable independently and integrating the dependencies be-
tween variables in the structure of the neural network. How-
ever, the obtained embeddings are specific to one task, and
this method requires to redefine the neural network archi-
tecture, with re-training, for each exercise.

Finally, Alon et al. [2] propose a neural network to pre-

dict the name of a method (i.e. the functionality) from its
code. To do this, the program is first decomposed into a
collection of paths (from one leaf to another) in the AST.
Only the most frequent paths in the dataset are used as
features (size constraints are also integrated). Then, the
network learns which one is important for predicting the
method name using the attention principle. The parameters
of the trained neural network correspond partly to the final
embeddings and partly to the weights supposed to quantify
the importance of each (feature) path for the prediction task
(attention principle). Training is performed on a corpus of
more than 13 million Java programs from GitHub’s 10,072
most popular projects. As mentioned by the authors, this
approach requires a large number of input programs. Fur-
thermore, it is not possible to predict the function (and em-
bedding) of a program whose paths do not appear in the
training set. The embeddings produced capture informa-
tion and semantic relationships about the function of the
code, but ignore style variants. Thus, two programs with
the same function will be similar, regardless of how they
have been coded. The quality of the analyzed code also has
an impact on learning. The names given to the variables are
particularly important for prediction.

3. THE code2aes2vec METHOD
Two main strategies emerge for learning program embed-
dings : by observing the results of program execution [15,
17] or by analyzing the script [3] and/or its AST [2]. Our
approach is at the intersection of these two strategies and
thus aims to take advantage of the functional and syntactic
descriptions of the programs to induce relevant embeddings.
We thus propose the code2aes2vec method which proceeds
in two steps :

1. the code2aes step represents a program as an Abstract
Execution Sequence (AES), corresponding to the AST
paths used by the program during its execution on
predefined test cases;

2. the aes2vec step uses a neural network to construct
the embedding of the programs based on their AES
(using the doc2vec approach [8]).

3.1 code2aes: construction of Abstract Execu-
tion Sequences (AES)

Translating a program into an AES requires providing, in
addition to the program itself, a collection of test cases on
which the program will be run in order to exploit its traces.
In our educational context, the preparation of such a collec-
tion of test cases is not an additional effort since test cases
are generally integrated into training platforms to evalu-
ate submitted contributions. Moreover, this approach offers
teachers the possibility of introducing verification choices
and thus to drive the interpretation of his/her learners’ pro-
grams according to his/her own pedagogical choices. For
example, let’s consider an exercise whose objective is to find
a value in a table/list. A teacher wishing to emphasize al-
gorithmic efficiency may choose to integrate a few unit tests
for which the desired value appears early in the table. In
such case, an efficient program stops the loop as soon as the
desired value appears. These test cases will thus make it

possible to distinguish two (valid) programs based on their
execution trace.

In practice the number of test cases provided by the teacher
is quite small. We generally observe that less than ten test
cases are enough to evaluate whether a program is correct
or not.

Figure 2 illustrates the process of translating a program into
an AES. This example considers as input the code submitted
by a learner in response to the exercise ”write a Python func-
tion that returns the minimum value in an input list”. First,
the AST is constructed. It describes the syntactic struc-
ture of the program in terms of control structures (if-else,
for, while), function calls (call), assignments (assign),
etc. Second, the code is executed on an example (here the
input [12, 1, 25]) and its execution trace is kept, indi-
cating the program lines successively executed. Finally, the
AES is constructed by mapping these two levels of informa-
tion: syntactic and functional. The sequence resulting from
the trace is translated into a sequence of ”words” extracted
from the nodes of the AST.

Three levels of translation (or abstraction) are proposed ac-
cording to the depth considered in the AST:

• AES level 0 : each program line is represented by a
single word corresponding to the head symbol of the
associated sub-tree in the AST (in red in Figure 2),

• AES level 1 : each program line is represented by one
or more words corresponding to the head symbols of
the associated sub-tree and its main sub-trees (in red
and blue in Figure 2),

• AES level 2 : each program line is translated in a se-
quence of words corresponding to all the nodes appear-
ing in the associated sub-tree (in red, blue and black
in Figure 2).

