
HAL Id: hal-03339848
https://hal.science/hal-03339848v1

Submitted on 22 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Multi-instance learning of pretopological spaces to
model complex propagation phenomena: Application to

lexical taxonomy learning
Gaëtan Caillaut, Guillaume Cleuziou

To cite this version:
Gaëtan Caillaut, Guillaume Cleuziou. Multi-instance learning of pretopological spaces to model com-
plex propagation phenomena: Application to lexical taxonomy learning. Artificial Intelligence, 2021,
301, pp.103556. �10.1016/j.artint.2021.103556�. �hal-03339848�

https://hal.science/hal-03339848v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Multi-instance Learning of Pretopological Spaces to
Model Complex Propagation Phenomena: Application to

Lexical Taxonomy Learning

G. Caillauta,b,∗, G. Cleuzioua,c

aUniversity of Orléans, INSA Centre Val de Loire, LIFO EA 4022, France
bLe Mans University, LIUM EA 4023, France

cUniversity of New Caledonia, ISEA, New Caledonia

Abstract

This paper addresses the problem of learning the concept of propagation in the
theoretical formalism of pretopology, and then applying this methodology for
the well-known problem of learning Lexical Taxonomy. The theory of pretopol-
ogy, among others, aims at modeling complex relations between sets of entities.
The use of such fine-grained modeling implies limitations in terms of scalabil-
ity. However, it allows for a more accurate capture of real-world relationships,
such as the hypernymy relation, by modeling the task of relation extraction
as a propagation model under certain structuring constraints, as opposed to
traditional approaches that are limited to detecting relations between pairs of
elements without considering knowledge on the expected structuring.

Our proposal is to define the pseudo-closure operator (modeling the concept
of propagation) as a logical combination of heterogeneous neighborhoods, or
sources. It allows the learning of models that exploit, for example, the knowl-
edge acquired by both statistical and numerical approaches. We show that the
learning of such an operator falls into the Multiple Instance (MI) framework,
where the learning process is performed on bags of instances instead of individ-
ual instances. Although this framework is well suited for this task, using it for
learning a pretopological space leads to a set of bags whose size is exponential.
To overcome this problem, we propose a learning method (LPSMI) based on a
low estimate of the bags covered by a concept under construction.

We first propose an experimental validation of our method, through the simu-
lation of percolation processes (typically forest fires) learned with pretopological
propagation models. It reveals that the proposed MI approach is particularly
efficient on propagation model recognition task. We then provide a real-world
contribution to the Lexical Taxonomy learning task, by modeling this task as
a complex (semantic) propagation problem. We propose a very generic frame-

∗Corresponding author
Email addresses: gaetan.caillaut@univ-lemans.fr (G. Caillaut),

guillaume.cleuziou@unc.nc (G. Cleuziou)

Preprint submitted to Artificial Intelligence June 30, 2021

© 2021 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0004370221001077
Manuscript_889ab71bc5785738b4ed906790273c42

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0004370221001077
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0004370221001077

work for training models combining various existing methods for learning Lexical
Taxonomies (statistical, pattern-based and embedding-based).

Keywords: Multi-instance learning, Supervised learning, Pretopology,
Complex propagation, Percolation, Lexical taxonomy

1. Introduction

Complex systems and complex networks have received increasing attention
for several years. Such networks are used to model complex interactions between
entities in a wide spectrum of domains such as organic ecosystems [49, 61], air
pollution [8], energy management [5], world economy [33, 35] and of course with
uses in artificial intelligence domains such as social networks analysis [50] or
text mining [27] to name a few. All of these topics are difficult to model using
standard tools but are essential to human development.

Complex systems can be approached using different theories, such as fuzzy
logic [75], graph theory [63, 41], rough set theory [74] and pretopology [6] as
major theoretical frameworks. The present work focuses on the theory of pre-
topology, known for its ability to finely model complex propagation phenomena.
This theory is based on a propagation operator called pseudo-closure which
forms the core of the theory of pretopology. It is usually defined on a col-
lection of neighborhoods and subtly combines them. This powerful operator
offers a formalism capable of describing, step by step, a non-trivial expansion
process, such as coalition formation in game theory [9], the propagation of an
epidemic [52] or the propagation of semantic relations in semantic networks [28].
The last application area is based on very challenging AI tasks, among which
the exploitation problem [66] or the automatic or semi-automatic learning of
Lexical Taxonomies (LT) from text corpora [25, 69].

Most of the work related to pretopology relies on a handcrafted pseudo-
closure operator [3, 71, 20, 27]. The pseudo-closure operator is often defined
as the conjunction of all neighborhoods. The problem is that such an operator
limits us to a single pretopological space that may not be suitable for every appli-
cation case. Moreover, in the common definition of the pseudo-closure operator,
the same “credibility” and the same “utility” are given to each neighborhood. In
applications where data are collected from multiple sources (or neighborhoods),
this assumption is likely to be false.

Recent work addresses this problem by proposing more flexible solutions.
Considering that a simple pretopological space cannot model all complex sys-
tems, Bui et al. [21] introduce the concepts of weak and strong pseudo-closure
operators leading to thick (i.e. noisy) and thin pretopological spaces, respec-
tively. At the same time, Galindo et al. [38] define a set of pseudo-closure
operators, each referring to slightly different (topological) neighborhoods as a
function of a parameter r such that the smaller r, the thinnest the resulting
pretopological space is.

2

But these approaches to extending pretopology theory remain limited. For
example, there is no way to ignore or limit the impact of erroneous neighbor-
hoods in favor of more reliable ones. Existing work proposes to use multiple pre-
defined pretopological spaces, but this does not guarantee that any one of these
spaces, or even a combination of these spaces [29], is suitable for the application’s
needs. Therefore, we need a methodology for constructing a pseudo-closure op-
erator that matches an expected behavior, given a collection of neighborhoods.
Since, in most cases, it is humanly impossible to define such a complex pretopo-
logical space, the methodology must be automatic and our proposal is to learn
the pseudo-closure operator.

In this paper we present a method for automatic learning of a V-type pre-
topological space. Our method learns the underlying pseudo-closure operator,
which defines the pretopological space. Cleuziou and Dias [28] were the first
to tackle the problem of learning a pseudo-closure operator from observations.
For AI purposes, they designed a semi-supervised method for learning a pre-
topological space from which a lexical taxonomy is derived. To this end, the
authors first model the pseudo-closure operator as a linear combination of neigh-
borhoods and then use a genetic algorithm that produces a solution that best
matches a given (partial) structure.

This paper aims at both generalizing and improving the original approach
of Cleuziou and Dias [28]. To this end, four main contributions are presented:

1. First, we generalize the problem to any application case. The proposed
generic method learns a propagation concept instead of focusing on the
construction of a structure (like a lexical taxonomy for instance).

2. Second, the pseudo-closure operator is modeled in a logical (rather than
numerical) formalism thus providing a larger solution space and, more
importantly, facilitating the subsequent learning process.

3. Third, the original stochastic learning strategy is abandoned in favor of
an efficient learning approach, resulting in a multiple instance algorithm
based on a greedy learning strategy.

4. Finally, the proposed new methodology is capitalized on the AI task of
Lexical Taxonomy reconstruction, showing the effectiveness of both the
pretopological theory and the proposed learning strategy in such a context.

The article is organized as follows: the basics of pretopology, useful for
the understanding of the studied problem, are given in the following section
(Section 2). The new modeling of the pseudo-closure operator as a logical com-
bination (in positive1 disjunctive normal form (DNF)) of neighborhoods is then
detailed in Section 2.3. The pseudo-closure operator is acquired by a supervised
multiple instance learning process [30, 76]. Multiple instance learning is par-
ticularly suitable when an observation can be described by multiple instances.

1By positive, we mean that the formula contains no negated literals.

3

This methodology (presented in Section 3) is necessary because we learn a pre-
topological space from its known elementary closed sets. In pretopology theory,
a single closed set (considered as an observation in the learning problem) can be
obtained by several propagation models (multiple instances). In fact, the num-
ber of valid propagation models, or pseudo-closure operators, is exponential in
the size of the elementary closed sets considered. This leads us to a learning
problem with a set of input examples whose size is exponential. We propose in
Section 4 a method to provide a (low) estimate of the number of positive bags
covered (true positives) and the exact number of negative bags covered (false
positives) without the need to explicitly generate the dataset.

Section 5 is devoted to quantitative and qualitative comparisons of the newly
proposed Learn Pretopological Space Multiple Instance (LPSMI) approach with
that presented in [28] as well as a simpler greedy variation. We simulate a forest
fire in a rectangular grid and then compare the performance of each algorithm
by evaluating their ability to retrieve the underlying propagation model. The
results confirm that the new approach performs best due to its more refined
underlying quality measure, while maintaining good performance in terms of
execution time.

Finally, the LPSMI methodology provides an elegant framework to efficiently
contribute to the task of learning lexical taxonomies. Given a target lexical tax-
onomy structuring a set E of terms and a collection of semantic neighborhoods,
a model capturing the hypernymy semantic relation is learned and then reused
to build larger lexical taxonomies. This section (Section 6) presents both the
framework for combining any state-of-the-art LT acquisition methods and the
very promising results obtained experimentally on three real datasets.

