Numerical simulation and experimental characterization of c-Si cells mechanical limits in spherical curvature shape

Tatiana Duigou, Stéphane Caplet, Bertrand Chambion, Julien Gaume

To cite this version:
Tatiana Duigou, Stéphane Caplet, Bertrand Chambion, Julien Gaume. Numerical simulation and experimental characterization of c-Si cells mechanical limits in spherical curvature shape. 38th EU PVSEC, Sep 2021, Lisbon, Portugal. 2021. hal-03339868

HAL Id: hal-03339868
https://hal.science/hal-03339868
Submitted on 9 Sep 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
NUMERICAL SIMULATION AND EXPERIMENTAL CHARACTERIZATION OF C-SI CELLS MECHANICAL LIMITS IN SPHERICAL CURVATURE SHAPE

Tatiana DUIGOU1, Stéphane CAPLET2, Bertrand CHAMBION1, Julien GAUME1
1 Univ. Grenoble Alpes, CEA, LITEN, DTS, SMSP, LAM
2 Univ. Grenoble Alpes, CEA, LETI, DOPT, SISP, LAIP

CONTACT: Tatiana DUIGOU
tatiana.duigou@cea.fr

CONTEXT AND AIMS OF THE STUDY

- New PV applications imply the integration of PV cells on complex shapes like double curved PV panels for vehicles.
- The aims of this study are:
 - To simulate mechanical stresses in cells and strings under double curvature and to identify the influence of wafer’s thickness and surface on the spherical curvature limit
 - To experimentally verify the spherical radius limit numerically identified, by differentiating between wafers polished or not, cells with and without interconnections

MECHANICAL STRESSES IN CELLS UNDER SPHERICAL CURVATURE AND PARAMETERS INFLUENCE

EXPRESSMENT DETERMINATION OF CELLS MECHANICAL LIMITS UNDER SPHERICAL CURVATURE

Experimental set-up

- Wafers polished or not, cells interconnected or not are shaped on shims with a spherical curvature.
- The curvature is checked with a metrological probe.

Observations

Broken cell and wafer after spherical curvature

Results of experimental tests

<table>
<thead>
<tr>
<th>Spherical radius of curvature</th>
<th>Raw wafer integrity</th>
<th>Polished wafer integrity</th>
<th>Unconnected cell integrity</th>
<th>Connected cell integrity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 mm</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>800 mm</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>700 mm</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>600 mm</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>500 mm</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>300 mm</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

* Depending on the parameters like cell size and interconnection type
** Buckling appears and the cell is not well curved → no conclusion yet
*** Breaking is generally coming from the cell’s centre → it is mostly caused by reaching S1 max.

Wafers and cells mechanical limit is experimentally estimated to be around 120 MPa for S1. This limit is taken to estimate the spherical radius limit for each surface.

Limit spherical radius depending on the wafer’s surface

- Cells cut in quarters enable to lower the spherical radius limit from 800 mm (complete cell) to 450 mm (quarter of cell).

CONCLUSION

- A new method of checking mechanical strength in curvature that is more representative than current tests such as Ball-on-Ring6 or Ring-on-Ring1.
- Guidelines for designing curved panels: correspondence between surface and acceptable spherical radius.
- Check the validity of the method for various interconnections and better understand the mechanical limits of connected cells
- Extend the method to double curved shapes.

PERSPECTIVES

- New PV applications imply the integration of PV cells on complex shapes like double curved PV panels for vehicles.
- The aims of this study are:
 - To simulate mechanical stresses in cells and strings under double curvature and to identify the influence of wafer’s thickness and surface on the spherical curvature limit
 - To experimentally verify the spherical radius limit numerically identified, by differentiating between wafers polished or not, cells with and without interconnections

MECHANICAL STRESSES IN CELLS UNDER SPHERICAL CURVATURE AND PARAMETERS INFLUENCE

EXPRESSMENT DETERMINATION OF CELLS MECHANICAL LIMITS UNDER SPHERICAL CURVATURE

Experimental set-up

- Wafers polished or not, cells interconnected or not are shaped on shims with a spherical curvature.
- The curvature is checked with a metrological probe.

Observations

Broken cell and wafer after spherical curvature

Results of experimental tests

<table>
<thead>
<tr>
<th>Spherical radius of curvature</th>
<th>Raw wafer integrity</th>
<th>Polished wafer integrity</th>
<th>Unconnected cell integrity</th>
<th>Connected cell integrity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 mm</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>800 mm</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>700 mm</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>600 mm</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>500 mm</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>300 mm</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

* Depending on the parameters like cell size and interconnection type
** Buckling appears and the cell is not well curved → no conclusion yet
*** Breaking is generally coming from the cell’s centre → it is mostly caused by reaching S1 max.

Wafers and cells mechanical limit is experimentally estimated to be around 120 MPa for S1. This limit is taken to estimate the spherical radius limit for each surface.

Limit spherical radius depending on the wafer’s surface

- Cells cut in quarters enable to lower the spherical radius limit from 800 mm (complete cell) to 450 mm (quarter of cell).

CONCLUSION

- A new method of checking mechanical strength in curvature that is more representative than current tests such as Ball-on-Ring6 or Ring-on-Ring1.
- Guidelines for designing curved panels: correspondence between surface and acceptable spherical radius.
- Check the validity of the method for various interconnections and better understand the mechanical limits of connected cells
- Extend the method to double curved shapes.

PERSPECTIVES