For the last two levels, the names of the variables and pa-
rameters, as well as the values of the constants, have been
normalized so as not to artificially extend the considered
”vocabulary”. Thus, the variable res is renamed var1 and
the variable i is renamed var2.

Note that each execution of a program on one test case gen-
erates a partial AES. A program will finally be represented
by the concatenation of the partial AES obtained on each
test case. An AES can thus be considered as a representa-
tive text of the program. Each partial AES corresponds to
a sentence of this text.

3.2 aes2vec : learning program embeddings
from AES

The word2vec method [11] is based on the distributional hy-
pothesis of words in natural language [16] : a word can be
inferred from its context. For example, the CBOW (Con-
tinuous Bag Of Words) version of word2vec allows to train
an feed-forward Neural Network to predict a (central) word
from its context. In word2vec a context is defined by the
preceding and following words in the text. The structure of

the neural network is reduced to a single hidden layer (en-
coding) ; the matrix W of the weights connecting the input
layer to the hidden layer contains the word embeddings.

word2vec has already been used to learn token embeddings
from a computer program [6, 3]. However the distributional
hypothesis seems less satisfied on the tokens from a program
than on the natural language, in particular because of the
very limited size of the vocabulary and especially a little
constrained compositionality (almost all combinations are
observed).

[8] have proposed a variant of word2vec, aiming to learn
simultaneously the embeddings of the words and the docu-
ments from which they are extracted. The doc2vec method
is still based on the distributional hypothesis allowing to
predict a word knowing its context, but this time the con-
text integrates (in addition to the preceding and following
words) the identifier of the document from which the word
sequence comes from. In doing so, the authors introduce
the idea that there are document specific variations in the
natural/universal distribution of words in the language.

We exploit precisely this hypothesis of document-based dis-
tributional variations for the processing of AES built from
the programs. We consider that each program, during its
execution, generates different sequences of tokens (AES).
We then use the DM (Distibutive Memory) version of the
doc2vec algorithm to train a feed-forward Neural Network
(with one hidden layer) to maximize the following log prob-
ability :

L =

S∑
s=1

Ts−k∑
i=k

log p(ws
i |ws

i−k, . . . , w
s
i+k, ds) (1)

with S the total number of documents (or AESs), Ts the
total number of words (or tokens) in document s, ds the sth

document, ws
i the ith word in document ds and k the size of

the context on either side of the target word.

Figure 3 presents the architecture of the neural network
used for doc2vec as we use it for learning program em-
beddings via their AES. The forward pass consists in first
calculating the values of the hidden layer by aggregating
the encodings of each word of the context and of the docu-
ment : h(ws

i−k, . . . , w
s
i+k;W,D) where h() denotes an ag-

gregation function to be defined (typically a sum, aver-
age or concatenation), W and D denoting the word em-
bedding matrix (weight matrix between word inputs and
hidden layer) and the document embedding matrix (weight
matrix between document input and hidden layer) respec-
tively. The output of the neural network can be interpreted
as a probability distribution on the words of the vocabulary
by applying an activation function (softmax) on the output
yws

i
= b + Uh(ws

i−k, . . . , w
s
i+k;W,D) where b is a bias term

and U the weight matrix between hidden and output layer:

p(ws
i |ws

i−k, . . . , w
s
i+k, ds) =

e
yws

i∑
j e

yj
(2)

FunctionDef

If

Compare

ConstantCall

len 0liste

Eq

Assign

res

Constant

None

Assign

Return

resFor

res

Subscript

liste

i

Call

range

Constant

0

Call

len

liste

If

Compare

Subscript

liste

Lt

res

Assign

res

Subscript

liste

test

test

else else

corps

body

body

Line 2 Line 3 Line 5 Line 6 Line 7 Line 8 Line 9

1 def minimum(liste):
2 if len(liste) == 0:
3 res = None
4 else:
5 res = liste[0]
6 for i in range(0,len(liste)):
7 if liste[i] < res :
8 res = liste[i]
9 return res

minimum([12,1,25])
2
5
6
7
6
7
8
6
7
6
9

Program execution
on one test case

Abstract Syntax Tree construction
Execution Trace AES obtained from one test case