2. Basics of Pretopology

The pretopology theory was born in the early 70’s with the aim of relaxing
topological axiomatics [12, 19]. Pretopology allows to study the relations be-
tween the elements of the power set P(E). A wide variety of works have shown
the usefulness of this theory in many research areas: image analysis [54, 14],
classification [36, 1], similarity or proximity detections tasks [71], and recogni-
tion of complex propagation (or expansion) phenomena [7, 2]. We place our
work in the latter area.

2.1. Pretopological spaces
A pretopological space is defined by a pair (E, a) where E is a non empty

finite set of elements and a(.) a pseudo-closure operator. The pseudo-closure
operator a(.) is a mapping from any set in P(E) to a larger set in P(E).

Definition 1 (Pseudo-closure operator). Let E be a set and a(.) an application
of P(E) to P(E). Then a(.) is a pseudo-closure operator if:

i a(∅) = ∅

ii ∀A ∈ P(E), A ⊆ a(A)

4

x1

x2

x3

x4

x5

A = {x2}

a(A) = {x2, x3, x4}

a2(A) = {x2, x3, x4, x5}
= F (A)

Figure 1: The pseudo-closure expansion process starting from the set A = {x2} and extending
to the closed set F (A) = {x2, x3, x4, x5}.

The couple (E, a) is called a pretopological space.

The pseudo-closure operator is not idempotent, which means that, contrary
to the closure operator of the topological theory, a(A) is not necessarily equal
to a(a(A)), where A ∈ P(E). The pretopological pseudo-closure operator is an
iterated function such that ∀A ∈ P(E), a(A) ⊆ a(a(A)) (cf. Item ii). Let k be
a positive integer and A ∈ P(E), we note ak(A) the k successive applications of
a(.) on A. It is formally defined as follows

∀A ∈ P(E), ∀k ∈ N, a0(A) = A and ak(A) = (a ◦ ak−1)(A)

Let k be a positive integer such that ak(A) = ak+1(A), then ak(A) is called
the closure of A, denoted F (A). Figure 1 shows the multiple steps necessary to
compute a closed set.

Definition 2 (Closed set). Let (E, a) be a pretopological space. Then K ∈
P(E) is a closed set if and only if a(K) = K. The closure of A ∈ P(E)
is a closed set noted F (A). F (A) is obtained by applying the pseudo-closure
operator until it converges to a fixed point.

∀A ∈ P(E), ∃k ∈ N, F (A) = ak(A) where ak(A) = ak+1(A)

If A is a singleton, then F (A) is an elementary closed set.

2.2. Pretopological spaces of type V
The pretopological spaces are classified according to the behavior of their

pseudo-closure operator. Pretopological spaces of type V are probably the most
studied.

Definition 3 (Pretopological space of type V). A pretopological space (E, a)
is of type V if and only if its pseudo-closure operator a(.) respects the isotonic
property defined as follows:

iii ∀A,B ∈ P(E), A ⊆ B ⇒ a(A) ⊆ a(B)

5

x1

x2

x3

x4

x5

x1

x2

x3

x4

x5

x1

x2

x3

x4

x5

x1

x2

x3

x4

x5

Figure 2: Computation of the elementary closed sets of two pretopological spaces. A dotted
line shows the singleton from which the closure is computed, a dashed line shows an inter-
mediate level of propagation and a solid line shows an elementary closed set. The proposed
propagation steps on the left satisfy the requirements of a V-type pretopological space, while
those on the right do not: x3 /∈ a({x2, x4}) while x3 ∈ a({x4}).

Figure 2 shows two pretopological spaces: the one on the left is a V-type
pretopological space while the one on the right is not. V-type pretopological
spaces have nice structuring properties, for example, the intersection of closed
sets is a closed set. Largeron and Bonnevay [48] rely on these properties to
define an algorithm that structures the elements of a V-type pretopological
space into a directed acyclic graph (DAG). This algorithm is the cornerstone
of the work of Cleuziou and Dias [28] in considering a lexical taxonomy as a
DAG structuring the terms of natural language. Consider the set of elementary
closed sets in Table 1, Figure 3 shows the idea behind this structuring process:
first, all elementary closed sets are computed and then a DAG is deduced based
on the inclusion scheme of the elementary closed sets.

This algorithm is equivalent to computing the transitive reduction of the
graph defined by the adjacency matrix describing the elementary closed sets of
the pretopological space. Aho et al. [4] show that the transitive reduction of any
DAG can be computed from its transitive closure. Let Mecs be an adjacency
matrix encoding a set of elementary closed sets, its transitive reduction Mred,
can be calculated as follows:

Mred =Mecs ∧ ¬(Mecs ·Mecs)

where ∧ and ¬ are pairwise logical AND and logical NOT and · is the Boolean
matrix product (i.e. addition is replaced by a logical OR and multiplication

6

x ∈ E F ({x})
x1 {x1, x2, x3, x4, x5}
x2 {x2, x3, x4, x5}
x3 {x3, x5}
x4 {x4, x5}
x5 {x5}

Table 1: A set of elementary closed sets of a pretopological space (E, a) of type V.

x1

x2

x3

x4

x5

x1

x2

x3

x4

x5

Structuring process

Transitive closure

Figure 3: The elementary closed sets of a pretopological space of type V can be organized
according to their inclusion scheme. A directed acyclic graph is then deductible from this
organization and vice versa.

by a logical AND). Although this does not necessarily improve the theoretical
complexity of the algorithm proposed by Largeron and Bonnevay [48], it could
easily take advantage of modern hardware instructions to speed up, in practice,
the computation of the DAG.

Such a DAG is a perfect encoding of the set of elementary closed sets of
a pretopological space of type V, since they can be retrieved by means of the
transitive closure. However, it is absolutely not sufficient to retrieve the pseudo-
closure operator (and thus the pretopological space) since the non-elementary
closed sets are unknown. Moreover, only the final state of the expansion of a
singleton is known but the intermediate steps are necessary to deduce a pseudo-
closure operator.

The isotonic property will also be of crucial importance for the pseudo-
closure learning framework we propose in the remainder. This property allows
for efficient learning of a pretopological space: as we will see in Section 4, it
allows for an accurate estimate of the number of positive and negative bags cov-
ered by a solution under construction. Consequently, only V-type pretopological
spaces will be considered in the rest of this paper.

2.3. Pseudo-closure operator and type V
The objective of this subsection is to describe several ways to define a pseudo-

closure operator suitable for the construction of a V-type pretopological space.
The advantages and (especially) disadvantages of each method will be discussed,
leading to a new proposal.

7

V1

x1

x2

x3

x4

x5
V2

x1

x2

x3

x4

x5

V3

x1

x2

x3

x4

x5
V4

x1

x2

x3

x4

x5

Figure 4: Four neighborhood relations (V1, V2, V3, V4) on the set E = {x1, x2, x3, x4, x5}. An
arrow going from one element x ∈ E to another y ∈ E indicates that y ∈ V (x). Reflexive
relations are ignored for simplicity.

A pseudo-closure operator is naturally defined by a neighborhood function
on a given set E. A neighborhood function is an application of E to its power
set P(E) such that any element x ∈ E belongs to its neighborhood V (x). It
is formally defined as a function V : E → P(E) such that ∀x ∈ E, x ∈ V (x).
A neighborhood function is equivalent to a binary relation R where an element
x ∈ E is in relation with another element y ∈ E (denoted xRy) if and only if
y ∈ V (x). A neighborhood function can then be visualized as a directed graph
where the vertices are elements of the set E and an edge from x ∈ E to y ∈ E
indicates xRy and thus y ∈ V (x). This representation is used in Figure 4 to
illustrate four neighborhood functions.

Given such a neighborhood function, we can derive a pseudo-closure operator
defined for any set A ∈ P(E) by a(A) = {x ∈ E | V (x)∩A 6= ∅}. This operator
extends a set A ∈ P(E) to any element x ∈ E whose neighborhood intersects
A. The resulting pretopological space (E, a) is known to be of type V [12, 19].
As an example, consider aV2(.) as the pseudo-closure operator defined by the
neighborhood relation V2 described in Figure 4. The computation of the pseudo-
closure of a set can be done visually by looking back along the edges: x2 is in
the pseudo-closure of {x1} since there is an edge from x2 to x1. The closure of
the singleton {x1} is then computed as follows:

{x1}
aV2−−→ {x1, x2}

aV2−−→ {x1, x2, x3}
aV2−−→ {x1, x2, x3, x4, x5}

Although this is a fairly common way of defining a pseudo-closure operator,
it is not the most interesting way of taking advantage of the theory of pretopol-

8

x1

x2

x3

x4

x5

x1

x2

x3

x4

x5

Figure 5: Two directed acyclic graphs describing the elementary closed sets of weak and strong
pretopologies.

ogy, since the closure operator is basically equivalent to the transitive closure
operator on the graph defined by the neighborhoods function V . The pretopol-
ogy theory indeed reveals its power in the multiple-criteria context, i.e. when the
pseudo-closure operator is defined by a combination of multiple neighborhoods.

Let us consider a collection of k neighborhood functions V = {V1, . . . , Vk}
on E. Bui et al. [21] define the two concepts of strong and weak pseudo-closure
operators. These two pseudo-closure operators, respectively denoted astrong(.)
and aweak(.), give rise to two pretopological spaces (E, astrong) and (E, aweak)
of type V.

∀A ∈ P(E), astrong(A) = {x ∈ E | ∀V ∈ V, V (x) ∩A 6= ∅}
∀A ∈ P(E), aweak(A) = {x ∈ E | ∃V ∈ V, V (x) ∩A 6= ∅}

The strong pseudo-closure operator astrong(.) extends a set A ∈ P(E) to
any element x ∈ E such that all the neighborhoods Vi(x) intersect A; aweak(.)
extends the set A to any element x ∈ E such that at least one of the k neigh-
borhoods Vi(x) intersects A. Figure 5 shows the structures arising from the
weak and the strong pretopological spaces defined by the four neighborhoods in
Figure 4.

A strong assumption is made in both cases: the strong pretopology assumes
that every neighborhood is equally necessary to trigger an expansion, and weak
pretopology assumes that every neighborhood is sufficient to trigger an expan-
sion. These assumptions seem to be wrong most of the time. Thus, research has
been conducted on a methodology to construct a multiple-neighborhood based
pseudo-closure operator designed such that useful neighborhoods are selected
and combined while erroneous ones are discarded. Cleuziou and Dias [28] were
the first to tackle this problem by proposing a pseudo-closure operator defined
by a set of weighted neighborhoods.

2.3.1. Weighted modeling of pseudo-closure
This subsection first recalls the definition of (weighted) pseudo-closure pro-

posed by Cleuziou and Dias [28] and then highlights the limitations of such a
numerical and linear modeling.

9

Cleuziou and Dias [28] introduce the notion of parametrized pseudo-closure.
A parametrized pseudo-closure operator is defined by a set of weighted neigh-
borhood functions plus a bias weight. Let E be a set, V = {V1, . . . , Vk} a set of k
neighborhoods on E, w = {w1, . . . , wk} a set of k weights, and w0 a bias weight.
This operator is designed in such a way that a propagation is triggered if and
only if a sufficient part of the neighborhoods agree on this propagation. We say
that a neighborhood V ∈ V is agree on a propagation from a set A ∈ P(E) to
an element x ∈ E when V (x) ∩ A 6= ∅. If the sum of the weights associated to
these neighborhoods is greater than or equal to the bias weight w0, then the set
A propagates to the element x.

This agreement process is defined by a linear threshold function fw() given
by:

∀A ∈ P(E), ∀x ∈ E, f(A, x) =

{
1 if

(∑
{0<i≤k|Vi(x)∩A6=∅} wi

)
≥ w0

0 otherwise

The parameterized pseudo-closure operator aw(.) is then expressed by ∀A ∈
P(E), aw(A) = {x ∈ E | f(A, x) = 1} and the pretopological space (E, aw) is of
type V [28]. This definition of the pseudo-closure operator generalizes existing
combination-based operators. For example, there exists weight assignments
retrieving either weak or strong pseudo-closure operators from Bui et al. [21].
The weak pseudo-closure operator is equivalent to any parameterized pseudo-
closure operator such that each weight wi is greater than or equal to w0; the
strong pseudo-closure operator is equivalent to the parameterized pseudo-closure
operator where each weight wi is equal to w0

k .
Although this parameterized-pseudo closure operator allows to define much

more flexible pretopological spaces than previous definitions of the pseudo-
closure operator, two major limitations remain. First, the expressiveness of
the linear modeling is still quite limited, as not all propagation phenomena can
be expressed in the form of a linear model. For example, a simple rule such as
“if V1 and V4 agree, or if V2 and V3 agree, then a propagation must be triggered”
cannot be expressed by this approach. Second, given a set E and a collection
of k neighborhoods on E, the number of weight vectors is unbounded while the
number of pretopological spaces is bounded. This implies a large number of re-
dundant weight vectors and makes the exploration of the weight vector spaces
tedious, especially for the purpose of learning the pseudo-closure operator as we
will see in the next section.

As an example, consider the collection V = {V1, V2, V3, V4} of four neighbor-
hoods illustrated in Figure 4 and the two sets of elementary closed sets con-
forming to type V S∗1 and S∗2 illustrated in Figure 6 and Table 2. The problem
is to find two sets of weights w1 and w2 such that the pseudo-closure operators
aw1(.) and aw2(.) retrieve, respectively, the sets of elementary closed sets S∗1
and S∗2 .

In order to illustrate the two limitations stated above (expressiveness and
redundancy), we show that S∗1 cannot be retrieved by the linear weighting ap-
proach (lack of expressiveness) while it exposes an infinite number of equivalent

10

x1

x2

x3

x4

S∗1

x5

x1

x2

x3

x4

S∗2

x5

Figure 6: Two sets of elementary closed sets.

x ∈ E F ∗1 (x) F ∗2 (x)

x1 {x1, x2, x3, x4, x5} {x1, x2, x3, x4, x5}
x2 {x2, x3, x4, x5} {x2, x3, x4, x5}
x3 {x3, x5} {x3, x4, x5}
x4 {x4, x5} {x4, x5}
x5 {x5} {x5}

Table 2: Two closure operators F ∗
1 (.) and F ∗

2 (.) leading, respectively, to elementary closed
sets in S∗

1 and S∗
2

solutions to retrieve S∗2 (redundancy).
Expressiveness. The target set S∗1 of elementary closed sets is retrievable by
any weight assignment such that a propagation is triggered if and only if either
V1 and V4 match, or V2 and V3 match. Such an assignment can be found by
solving the system with the following constraints:

w1 + w4 ≥ w0 w0 > 0

w2 + w3 ≥ w0 max {w1, w4}+max {w2, w3} < w0

It can be shown that this system is unsolvable even if the solution we are
looking for can be formulated as simply as (V1∧V4)∨ (V2∧V3). It is well known
that such a Boolean function is not a threshold function and therefore cannot
be expressed with a weighting model.
Redundancy. A solution allowing to perfectly retrieve the target set S∗2 of
elementary closed sets is the vector w = (0.0, 0.5, 0.5, 1.0) with the bias weight
w0 = 1.0. It is easier (and equivalent) to represent w by the logical formula
(V2∧V3)∨V4 meaning that x ∈ aw(A) if and only if at least one of the following
two conditions is satisfied:

1. both V2 and V3 allow it (i.e. both V2(x) and V3(x) intersect A, not neces-
sarily on the same element(s)),

2. V4 allows it (i.e. V4(x) intersects A).

11

The vector w is then used to define the pseudo-closure operator aw(.), which
behaves as follows:

{x1}
V2∧V3−−−−−→
and V4

{x1, x2}
V4−→ {x1, x2, x4}

V2∧V3−−−−−→
and V4

{x1, x2, x3, x4, x5} = Fw({x1})

{x2}
V4−→ {x2, x4}

V2∧V3−−−−−→
and V4

{x2, x3, x4, x5} = Fw({x2})

{x3}
V2∧V3−−−−−→
and V4

{x3, x4, x5} = Fw({x3})

{x4}
V2∧V3−−−−−→
and V4

{x4, x5} = Fw({x4})

{x5}
∅−→ {x5} = Fw({x5})

Each arrow describes a single step of propagation from an element x ∈ E
to its elementary closure Fw({x}), and the clauses above and below each arrow
are the ones participating in the propagation. Let us observe that it is easy
to find another vector w′ 6= w defining an operator aw′ similar to aw (e.g.
w′ = (0.0, 0.6, 0.4, 1.0) and w0 = 1.0). In fact, the operator aw(.) is equivalent
to any other operator aw′(.) where w′ = (w1, w2, w3, w4) and the bias w0 satisfy
the system of constraints below, which admits an infinite number of solutions.

w0 > 0

w1 < w0 w2 + w3 ≥ w0

w2 < w0 w4 ≥ w0

w3 < w0 w1 < w0 −max {w2, w3}

It seems worth mentioning that while both V2 ∧ V3 and V4 are involved in
the expansion from {x2, x4} to {x2, x3, x4, x5}, only V2 ∧ V3 is responsible for
the inclusion of x3 in aw({x2, x4}). Moreover, the reasons of this propagation
are not trivial; indeed, V2 is at the origin of the propagation of {x2, x4} to x3
because x2 is in the neighborhood of x3; whereas V3 is at the origin because x4
is in the neighborhood of x3.

2.3.2. A new logical approach
To overcome the two main limitations of weighted modeling discussed above

(lack of expressiveness and redundancy), we propose to define a combination of
neighborhoods as a disjunctive normal form (DNF) logical formula. We restrict
our work to positive DNFs, i.e. DNFs without negative literals.