Program to process If Compare Call_len param1 Eq Constant_int
Assign var1 Subscript param1
For var2 Call_range Constant_int Call_len param1
If Compare Subscript param1 Lt var1
For var2 Call_range Constant_int Call_len param1
If Compare Subscript param1 Lt var1
Assign var1 Subscript param1
For var2 Call_range Constant_int Call_len param1
If Compare Subscript param1 Lt var1
For var2 Call_range Constant_int Call_len param1
Return var2

If Compare
Assign var1 Subscript param1
For
If Compare
For
If Compare
Assign var1 Subscript param1
For
If Compare
For
Return var2

If
Assign
For
If
For
If
Assign
For
If
For
Return

Depth level 0 Depth level 1 Depth level 2

Figure 2: Construction of an AES from a Python program and a given test case.

Finally, the network weights are updated by stochastic gra-
dient descent on the error, defined by the difference between
the obtained output and the one-hot vector encoding the
target word.

We consider programs as textual documents whose word se-
quence is given by an AES obtained by the previous step
(code2aes). Indeed, as for text, the choice and the order
of the ”words” in an AES capture the semantic of the pro-
gram, i.e. what the program does (its function) and how it
operates (its style).

In this learning model, each AES vector (in D) is used only
for predictions of the tokens from this AES, while token vec-
tors (in W) are common to all AESs. The size of the vectors
(for AES and tokens) is fixed and actually corresponds to
the size of the desired representation space (embeddings).

Once the model is trained, the D matrix contains the em-
beddings of the programs. The positioning of a new program
in this embedding space consists in inferring2 a new column
vector in D using the tokens from the new AES. The other
parameters of the model remaining fixed (W as well as the
softmax parameters).

Finally, let us mention that the choice of the aggregation
strategy used in the hidden layer can be decisive. Indeed,
a sum or average will consider each context as a bag-of-
words (without taking into account the order), whereas a

2Inference is made by purshasing the learning on the Neural
Network.

concatenation strategy offers the opportunity to exploit the
order of words within the context. If the sequentiality (inside
the context) is not a determining factor in the construction
of embeddings for natural language, we will confirm in future
experiments that the order of tokens is of high importance
for learning program embeddings using AESs.

4. EVALUATION OF THE APPROACH
4.1 Dataset presentation
Educational data are complex since programs may contain
errors, be small in size, may not fully meet the intended
functions and may be relatively redundant. These data have
very different characteristics from the datasets used in soft-
ware development. For our experiments, we thus built and
use several real educational datasets (see Table 1). They
consist of Python programs submitted by students on two
training platforms in introductory programming courses. In
addition to our (documented) code2aes2vec code for learn-
ing program embeddings, we also make available3 these three
”corpora”of Python programs, the associated test cases, and
the AESs built on each program. All of the results presented
in the rest of this section can thus be fully and easily repro-
duced.

The NewCaledonia-5690 dataset (or NC-5690) includes the
programs created in 2020 by a group of 60 students from the
University of New-Caledonia, on a programming training
platform4. The NewCaledonia-1014 dataset (or NC-1014)

3https://github.com/GCleuziou/code2aes2vec.git
4Platform developed and made available by the CS depart-
ment of the Orléans University Institute of Technology.

AES Id If Compare var1 Subscript

D W W W W

Assign

…aggregation (sum, average
or concatenation)

classifier

matrix W of
words

wi

wi-2 wi-1 wi+1 wi+2

current AES
vector

matrix D
of AES

word context
vectors

Figure 3: The neural network aes2vec used to predict a word wi from its original AES identifier and its context (here, two
previous and two following words).

Table 1: Characteristics of the three Python datasets col-
lected on programming training platforms. The ’Nb. of
words’ reported is the total size of the AES corpus; the num-
ber in parentheses indicates the size of the ’vocabulary’.