Such modeling requires translating the information provided by a neighbor-
hood into a logical concept. This can be done by transforming any neighbor-
hood function Vi in the collection of neighborhoods V into a logical predicate
qi : P(E) × E → {0, 1} determining whether the neighborhood V (x) of an
element x ∈ E intersects a set A ∈ P(E).

∀Vi ∈ V, A ∈ P(E), x ∈ E, qi(A, x) =

{
1 if Vi(x) ∩A 6= ∅
0 otherwise

(1)

12

Property 1. Any predicate q : P(E)×E → {0, 1} derived from a neighborhood
function V : E → P(E) as defined in Equation (1) respects the isotonic property:

∀A,B ∈ P(E), ∀x ∈ E, A ⊆ B ⇒ q(A, x) ≤ q(B, x)

Proof. Let V be a neighborhood function defined on a set E and q the predicate
derived from V .

∀X ∈ P(E), ∀x ∈ E, q(X,x) = 1⇔ V (x) ∩X 6= ∅
∀A,B ∈ P(E), ∀x ∈ E, A ⊆ B ⇒ [(V (x) ∩A 6= ∅)⇒ (V (x) ∩B 6= ∅)]

⇒ q(A, x) ≤ q(B, x)

Thus, any predicate derived from a neighborhood function as defined in Equa-
tion (1) respects the isotonic property.

Let Q = {qi}∀Vi∈V be a set of predicates. Then, a logical pseudo-closure
operator aQ(.) can be derived from any positive DNF Q defined on the language
(Q∗)∗, namely, the infinite Cartesian power of the infinite Cartesian power of Q:
Q∗ is the set of all conjunctive clauses, and (Q∗)∗ is the set of all the positive
DNFs.

∀A ∈ P(E) , aQ(A) = {x ∈ E | Q(A, x)}

Theorem 1. Let Q be a positive DNF composed of predicates respecting the
isotonic property, then the pretopological space (E, aQ) derived from Q is of
type V.

Proof. The pretopological space (E, aQ) is of type V if and only if ∀A,B ∈
P(E), A ⊆ B ⇒ aQ(A) ⊆ aQ(B) (isotonic property). Let ci be the i-th con-
junctive clause of Q and qij the j-th literal in ci.

∀x ∈ E, x ∈ aQ(A)⇔ Q(A, x) = 1

⇔ ∃i, ci(A, x) = 1

⇔ ∃i∀j, qij(A, x) = 1

Since all predicates qij(A, x) are of type V, the conjunctive clause ci(A, x)
is obviously of type V as well, and so is the DNF Q. So if Q is a positive DNF
composed of predicates of type V, then (E, aQ) is a pretopological space of type
V.

In what follows, we consider only well-formed (or simplified) DNFs. That is,
DNFs that satisfy the following properties:

• A clause is present only once

• A clause is not subsumed by another (more general)

13

For example, Q1 = q1∨q1 and Q2 = (q1∧q2)∨q1 are both ill-formed DNFs. Q1 is
ill-formed because the clause q1 appears twice and Q2 is also ill-formed because
q1∧ q2 ⇒ q1, so q1∧ q2 is subsumed by q1. Q3 = q1 is the only well-formed DNF
equivalent to both Q1 and Q2. This simplification reduces the space of valid
DNFs since it would, like the weight vector model, be infinite otherwise.

We have introduced a new logical model to represent a combination of neigh-
borhoods on a given finite non-empty set E. This combination is a logical
formula in positive disjunctive normal form used to define a decision function
Q : P(E) × E → {0, 1}. This decision function allows us to construct a pre-
topological space (E, aQ) of type V by defining the result of the pseudo-closure
operator applied on a subset A ∈ P(E) as the set of all elements x ∈ E sat-
isfying the decision function Q(A, x). Let us now show that the new proposed
model is more expressive than the previous weighted model.

Property 2. Any weighted pseudo-closure operator aw(.) can be reformulated
as a logical pseudo-closure aQ(.).

Proof. Consider a set E, a collection V of k neighborhoods, a weight vector
w = (w1, . . . , wk), a bias weight w0 and a positive DNF Q constructed by
making a conjunctive clause of each combination of weights whose sum is greater
than or equal to w0. Then the threshold function f is equivalent to Q.

f(A, x) = 1 means that there is a combination of neighborhoods V ′ = {V ∈
V | V (x)∩A 6= ∅} such that the sum of their associated weights is greater than
w0. By construction of Q, the logical conjunction

∧
Vi∈V′ qi(A, x) belongs to Q

and is true (by definition of V ′).
On the contrary, f(A, x) = 0 means that there is no combination of neigh-

borhoods V ′ = {V ∈ V | V (x) ∩ A 6= ∅} such that the sum of their associated
weights is greater than w0. By construction of Q, there does not exist either a
conjunction c such that c(A, x) = 1.

As an example, let us consider the vector w = (0.0, 0.5, 0.5, 1.0) and the bias
weight w0 = 1.0 defined previously to retrieve the set S∗2 of elementary closed
sets. If we omit w1, which is zero, there are five distinct combinations of weights
whose sum is greater than or equal to w0: w4, (w2, w3), (w2, w4), (w3, w4), and
(w2, w3, w4). An equivalent DNF is Q = (q4) ∨ (q2 ∧ q3) ∨ (q2 ∧ q4) ∨ (q3 ∧ q4) ∨
(q2 ∧ q3 ∧ q4). This DNF is obviously ill-formed, but it expresses exactly the
same intent as w. This formula can be simplified into the well-formed (and
more readable) DNF Q′ = (q2 ∧ q3) ∨ q4.

Property 2 establishes that the logical pseudo-closure model is at least as
expressive as the weighted model, but our new formalization was motivated by
improving expressiveness over the previous model. Indeed, as mentioned before,
some DNF cannot be expressed as a weight vector: we could not find a linear
model able to retrieve the set S∗1 of elementary closed sets. We have already
proposed a DNF that meets our needs: Q2 = (q1 ∧ q2)∨ (q3 ∧ q4), which cannot
be modeled by a weight set.

To conclude on this section, we have introduced a simple and versatile model
for the pseudo-closure operator which is based on a logical formalism. Our model

14

is versatile because it is able to express a wider variety of V-type pretopological
spaces than existing models. It is simple because the space of all DNFs is finite
and easier to explore unlike the (infinite) space of weighted vectors. It is also
simple because a DNF is much more human readable than a weight vector, and
thus easier to interpret.

3. Learning a pretopological space of type V

In this section, we address the problem of learning a V-type pretopological
space. Cleuziou and Dias [28] introduced the framework Learn Pretopological
Space (LPS). They propose to learn a pretopological space in a semi-supervised
or, as they claim, a self-supervised manner. Their work is presented as an
approach to automatically extract a lexical taxonomy. This is in fact a reductive
view of the outcomes of learning pretopological (V-type) spaces. As we have
shown in the previous section, a hierarchical structure is hidden behind any
V-type pretopological space. The goal of the LPS framework is to learn a
structuring model and it can be used to find a solution to any task whose output
is a directed acyclic graph (DAG), lexical taxonomy extraction is an example of
such tasks.

The original LPS algorithm uses a genetic algorithm to learn a structuring
model. The learning algorithm is guided by an optimization function that mea-
sures the correspondence between the learned structure and a target structure;
we call this function the extrinsic quality measure. In this section we outline our
approach to learning a positive DNF using the same genetic algorithm, but in a
supervised setting, instead of a semi-supervised setting as in the original work.
Since this type of algorithm suffers from high complexity, we then introduce a
greedy learning approach that reduces this complexity issue.

3.1. Extrinsic quality measure
Given a finite set E of elements, a set S∗ = {F ∗({x})}x∈E of target elemen-

tary closed sets and a collection V of neighborhoods, the LPS task is to learn a
pretopological space (E, a) whose underlying structuring S = {F ({x})}x∈E (i.e.
its set of elementary closed sets) best matches S∗. A quality measure, quan-
tifying the degree of correspondence, is thus necessary to guide the learning
process.

Cleuziou and Dias [28] used the F-measure which computes a trade-off be-
tween accuracy and completeness when comparing two sets of closed sets. Ac-
curacy is defined as the precision of the solution, and completeness by the recall
of the solution:

Precision(S, S∗) =

∑
x∈E |F ({x}) ∩ F ∗({x})|∑

x∈E |F ({x})|

Recall(S, S∗) =

∑
x∈E |F ({x}) ∩ F ∗({x})|∑

x∈E |F ∗({x})|

15

x ∈ E F ({x}) F ∗({x}) |F ({x}) ∩ F ∗({x})|
x1 {x1, x2, x3, x4, x5} {x1, x2, x3, x4, x5} 5
x2 {x2, x3, x4, x5} {x2, x3, x4, x5} 4
x3 {x3, x4, x5} {x3, x5} 2
x4 {x4, x5} {x4, x5} 2
x5 {x5} {x5} 1

Precision: 14
15 ≈ 0.93

Recall: 14
14 = 1

F-measure: 2 · 0.93·1
0.93+1 ≈ 0.96

Table 3: Example of computing the F-measure between two sets of elementary closed sets.

Precision (resp. recall) is defined as the ratio of the number of correctly re-
trieved elements in the learned elementary closed sets (S) to the total number of
elements in the learned elementary closed sets S (resp. in the target elementary
closed sets S∗). The F-measure is then defined as the harmonic mean between
precision and recall.

F-measure(S, S∗) = 2 · Precision(S, S
∗) · Recall(S, S∗)

Precision(S, S∗) + Recall(S, S∗)

Table 3 illustrates the computation of the F-measure by comparing a closure
function2 F (.) to a target structuring, F ∗(.), on a set E.

In the specific context of the LPS problem, we call such a quality measure
an extrinsic quality measure since it evaluates only the final elementary closed
sets revealed by the structuring process, rather than the (internal or intrinsic)
propagation process itself.

3.2. Genetic LPS
For clarity, we present two variants of LPS: Numerical Genetic LPS [28]

and Logical Genetic LPS whose outputs are pretopological spaces defined by a
DNF. The term Genetic LPS framework refers to these two algorithms.

The Genetic LPS framework aims at learning a pretopological space by
means of a genetic algorithm. Given a set S∗ of target elementary closed sets and
a collection V of neighborhoods, its output is a combination of neighborhoods (a
weight vector or a DNF, depending on the algorithm) defining a pseudo-closure
operator leading to the highest extrinsic measure on the resulting set S of ele-
mentary closed sets. Algorithm 1 provides a pseudo-code of the generic Genetic
LPS framework.

The algorithm starts by generating a set of random candidate solutions
(Line 7). A pretopological space is then constructed from each candidate and

2The term closure function refers to the function which associates to each element x its
(elementary) closed set F (x).

16

its set of elementary closed sets is computed and evaluated against the target
S∗ (Lines 12 and 13). Finally, a new set of candidates is computed by crossing
and mutating the best candidates of the previous population (Line 28). The
algorithm stops when the score of the best candidate remains stable for a given
number of steps (Line 19).

In order to compute the extrinsic quality of a solution Q, the set SQ of
elementary closed sets of the pretopological space (E, aQ) must be computed.
This structuring step is the most expensive operation we rely on, so we choose to
define the complexity of LPS algorithms in terms of the number of structuring
steps required.

Genetic algorithms tend to need many iterations to converge to a solution,
which makes their execution a bit slow. The quality of their results is often
related to the size of their initial population, which is itself related to the time
needed to converge to an acceptable solution. For example, Algorithm 1 has a
complexity (in terms of number of structurations) of O(initial_pop ·max_iter)
with initial_pop generally high. Moreover, due to the stochastic nature of these
algorithms, multiple runs may lead to different outputs. For these reasons, we
introduce in the next subsection a less expensive (greedy) learning approach.

3.3. Greedy LPS
The Greedy LPS is a greedy variant of the Logical Genetic LPS: given a

set S∗ of target elementary closed sets and a collection V of neighborhoods, its
output is a combination of the neighborhoods in V as a positive DNF Q. It uses
a greedy heuristic designed to speed up the learning process.

The pseudo-code of the Greedy LPS is presented in Algorithm 2. The al-
gorithm starts with an empty DNF Q̃ (Line 6); conjunctive clauses are then
successively added to Q̃. A beam search is performed to find the clause c such
that the set of elementary closed sets SQ computed from the DNF Q = Q̃ ∨ c
maximizes the extrinsic measure defined above (Line 9). If the quality of Q is
higher than the quality of the previous DNF Q̃, then c is added to Q̃ and the
next iteration starts, otherwise the algorithm stops.

Algorithm 3 is the engine of the Greedy LPS. Given a DNF Q, its output
is a conjunctive clause c maximizing the extrinsic quality measure of the DNF
Q ∨ c. The search of the clause c is done by specializing an empty clause until
it can no longer be specialized (Line 2). It is called the first time in Line 9
of Algorithm 2. The function starts by evaluating all well-formed conjunctive
clauses a little more specialized than the parameter base_clause, that is to say
base_clause plus a predicate in Preds and not in base_clause (see the loop
starting Line 9). Then, the set of evaluated conjunctive clauses is sorted and
filtered to keep only the bests beam. The second loop of the function consists
in calling itself recursively with the parameter base_clause fixed to one of the
previously filtered clauses (Line 23), in order to evaluate larger clauses.

The Greedy LPS has a complexity of O(max_iter · |V| · beam) that is in
practice much lower than that exhibited by the Genetic LPS since |V| · beam
is typically much smaller than the initial population size of the Genetic LPS.

17

Algorithm 1: Genetic LPS
1 Function GeneticLPS (E, S∗, V, max_iter, initial_pop,

required_iter_convergence)
2 iter ← 0
3 iter_conv ← 0
4 score← 0
5 stop← false

6 Q̃← ∅
7 population← initial_pop random solutions
8 while iter < max_iter and ¬stop do
9 iter ← iter + 1

10 scores← [] /* an empty array */
11 foreach Q ∈ population do
12 SQ ← structuring(E,V, Q)
13 Append extrinsic_measure(SQ, S

∗) to scores
14 end
15 best_score← greatest value in scores
16 best_individual← the individual exposing the highest score
17 if best_score = score then
18 iter_conv ← iter_conv + 1
19 if iter_conv = required_iter_convergence then

/* If best_score remains the same for
required_iter_convergence steps, then stop the
learning */

20 stop← true

21 end
22 end
23 else if best_score > score then
24 iter_conv ← 0 /* best_score is modified, so reset to

0 */
25 score← best_score
26 Q̃← best_individual
27 end
28 population← cross and mutate best individuals
29 end
30 return Q̃

31 end

18

Algorithm 2: Greedy LPS
1 Function GreedyLPS (E, S∗, V, max_iter, beam)
2 iter ← 0
3 score← 0
4 stop← false
5 Preds← predicates derived from V
6 Q̃← ∅
7 while iter < max_iter and ¬stop do
8 iter ← iter + 1

9 c← FindBestClause(E,S∗, P reds, Q̃, ∅, beam)

10 Q← Q̃ ∨ c
11 SQ ← structuring(E,Q)
12 if clause = ∅ or extrinsic_measure(SQ, S

∗) ≤ score then
13 stop← true
14 end
15 else
16 score← extrinsic_measure(SQ, S

∗)

17 Q̃← Q

18 end
19 end
20 return Q̃

21 end

19

Algorithm 3: Building the best clause
1 Function FindBestClause (E, S∗, Preds, Q, base_clause, beam)
2 if |base_clause| ≥ |Preds| then

/* base_clause contains all the predicates in Preds */
3 return base_clause
4 end
5 best_clause← ∅
6 best_score← 0
7 clauses← []
8 scores← []
9 foreach q ∈ Preds \ base_clause do

10 c← base_clause ∧ q
11 Q′ ← Q ∨ c
12 SQ′ ← structuring(E,Q′)
13 score← extrinsic_measure(SQ′ , S

∗)
14 clauses← append c to clauses
15 scores← append score to scores
16 if score > best_score then
17 best_score← score
18 best_clause← c

19 end
20 end
21 clauses← sort clauses according to scores in decreasing order

/* loop over the beam best clauses */
22 foreach c ∈ clauses[1 . . . beam] do
23 beam_c← FindBestClause(E,S∗, P reds,Q, c, beam)
24 Q′ ← Q ∨ beam_c
25 SQ′ ← structuring(E,Q′)
26 score← extrinsic_measure(SQ′ , S

∗)
27 if score > best_score then
28 best_score← score
29 best_clause← c

30 end
31 end
32 return best_clause
33 end

20

The Greedy LPS is much simpler than the Genetic LPS framework and results
in much shorter run times. In addition, further experimental comparisons (cf.
Section 5) reveal that, despite the lack of completeness in exploring the solution
space and due to the conciseness of the pseudo-closures produced, the greedy
learning strategy significantly outperforms the stochastic approaches in the LPS
task.

The premise of the following contribution is that the extrinsic measure used
in the previous learning methodologies is not suitable for incremental learning
strategies. Greedy LPS is expected to retrieve even better models by using
an objective criterion that considers not only the quality of structuring (ele-
mentary closed sets) but also the potential of pseudo-closure (elementary and
non-elementary closed sets).

For example, suppose one is learning the pretopological space presented in
Figure 7. Given two candidate DNFs Q and Q′, one needs to know which of the
two closure operators FQ and FQ′ best retrieves the set S∗ of target elementary
closed sets. Both Q and Q′ share the same (extrinsic) F-measure score, therefore
the Greedy LPS is unable to determine which DNF is best. Choosing the wrong
clause in the iteration i could have a huge impact on the clause chosen in the
iteration i+1 (and further). Therefore, it is fundamental to be able to determine
which of Q or Q′ is more useful.