Datasets NC-1014 NC-5690 Dublin-42487

Nb. programs 1,014 5,690 42,487
Avg nb. test cases 13.1 10.4 3.7
per program
Nb. correct 189 1,304 19,961
programs
Nb. exercises 8 66 65
Nb. ’words’ 113,223 761,726 7,4 M
AES-0 (20) (44) (38)
Nb. ’words’ 226,682 1,7 M 15,2 M
AES-1 (42) (57) (83)
Nb. ’words’ 690,019 3,9 M 40,4 M
AES-2 (71) (113) (209)

includes a sub-part of NewCaledonia-5690 composed of con-
tributions associated with 8 exercises selected for their al-
gorithmic diversity (see Table 2) and their balanced vol-
umetry (100 to 150 programs per exercise). We will use
it as a ’toy’ dataset facilitating qualitative analyzes. The
Dublin-42487 dataset includes student programs from the
University of Dublin, carried out between 2016 and 2019.
Although the original corpus [3] contains nearly 600,000 pro-
grams (Python and Bash), we propose here a subset enriched
semi-automatically with test cases (not provided initially).

4.2 Embedding analysis
In the following experiments, each dataset has been divided
into three sub-parts: training (90%), validation (5%) and
test (5%); the validation set being used to select the best
model among those learned during the different iterations
(aes2vec). Unless otherwise stated, the aes2vec algorithm
has been set up to learn embeddings of dimension 100, the
size of the context is set to 2, concatenation is used as ag-

Table 2: Exercises in the NewCaledonia-1014 dataset.
Exercice Statement #test

cases

swapping swap items in a list 4
minimum look for the minimum in a list 8
compareStrings compare two strings 11
fourMore100 return the first four values

greater than 100 from an input
list

7

indexOccurrence return the index of the first oc-
currence of an item in a list

7

compareDates compare two dates from their
day, month and year

30

polynomial return the roots of a polyno-
mial of degree 2

6

dayNight display information about the
period of a day given a time

32

gregation stage and the training is performed over 500 iter-
ations.

In a first step, we evaluate our approach in a qualitative
way on the dataset NewCaledonia-1014 constituted for this
purpose. Figure 4 (left) shows a visualization of the 912
programs of the training set, obtained by a non-linear pro-
jection using the t-SNE dimension reduction algorithm [9].
It can be seen that, although embeddings are learned in an
unsupervised manner, the code2aes2vec method learns, from
a relatively limited number of training data, a representa-
tion space in which the areas identify distinct program func-
tionalities. Thus, the program vectors are organized quite
naturally into 8 clusters that are highly correlated with the
original 8 exercises. Moreover, the topological organization
of the clusters matches well with the algorithm inherent to
the programs. Exercises ’swapping’ and ’minimum’ are close
in the embedding space and correspond to the only two ex-
ercises that iterate over all values of an input list. Exercises
’compareStrings’, ’fourMore100’ and ’indexOccurrence’, in

the upper part of the space, require to partially iterate over
a list. Finally, the last three exercises do not require loops
and rely only on the use of conditional instructions. The
exercise ’dayNight’ is distinguished by the expected use of a
display function (print) while all the other exercises return
a result (return). This feature may explain the ’isolation’
of the programs from this exercise from other programs.

Stylistic differentiation of programs is difficult to assess
quantitatively. This task would require either objective cri-
teria that can be extracted automatically or expensive ex-
pert labeling. Given the absence of such stylistic knowl-
edge in datasets, we choose to illustrate on an example how
the code2aes2vec method distinguishes different styles in the
writing of a same function. Figure 4 (right) presents in de-
tail the embedding space learned for the exercise ’minimum’.
It’s interesting to notice that program styles are clearly dis-
tinguished, notably the two ways to program a Python for

loop (using indexes vs. elements directly). In a very detailed
way, programs are also grouped according to whether their
loop starts with the first element of the list (range(0,...))
or with the second one (range(1,...)), after initialization
of the minimum to the first element in any cases.

Word order is important in our aes2vec method. For ex-
ample, our approach distinguishes programs having a simi-
lar boolean condition but expressed in a different order (if
liste[i]<res: vs. if res>liste[i]:). This distinction
may seem artificial since these two expressions are strictly
equivalent from the evaluation point of view. However, the
first syntax appears more ’natural’ than the second. It would
be easy to get rid of this phenomenon by normalizing the
expressions at the code2aes step; this option can be left at
teacher’s discretion.

Finally, we draw the reader’s attention on some valid but
atypical programs. In particular a program using the native
Python function min, or the one using the sort function.
Their separation from the rest of the programs is crucial
since it offers a way to detect programs (a priori valid) that a
teacher would like to reject or at least moderate considering
that they deviate from his/her pedagogical objective. More
generally, this analysis seems to confirm that the embedding
spaces learned by the code2aes2vec method correctly cap-
tures not only the function of the programs but also their
style. Their intrinsic quality paves the way for many prac-
tical uses that could significantly improve the efficiency of
learning platforms (detection of atypical solutions, automa-
tion/propagation of feedbacks, student ’trajectory’ analysis,
study of error typologies, etc.).

In a second step, we evaluate the code2aes2vec approach
from a quantitative point of view on the three datasets (Ta-
ble 3). We consider an usual task for program embedding
evaluation, namely the prediction of its function (i.e. exer-
cise identification). For each considered configuration (AES
level), the training data are used first to learn (without su-
pervision) a representation space. Then, these embeddings
are used to learn (with supervision) a SVM classifier (with
polynomial kernel) [5]. Finally, the embeddings are (in-
directly) assessed according to their ability to predict the
function of the code (i.e. the exercise) for test data.

As baselines, random classifier informs about the difficulty
of this task a priori, while doc2vec corresponds to the (naive)
use of the algorithm doc2vec [8] to learn embeddings from
the codes directly (without any intermediate representa-
tion). We also report the results obtained by the (super-
vised) code2vec approach5 [2] executed with default param-
eters.

NC-1014 NC-5690 Dublin-42487
random classifier 0.125 0.015 0.009
code2vec [2] 0.230 0.098 0.037
doc2vec [8]+SVM 0.412 0.495 0.380
code2aes2vec+SVM

(AES-0) 0.882 0.460 0.391
(AES-1) 1.0 0.698 0.544
(AES-2) 1.0 0.832 0.651

Table 3: Quantitative and comparative evaluation of the pro-
duced embeddings, on the task of retrieving the function of a
program (accuracy).

It can be seen that the code2vec model recently proposed
by [2] cannot be trained satisfactorily on any of the three
datasets. This is due to the numerous parameters to
learn and the large number of examples this method re-
quires. In the largest dataset (Dublin-42487), code2vec
“only” has 42,487 programs as inputs. To the opposite, our
code2aes2vec method as several million entries thanks to our
AES intermediate representation.

The comparative results obtained with three different levels
of AES (denoted by AES-0, AES-1 and AES-2 in Table 3)
confirm that the quality of the embeddings is improved when
the level of detail of the AES increases. Level 2 AES (AES-
2) are undeniably leading to the best vector representations
of programs.

In order to take into account the word/token order,
code2aes2vec and doc2vec have been set up so far with con-
catenation as aggregation step. In order to confirm the im-
portance of the order, we compare in Figure 5 embeddings
obtained by the code2aes2vec algorithm with both types of
aggregation (sum vs. concatenation). Unlike for concatena-
tion, we observe a very rapid degradation in the quality of
the embeddings obtained with a sum type aggregation when
the size of the context increases. Indeed, the vocabulary on
which AESs are based is very limited (only a few dozen or
even hundreds of tokens) and the distribution of these words
in AESs is not uniform. Thus it quickly becomes difficult to
differentiate contexts as their size increases without taking
into account the word order.

4.3 Application to feedback propagation
In order to confirm that the learned embeddings are fine
enough to be usefully exploited in an educational context,
we have implemented a first proof of concept on the task of
propagating feedbacks.