Recall that only pretopological spaces of type V are considered, so ∀A,B ∈
P(E), A ⊆ B ⇒ a(A) ⊆ a(B). Thus, the fact that FQ({x2}) = {x2, x3} can
be used to deduce information about the closures of the super-sets of {x2}: any
set A ∈ P(E) such that x2 ∈ A will propagate to at least x3. Of course, the
same applies to Q′: {x4} and its super-sets will propagate to x5. Although
the information provided by Q and Q′ are quantitatively equivalent, Q gives
more useful information. Indeed, Q′ tells us that, because x5 ∈ FQ′({x4}), then
x5 ∈ FQ′({x3, x4}). But the propagation of the set {x3, x4} does not provide
any useful information since it is not reachable from any singleton3 (according to
S∗). On the contrary, Q tells us that all the super-sets of {x1} propagate to x3.
Since F ∗({x1}) = E, all super-sets of x1 are reachable (at least from {x1}), so
this information is valuable for learning the target pretopological space. Thus,
Q gives more qualitative information than Q′.

A different quality measure that takes this intrinsic information into account
is needed because such a method would be able to determine that, although Q
and Q′ are equivalent in terms of F-measure (i.e., the extrinsic quality measure),
Q has more potential with respect to subsequent iterations. The term potential
is appropriate because, although Q informs us that x3 ∈ FQ({x1, x2}), this
information is not reflected by the resulting elementary closed sets. However,
it can be, and will be, important when learning additional clauses since it will
influence the algorithm to learn a clause completing the (elementary) closure of
{x1}. On the contrary, the extrinsic quality measure cannot influence the results

3Even if {x3, x4} ⊂ F ∗({x1}), x1 /∈ {x3, x4}, it is thus not reachable from {x1}

21

x1

x2

x3

x4

x5
S∗

x ∈ E F ∗({x}) FQ({x}) FQ′({x})
x1 {x1, x2, x3, x4, x5} {x1, x3} {x1}
x2 {x2, x3, x4, x5} {x2, x3} {x2, x3}
x3 {x3, x5} {x3} {x3}
x4 {x4, x5} {x4} {x4, x5}
x5 {x5} {x5} {x5}

Figure 7: A target set of elementary closed sets S∗ and two candidate closure operators.

of the following iterations in this way because it considers that any expansion
is equally important, which is false as we have just shown.

Moreover, the pretopological closure operator is defined in such a way that
a single collection of elementary closed sets can be obtained by many pseudo-
closure operators. For example, there are three ways to obtain an elementary
closure F ({x}) = {x, y, z}, as illustrated below. This means that if we try to
learn a pretopological space of type V from its elementary closed sets, we have to
consider all the pseudo-closure operators leading to the same elementary closed
sets.

1. a({x}) = {x, y, z}

2. a({x}) = {x, y} and a({x, y}) = {x, y, z}

3. a({x}) = {x, z} and a({x, z}) = {x, y, z}

Given a set S∗ of elementary closed sets, we propose to learn a pseudo-
closure operator able to retrieve S∗. Such an operator seems not to be unique.
This means that the target function can take several valid forms, each one being
described by a different set of features (i.e. different combinations of neighbor-
hoods). This is the formulation of the multiple instance problem [30] on which
the rest of the contribution is based.

4. A multiple instance approach

The first objective of this section concerns the formulation of the LPS frame-
work in the Multiple Instance (MI) formalism, which offers the possibility of
introducing a new (intrinsic) fitness measure to overcome the limitations of the
existing (extrinsic) measure, especially when combined with a greedy learn-
ing strategy. However, we will see that such an MI formulation will reveal a
combinatorial problem in pseudo-closure learning. The second and crucial con-
tribution of this section is to show how to overcome this combinatorial problem,
first by using the properties of V-type pretopological spaces and finally by ap-
proximations.

The multiple instance (MI) problem [30] arises when an observation can be
described by several feature vectors, or instances. The set of vectors/instances

22

Bag Shape Size Instance labels Bag labels

1
Squared Big 1

1Squared Small 0
Squared Medium 1

2 Squared Medium 1 1Triangular Small 0

3
Rectangular Big 0

0Squared Small 0
Triangular Small 0

Table 4: Example of a multiple instance dataset for the simple jailer problem.

describing an observation is called a bag of instances and is labeled either pos-
itively or negatively: positively if at least one instance is positive, negatively
if all instances are negative. Bag labels may be assigned differently depending
on the target task [30], but this simple bag labelling scheme, as proposed by
Dietterich et al. [30], is well suited for the LPS task.

The MI task consists in finding a function predicting the label of a new
instance knowing only the labels of the bags. A famous example of MI task is
the simple jailer problem [24]: given a locked door and a bunch of key rings,
the task is to find which key opens it. But the only information we have is
whether a key ring is useful or not, i.e., whether it contains at least one key
capable of unlocking the door. An example of a simple jailer dataset is provided
in Table 4. Recall that in real cases, the column “Instance labels” is unknown
and is presented here in order to understand why bags 1 and 2 are positive
(because they have at least one positive instance). On the contrary, bag 3 is
labeled negatively because it contains no positive instances.

We propose to model the task of learning a pretopological space (E, a) based
on its expected set of elementary closed sets by an MI learning task. An instance
represents a propagation from a set A ∈ P(E) to an element x ∈ E and is
labeled positively if x ∈ F ∗(A) according to S∗, otherwise the instance is labeled
negatively. As we saw briefly before, multiple propagations of a set A conform to
S∗. Thus, a bag corresponds to the set of instances modeling these propagations.

4.1. Building a MI dataset for the LPS task
The LPS task consists in learning a pretopological space (E, aQ) of type V

such that its set SQ of elementary closed sets corresponds to a target set S∗ of
elementary closed sets. Let x be an element of E and its target elementary clo-
sure be F ∗({x}) = {x, y, z}. In general, several steps are necessary to compute
an elementary closed set. For example, the valid steps for propagation from
{x} to {x, y, z} are {x, y}, {x, z} and {x, y, z}. If the pseudo-closure operator
aQ(.) produces something different during the computation of FQ({x}), then
the target elementary closed set F ∗({x}) cannot be retrieved.

23

The set of valid propagation steps for an element x are given by X = {X ∈
P(E) | x ∈ X, X ⊆ F ∗({x})}. The set of all propagation steps valid for all
elements in E can thus be projected on the Boolean lattice of subsets of E. We
denote this lattice L and define two sub-lattice notations for all sets A and B
such that A ⊆ B ⊆ E.

L [A,B] = F(A) ∩ P(B)

L [A,B[= L [A,B] \B

L [A,B] is defined as the intersection between the super-sets of A (i.e. the
filter F(A)) and the subsets of B (i.e. the power-set P(B)), i.e. the sets between
A and B in the lattice L. L [A,B[is equal to L [A,B] deprived of its greatest
element.

The LPS task can then be reformulated more precisely as the task of learning
a pretopological space (E, aQ) such that for any x ∈ E:

• Any set A ∈ L [{x}, F ∗({x})] propagates to at least one element of
F ∗({x}) \A.

• No element of F ∗({x}) is reachable from a set A ∈ L [{x}, F ∗({x})].
This definitely sounds like the definition of positive and negative bags in

an MI learning task! Indeed, it seems natural to formulate the LPS task as
an MI learning problem. Each positive bag represents all allowed propagations
of a given set A ∈ P(E), where A is a valid propagation step for an element
x ∈ E. Therefore, positive bags are identified by a pair (x,A) ∈ E × P(E) and
mean “the element x must eventually reach all elements in A and at least one
propagation described in this bag must occur”. Each element of the sub-lattice
L [{x}, F ∗({x})[gives rise to a positive bag engendered by x. The positive bag
(x, F ∗({x})) does not exist since, by definition of a closed set, F ∗({x}) does not
propagate anymore.

A negative bag is identified by a couple (x, y) ∈ E × E and means “the
element x must never propagate to y and none of the propagations described in
this bag should occur”. Any element not being part of the closed set of x gives
rise to a negative bag engendered by x.

The set of all the positive and negative bags engendered by an element x ∈ E
are respectively noted bags+(x) and bags-(x).

∀x ∈ E, bags+(x) = {(x,A) | ∀A ∈ L [{x}, F ∗({x})[}
∀x ∈ E, bags-(x) = {(x, y) | ∀y ∈ E \ F ∗({x})}

The number of positive and negative bags engendered by an element x is
therefore given by:

∀x ∈ E,
∣∣bags+(x)∣∣ = 2|F

∗({x})|−1 − 1

∀x ∈ E, |bags-(x)| =
∣∣∣F ∗({x})∣∣∣

24

It is worth mentioning that in some cases where two (or more) elements
x, y ∈ E share the same elementary closed set F ∗xy = F ∗({x}) = F ∗({y}), some
positive bags are engendered by both x and y. In fact, any positive bag (x,A)
where {x, y} ⊆ A ⊂ F ∗xy is engendered by both x and y. Such a positive bag can
be designated as either by (x,A), (y,A) or ({x, y}, A) to insist on the plurality
of its origins. This is not a trivial property since it poses some problems of
evaluation of a potential solution, as explained in the Appendix A.