We have considered the exercise ’mean’ from the dataset
NewCaledonia-5690 whose instruction was to write a Python

5The other methods presented in the state of the art could
not be compared because of the lack of available operational
implementations.

fourMore100

compareStrings

indexOccurrence

swapping

polynomial

compareDates minimum

dayNight

path by
the indices

path by the
elements

uses the native
function min()

for i in range(0,len(liste)):
 if liste[i]<res:

for i in range(1,len(liste)):
 if liste[i]<res:

for i in range(0,len(liste)):
 if res>liste[i]:

for i in range(1,len(liste)):
 if res>liste[i]:

uses the native
function sort()

for elem in liste:
 if elem<res:

Figure 4: Visualization of program embeddings obtained by the method code2aes2vec for the 8 exercises of the dataset
NewCaledonia-1014. The colors identify the exercises, with incorrect programs in light and correct ones in dark. The fig-
ure on the left represents all the embeddings and the one on the right details the area associated with the ’minimum’ exercise.

Figure 5: Evaluation of the embeddings on each of the three datasets according to the type of AES, the aggregation method and
the context size (nb. words before/after).

function returning the mean of the values contained in a list
passed as a parameter (and returning None if this list is
empty). For this exercise, 157 programs were submitted to
the platform by 24 different students ; among these sub-
missions 122 programs were evaluated as incorrect by the
platform and on which we sought to propagate teacher feed-
backs based on their embeddings.

For this purpose, we performed a clustering (k-means [10])
on the 122 incorrect programs. We then presented to a
teacher the most representative program (cluster medoid) of
each cluster obtained, asking him to provide one feedback to

help the student correct his proposal6. Once the k feedbacks
were compiled (one per cluster/medoid), we went through
each cluster and asked the teacher, for each program (other
than the medoid), to indicate whether the feedback defined
for the medoid could be applied to that other program. The
objective is thus to assess the extent to which feedback from
one medoid can propagate to all other programs in the same
cluster.

Operationally, clustering is performed on the 122 incorrect

6If more than one error is found, the teacher must choose the
one he/she feels needs to be corrected first. Each feedback
is thus limited to the resolution of a single error.

programs, defined by their embeddings in IR100. For a fixed
number of k clusters, the partition selected to be analyzed
is the one minimizing the MSE (Mean Square Error) among
100 runs (random initializations) of the k-means.

Table 4 presents the partition obtained for 5 clusters (k = 5).
For each cluster we indicate its size, the program associated
with its medoid as well as the feedback provided by the
teacher for this medoid.

Let us first observe that the feedbacks provided by the
teacher may relate to errors different in nature. It can be
either an error in the design of the algorithm (clusters 1 and
3) or an error in the writing of the Python program (clusters
2, 4 and 5).

Figure 6: Propagation of teacher feedback to neighboring pro-
grams in each cluster. Illustration on the exercise mean.

We repeated this work with a partition into 10 clusters, this
time asking the teacher to provide 10 feedbacks. Finally,
we measured the rate of correct feedback when propagating
the feedback from each medoid to its neighboring programs
in the same cluster. Figure 6 shows the evolution of the
correct feedback rate as a function of the neighborhood size
considered for propagation. It can be seen that the further
away from the medoids, the more errors in the automatically
determined feedbacks.

Of course, a small number of feedbacks (5 or 10) is not
enough to cover all the errors present in the 122 incorrect
programs. In practice, it will therefore not be envisaged to
propagate to all the programs in the cluster but only to the
neighboring programs of the medoid. The dashed curves in
Figure 6 indicate the proportion of programs covered as a
function of the size of the neighborhood under considera-
tion. We can see that with a neighborhood radius corre-
sponding to a distance of 1.0, a propagation over 5 clusters
allows to cover 33% of the programs with a precision of 90%;
similarly such a propagation on 10 clusters allows to cover
significantly more programs (43%) with a higher precision
(93%).