Instances of bags represent a unique propagation from a subset A ∈ P(E) to
an element y ∈ E. An instance is identified by the bag to which it belongs and
a couple (A, y) ∈ P(E)× E. The notation (A, y) is rather confusing because it
looks like the notation used to identify positive bags. To clarify this notation,
we use (x,A) to identify positive bags and A → y to identify instances. More-
over, it clearly expresses the semantics of an instance, which is “does the set A
propagates to the element y?”. As we shall see, this can be answered either by
“yes”, “no” or “maybe”.

A positive bag (x,A) contains all the instances modeling an allowed prop-
agation from the set A to an element y. Such a propagation is allowed if and
only if y ∈ F ∗({x}). Trivial propagations where y ∈ A are ignored because they
provide no useful information. Thus, any element y ∈ F ∗({x}) \A gives rise to
an instance of the positive bag (x,A).

On the contrary, a negative bag (x, y) contains all instances modeling a
forbidden propagation from any valid propagation step of x to the element y.
Thus, any subset A ∈ L [{x}, F ∗({x})] gives rise to a negative instance of the
bag (x, y).

Remark. In the case of LPS, there are no negative instance of a positive bag,
as in traditional MI learning tasks. Indeed, the instances of a positive bag are
always positive too, in the sense that a model covering all these instances will
perfectly retrieve the set S∗ of target elementary closed sets. However, such
a solution is only one solution among others perfectly retrieving S∗, since any
solution covering at least one instance of each positive bag (and rejecting every
negative bags) will also be a perfect solution. Our MI formulation allows the
learning of any perfect solution by ignoring the siblings (instances of the same
bag) of the covered positive instances.

Instances of positive bags are always positive, but they do not need to be
covered by a solution. However, all positive bags must be covered.

Let us illustrate this MI learning task using the set S∗ of target elementary
closed sets represented in Figure 8. The target closed set of the singleton {x2}
is F ∗({x2}) = {x2, x3, x4, x5}. As shown in Table 5, x2 engenders one positive
bag per element in L [{x2}, F ∗({x2})[and one negative bag per element not in
F ∗({x2}). The set F ∗({x2}) is a closed set and must not propagate anymore,
that is why no positive bag describes its propagation. The definition of a positive
bag states that at least one of its instances is positive, which is why every
instance of every positive bag is labeled as “maybe”; the only exception is when
a bag contains only one instance, then its instance is obviously positive.

25

S∗

x1

x2

x3

x4

x5

Figure 8: A set S∗ of closed sets of a pretopological space of type V.

{x1} {x2} {x3} {x4} {x5}

. . . {x1, x5} {x2, x3} {x2, x4} {x2, x5} {x3, x4} . . .

. . . {x1, x4, x5} {x2, x3, x4} {x2, x3, x5} {x2, x4, x5} {x3, x4, x5} . . .

. . . {x1, x2, x3, x5} {x2, x3, x4, x5} . . .

{x1, x2, x3, x4, x5}

Figure 9: The sub-lattice L [{x2}, F ∗({x2})[embedded in the Boolean lattice on E =
{x1, x2, x3, x4, x5}. There is an exact correspondence between this sub-lattice and the positive
bags engendered by x2.

Figure 9 shows the sub-lattice L [{x2}, F ∗({x2})[which reflects the set of
positive bags engendered by x2. A line from a subset to another expresses
that the source subset must propagate to a higher set in the lattice. Such
lines are transitive, meaning that the result of the pseudo-closure operator ap-
plied on the subset {x2, x3} must be equal to one of {x2, x3, x4}, {x2, x3, x5} or
{x2, x3, x4, x5}. This is exactly the definition of the positive bag (x2, {x2, x3}),
which states that {x2, x3} must propagate to x4, x5 or both. Moreover, the
absence of a line indicates that a propagation is forbidden, so, there is no line
from a subset of L [{x2}, F ∗({x2})] to another one which contains x1. This is
the definition of the negative bag (x2, x1). Some propagations are impossible,
for example {x2, x3} cannot reach {x3, x4, x5} since the first is not included in
the second. In this case, it is useless to insist on the absence of propagation.
That is why it is not reported in the set of negative bags.

We have just explained how to construct an MI dataset for the LPS task,
given a set E of elements and a set S∗ of target elementary closed sets. But
it is not yet possible to learn anything about this dataset due to the miss-
ing feature columns. The features are given by a collection of neighborhoods
V, more precisely by the predicates derived from these neighborhoods. Fig-
ure 10 shows a collection V = {V1, V2, V3, V4} of four neighborhoods. The set

26

Bag ID Instance ID Instance label Bag label

(x2, {x2}) {x2} → x3 maybe 1
{x2} → x4 maybe
{x2} → x5 maybe

(x2, {x2, x3}) {x2, x3} → x4 maybe 1
{x2, x3} → x5 maybe

(x2, {x2, x4}) {x2, x4} → x3 maybe 1
{x2, x4} → x5 maybe

(x2, {x2, x5}) {x2, x5} → x3 maybe 1
{x2, x5} → x4 maybe

(x2, {x2, x3, x4}) {x2, x3, x4} → x5 yes 1
(x2, {x2, x3, x5}) {x2, x3, x5} → x4 yes 1
(x2, {x2, x4, x5}) {x2, x4, x5} → x3 yes 1
(x2, x1) {x2} → x1 no 0

{x2, x3} → x1 no
{x2, x4} → x1 no
{x2, x5} → x1 no
{x2, x3, x4} → x1 no
{x2, x3, x5} → x1 no
{x2, x4, x5} → x1 no
{x2, x3, x4, x5} → x1 no

Table 5: Positive and negative bags engendered by the element x2 and its elementary closed
set F ∗({x2}) = {x2, x3, x4, x5}.

27

Q = {q1, q2, q3, q4} of four predicates can then be constructed by following
the instruction of Equation (1) in Section 2.3.2. The Boolean feature vec-
tor (q1(A, x), q2(A, x), q3(A, x), q4(A, x)) is then constructed for each instance
A→ x of the dataset. Table 6 shows the bags engendered by x2 as well as the
feature vector associated to each instance.

Suppose the DNF Q = (q1 ∧ q4) ∨ (q2 ∧ q3) is learned by an unspecified MI
learning process. The resulting pretopological space (E, aQ) of type V would
give the set {x2, x3, x4, x5} as the elementary closure of x2. It is obvious that
{x2} ⊆ {x2, x3, x4, x5}, the isotonic property of the pseudo-closure operator can
be exploited to deduce that aQ({x2}) ⊆ aQ({x2, x3, x4, x5}) = {x2, x3, x4, x5}.
This means that the first step of the propagation of x2 contains at least x3,
x4 or x5. It is essentially what the positive bag (x2, {x2}) expresses, so it is
covered by Q. The same reasoning can be applied to explain why the positive
bag (x2, {x2, x3}) is covered: {x2} ⊆ {x2, x3} and FQ({x2}) = {x2, x3, x4, x5},
so the isotonic property ensures that {x2, x3, x4, x5} ⊆ FQ({x2, x3}). There-
fore, aQ({x2, x3}) contains either x4 or x5 (or even both). The positive bag
(x2, {x2, x3}) is thus covered. Of course, the same is true for the other positive
bags.

The negative bag (x2, x1) is rejected by the solution Q because the set
{x2, x3, x4, x5} is a closed set in the pretopological space (E, aQ) of type V.
As a consequence of the isotonic property, any subset of {x2, x3, x4, x5} can-
not propagate to an element that is not in {x2, x3, x4, x5}. In particular, the
subsets in the lattice L [{x2}, F ∗({x2})] do not propagate to x1. Therefore, the
negative bag (x2, x1) describing all the conceivable propagations from a subset
in L [{x2}, F ∗({x2})] to x1 is rejected by Q.

But what if the DNF Q′ = (q1 ∧ q4) is learned instead of Q? First, the
elementary closed set of x2 would be {x2, x4, x5}. Can we ensure that the
negative bag (x2, x1) remains rejected? This bag stipulates that any subset
in L [{x2}, F ∗({x2})] must not propagate to x1. For example, the set {x3, x2}
should not propagate to x1. But x3 is not reached by the propagation from
x2 to its elementary closed set. Therefore, the pseudo-closure of {x3, x2}, or a
super-set, is never computed, which therefore makes it impossible to determine
whether the negative bag (x2, x1) is badly covered or not.

One solution would be to compute the pseudo-closure of all subsets in the
sub-lattice L [{x2}, {FQ′({x2})}] to check whether they propagate to x1, but,
as we explain in the following, it is not reasonable. We argue that, although
this is indeed a flaw in our proposal, it is not dramatic in practice. Indeed,
the ultimate goal of the LPS framework is to produce a DAG based on the set
of elementary closed sets of the learned pretopological space. Thus, even if
an erroneous propagation exists beyond an elementary closed set, it will not be
present in the final structure. Therefore, it is safe to assume that such bags are
rejected, as they should be.