The use of embeddings allows in this example to assist the
teacher in his task of accompanying the students. For each
feedback requested, 4 to 5 additional neighboring programs
are automatically processed. Moreover, it is reasonable to
think that over time a sufficiently large collection of feed-
backs will be defined by the teacher to cover almost the
entire embedding space so as to systematically identify one
relevant feedback each time a new incorrect program is sub-
mitted and its embedding will position it in a pre-identified
neighborhood.

5. CONCLUSION AND PERSPECTIVES
This paper studies the problem of learning vector representa-
tions, or embeddings, of programs in an educational context
where the function is just as important as the style. Faced
with this problem, we propose the method code2aes2vec
transforming the code into abstract execution sequences
(AES), and then into embeddings. This approach adapts
the doc2vec method for program application and is based
on the document-based distributional variations hypothesis.

The publication of the source code of the approach is ac-
companied by the availability to the community of a new
enriched ’corpus’ composed of more than 5,000 student pro-
grams (Python). Experiments conducted on these new data
and on a public data set validate the quality of the learned
embeddings, capturing in a fine way the function and the
style of the programs. In addition a promising proof of con-
cept was carried out on a classical task in the field, namely
the propagation of teacher feedbacks.

The perspectives of this work are numerous. First, our
experimentation focus on programs done in introductory
courses, i.e. pretty simple codes. It would be interesting to
analyze more elaborated ones (from more advanced courses)
and to evaluate the impact of code complexity on perfor-
mance.

Then, it seems necessary to complete the results observed
on the stylistic differentiation of programs, by formalizing
the notion of style of a program, in order to quantitatively
evaluate our program embeddings. In the same way, a more
precise analysis of the test cases used will have to be carried
out in order to determine to what extent the constructed
embeddings are sensitive to them.

Finally, to have more exploitable corpora, we plan to extend
our implementation to handle any type of language (the cur-
rent implementation only processes the Python language).

From a more methodological perspective, all the words in
the program have the same weight during the embedding
construction in our approach. Thus, a correct program and
one returning a wrong value (or throwing an error) may have
very similar embeddings, although functionally very differ-
ent. This aspect could be integrated in the construction of
our AES or in the architecture of the neural network used to
generate embeddings. For that, it could also be interesting
to add to our AES the values taken by the variables, in the
same way that [17] but in a generic multimodal approach.
Another perspective would be to allow the expert to inte-
grate part of his knowledge on the language. As discussed
previously, some instruction sequences can be equivalent

Cluster 1 (#31) Cluster 2 (#22) Cluster 3 (#28) Cluster 4 (#9) Cluster 5 (#32)

def mean(l):
if len(l)==0:
res=None

else:
res=0
cpt=0
for elem in l:
res=res+elem
cpt=cpt+1
res=elem/cpt

return res

def mean(l):
if len(l)==0:

res=None
else:

s=0
for elem in l:

s+=elem
res=s//len(l)

return res

def mean(l):
if len(l)==0:

res=None
else:

res=0
cpt=0
avg=0
for elem in l:
res=res+elem
cpt=cpt+1

avg=res/cpt
return avg

def mean(l):
if l==():
res=none

else:
res=0
for i in range(len(l)):
x=res+l[i]
res=x/len(l)

return res

def mean(l):
if len(l)==0:
res=None

else:
res=0
cpt=0
for elem in l:
res=res+elem
cpt=cpt+2
res=res%cpt

return res

The division step
must be performed
once the sum calcu-
lation is completed
(put this instruc-
tion out of the for

loop).

The // operator
corresponds in
Python to the in-
teger division. For
the computation of
a mean a simple
division is required
(operator /).

In the case of an
empty list, your
function does not
return None (as re-
quested).

The null value in Python
is written ’None’ (instead of
’none’).

The % operator cor-
responds in Python
to the modulus. For
the computation of a
mean a simple divi-
sion is required (op-
erator /).

Table 4: Description of the 5 cluster partition generated by k-means on the embeddings of the incorrect programs from the
mean exercise. For each cluster (table column): (1) the number of programs, (2) the program associated with the medoid of
the cluster and (3) the feedback defined by the teacher for this program. Instructions in red are the ones that are questioned
in the feedback.

(e.g., if liste[i] <res: vs. if res> liste[i]:). Se-
mantic relations between words can also be known (e.g., the
relation between for and while statements). This knowl-
edge could be used to constrain the neural network and
guide embedding construction. Finally, these program em-
beddings open up a large number of perspectives for teaching
aid, in addition to the task of feedback propagation. For ex-
ample, they could be used to identify error typologies, alter-
native solutions, or even predict dropout students through
the analysis of their ’trajectories’.

6. REFERENCES
[1] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton.

A survey of machine learning for big code and
naturalness. ACM Computing Surveys, 51(4):1–37,
2018.

[2] U. Alon, M. Zilberstein, O. Levy, and E. Yahav.
code2vec: Learning distributed representations of
code. Proceedings of the ACM on Programming
Languages, 3(POPL):1–29, 2019.

[3] D. Azcona, P. Arora, I.-H. Hsiao, and A. Smeaton.
user2code2vec: Embeddings for profiling students
based on distributional representations of source code.
In Proceedings of the International Conference on
Learning Analytics & Knowledge, pages 86–95, 2019.

[4] R. Bazzocchi, M. Flemming, and L. Zhang. Analyzing
cs1 student code using code embeddings. In
Proceedings of the 51st ACM Technical Symposium on
Computer Science Education, pages 1293–1293, 2020.

[5] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A
training algorithm for optimal margin classifiers. In
Proceedings of the fifth annual workshop on

Computational learning theory, pages 144–152, 1992.

[6] D. DeFreez, A. V. Thakur, and C. Rubio-González.
Path-based function embedding and its application to
error-handling specification mining. In Proceedings of
the ACM Joint Meeting on European Software
Engineering Conference and Symposium on the
Foundations of Software Engineering, pages 423–433,
2018.

[7] J. Henkel, S. K. Lahiri, B. Liblit, and T. Reps. Code
vectors: understanding programs through embedded
abstracted symbolic traces. In Proceedings of the ACM
Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of
Software Engineering, pages 163–174, 2018.

[8] Q. Le and T. Mikolov. Distributed representations of
sentences and documents. In International conference
on machine learning, pages 1188–1196, 2014.

[9] M. LJPvd and G. Hinton. Visualizing
high-dimensional data using t-sne. J Mach Learn Res,
9:2579–2605, 2008.

[10] J. MacQueen et al. Some methods for classification
and analysis of multivariate observations. In
Proceedings of the fifth Berkeley symposium on
mathematical statistics and probability, volume 1,
pages 281–297. Oakland, CA, USA, 1967.

[11] T. Mikolov, K. Chen, G. Corrado, and J. Dean.
Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781, 2013.

[12] T. D. Nguyen, A. T. Nguyen, H. D. Phan, and T. N.
Nguyen. Exploring api embedding for api usages and
applications. In IEEE/ACM International Conference
on Software Engineering, pages 438–449. IEEE, 2017.

[13] H. Peng, L. Mou, G. Li, Y. Liu, L. Zhang, and Z. Jin.
Building program vector representations for deep
learning. In International Conference on Knowledge
Science, Engineering and Management, pages
547–553. Springer, 2015.

[14] J. Pennington, R. Socher, and C. D. Manning. Glove:
Global vectors for word representation. In Proceedings
of the 2014 conference on Empirical Methods in
Natural Language Processing, pages 1532–1543, 2014.

[15] C. Piech, J. Huang, A. Nguyen, M. Phulsuksombati,
M. Sahami, and L. Guibas. Learning program
embeddings to propagate feedback on student code. In
Proceedings of the 32nd International Conference on
Machine Learning, ICML’15, page 1093–1102, 2015.

[16] G. Salton, A. Wong, and C.-S. Yang. A vector space
model for automatic indexing. Communications of the
ACM, 18(11):613–620, 1975.

[17] K. Wang, R. Singh, and Z. Su. Dynamic neural
program embeddings for program repair. In
International Conference on Learning Representations,
2018.