4.2. The issue of the exponential MI dataset
As illustrated above, the Multiple Instance framework provides an elegant

and accurate modeling for the non-trivial problem of learning a pretopological

28

V1

x1

x2

x3

x4

x5
V2

x1

x2

x3

x4

x5

V3

x1

x2

x3

x4

x5
V4

x1

x2

x3

x4

x5

Figure 10: A collection of four neighborhoods.

Bag ID Instance ID q1 q2 q3 q4 Bag label

(x2, {x2}) {x2} → x3 0 1 0 0 1
{x2} → x4 1 0 0 1
{x2} → x5 0 0 0 0

(x2, {x2, x3}) {x2, x3} → x4 1 1 0 1 1
{x2, x3} → x5 0 1 1 0

(x2, {x2, x4}) {x2, x4} → x3 0 1 0 0 1
{x2, x4} → x5 1 1 1 1

(x2, {x2, x5}) {x2, x5} → x3 0 1 0 0 1
{x2, x5} → x4 1 0 0 1

(x2, {x2, x3, x4}) {x2, x3, x4} → x5 1 1 1 1 1
(x2, {x2, x3, x5}) {x2, x3, x5} → x4 1 1 0 1 1
(x2, {x2, x4, x5}) {x2, x4, x5} → x3 0 1 1 0 1
(x2, x1) {x2} → x1 1 0 0 0 0

{x2, x3} → x1 1 0 0 0
{x2, x4} → x1 1 0 0 0
{x2, x5} → x1 1 0 0 0
{x2, x3, x4} → x1 1 0 0 0
{x2, x3, x5} → x1 1 0 0 0
{x2, x4, x5} → x1 1 0 0 0
{x2, x3, x4, x5} → x1 1 0 0 0

Table 6: Bags engendered by the element x2 and the features associated with each instance.
The labels of the instance are hidden because they are not provided in a learning context.

29

space. However, since pretopology refers to the power-set P(E), the number of
positive bags engendered by an element x ∈ E is exponential (proportional to
the size of its elementary closure F ∗({x})) thus revealing a major issue for the
learning process.

We have just shown how to construct a dataset based on a target set of
elementary closed sets. With such a dataset, one can apply standard MI al-
gorithms to learn a solution from it. A standard MI approach would require
enumerating all instances to count the number of bags covered, which will not
be a problem with the example given above. But in real-world problems, the
number of positive bags generated is overwhelming. Indeed, we explained that
∀x ∈ E, all sets belonging to the sub-lattice L [{x}, F ∗({x})[engender a pos-
itive bag. Such a number of bags cannot be handled efficiently by a standard
learning algorithm, because it is exponential in the size of F ∗({x}).

A standard greedy MI algorithm would, for each learning step, collect the
set of covered positive bags and remove them so that the next step would focus
only on the remaining bags, and so on until all the positive bags are covered
(or some other endpoint is reached). We note that such an algorithm does not
really care whether know whether a given positive bag is covered or not. Rather,
it cares about how many of them are covered, and whether the end criterion is
met.

We therefore propose a method to count (or estimate) the number of bags
covered by a solution. This method relies on a trick based on the properties
of V-type pretopological spaces. Counting the number of negative bags covered
is not a big problem, so we will not treat it in depth. On the other hand,
counting the number of covered positive bags is a problem that requires much
more effort. We show that while we are able to count the number of positive
bags engendered, it is inefficient to accurately count the number of positive bags
covered by a solution. Thus, we estimate this number by subtracting a (high)
estimation of the positive bags rejected (i.e. not covered) by the solution from
the number of positive bags in the dataset.

4.3. Estimation of true/false positives
In what follows, we propose a method for estimating the number of positive

and negative bags covered by a solution. We begin by describing how to calculate
the total number of positive bags in a dataset from the LPS task. This will
serve as an introduction to estimating the number of positive bags covered by
a solution (i.e. the number of true positives), since the counting mechanism
is roughly similar. For completeness, we also show how to compute the total
number of negative bags engendered. We then show how to compute the number
of negative bags covered by a solution (i.e. the number of false positives).

4.3.1. Computation of the total number of positive/negative bags
The number of positive bags engendered by an element x ∈ E corresponds

to the number of elements in the sub-lattice L [{x}, F ∗({x})[.

∀x ∈ E,
∣∣bags+(x)∣∣ = 2|F

∗({x})|−1 − 1

30

But the sum of the number of positive bags engendered by each x ∈ E
does not always correspond to the total number of positive bags. Indeed, when
several elements share the same elementary closed set, some bags are engendered
by several elements. For example, if F ∗({x}) = F ∗({y}) = {x, y, z}, then the
positive bag identified by (x, {x, y}) is engendered by both elements x and y;
we notice that this bag is also identified by (y, {x, y}).

Considering the set {F ∗1 , . . . , F ∗K} of the K distinct elementary closed sets
of E such that for any x ∈ E there exists a k ∈ {1 . . .K} where F ∗({x}) = F ∗k ;
E can be partitioned into the set A = {A1, . . . AK} of K equivalence classes
where each class Ak is composed of the elements whose closure is F ∗k (i.e. ∀x ∈
Ak, F

∗({x}) = F ∗k).
For each equivalence class Ak ∈ A, the number of positive bags engendered

by the whole subset Ak is computed using the inclusion-exclusion principle.

∀Ak ∈ A,
∣∣bags+(Ak)

∣∣ = |Ak|∑
i=1

(−1)i+1
∑

X∈comb(Ak,i)

∣∣∣∣∣ ⋂
x∈X
L [{x}, F ∗k [

∣∣∣∣∣
=

|Ak|∑
i=1

(−1)i+1

(
|Ak|
i

)
(2|F

∗
k |−i − 1)

where comb(Ak, i) expresses the set of all i-combinations of Ak, or the power
set of Ak reduced to its elements of size i. Thus, the size of the intersection
between all sub-lattices L [X,Ak[, where |X| = i and X ⊆ Ak, is alternately
added and subtracted. Since all the considered sub-lattices have a lower element
of size i and share the same upper element F ∗k , they also share the same size,
which is 2|F

∗
k |−i − 1 thus simplifying the expression of

∣∣bags+(Ak)
∣∣.

Property 3. Let (E, a) be a pretopological space of type V, two sets A,B ∈
P(E), the sub-lattice L [A,F (A)] intersects L [B,F (B)] if and only if A and B
share the same closure.

∀A ∈ P(E), ∀B ∈ P(E), L [A,F (A)] ∩ L [B,F (B)] 6= ∅ ⇔ F (A) = F (B) (2)

Proof. Consider a pretopological space (E, a) of type V and two sets A ∈ P(E)
and B ∈ P(E).

• If F (A) = F (B) = K, then L [A,F (A)] and L [B,F (B)] share at least
their greatest element K. Therefore, F (A) = F (B) ⇒ L [A,F (A)] ∩
L [B,F (B)] 6= ∅.

• If L [A,F (A)] ∩ L [B,F (B)] 6= ∅, then ∃C ∈ P(E) such that A ⊆ C,
B ⊆ C, C ⊆ F (A) and C ⊆ F (B). Then, by definition of a pretopological
space of type V, F (A) = F (C).

A ⊆ C ⊆ F (A)⇒ F (A) ⊆ F (C) ⊆ F (A)
⇒ F (A) = F (C)

31

We can show that F (B) = F (C) in the same way. Therefore, L [A,F (A)]∩
L [B,F (B)] 6= ∅ ⇒ F (A) = F (B).

Property 3 ensures that the total number BAGS+
∗ of positive bags can be

computed by simply summing the number of positive bags engendered for each
equivalence class.

BAGS+
∗ =

∑
Ak∈A

∣∣bags+(Ak)
∣∣

The number of negative bags is much simpler to compute since it does not
require relying on the inclusion-exclusion principle. The number of negative
bags engendered by an element x ∈ E corresponds to the size of F ∗({x}):

|bags-(x)| = |E \ F ∗({x})|
The total number (BAGS−∗) of negative bags is obtained by summing the

number of negative bags engendered by each element

BAGS−∗ =
∑
x∈E
|bags-(x)|

4.3.2. Number of positive/negative bags covered by a solution
We have shown how to calculate the total number of positive and negative

bags, without explicitly generating them. The number of positive bags covered
by a solution Q, noted BAGS+

Q, can be estimated by considering the number
of bags covered by equivalence classes. For each equivalence class Ak ∈ A, an
estimate of the number bags+Q(Ak) of positive bags covered is computed thanks
again to the inclusion-exclusion principle.

bags+Q(Ak) =

|Ak|∑
i=1

(−1)i+1
∑

X∈comb(Ak,i)

∣∣bags+(X)
∣∣− r+Q(X)

where
∣∣bags+(X)

∣∣ is the number of positive bags engendered by the elements
in X, duplicates included; r+Q(X) is the estimated number of positive bags that
are (1) engendered by the elements in X and (2) rejected by Q. Then, the total
number of positive bags covered can be estimated by summing bags+Q(Ak) for
each equivalence class. Estimating the number of positive bags not covered by
a solution (the function r+Q(.)) is a complex task, so we prefer to detail this
process in Appendix A.

BAGS+
Q =

∑
Ak∈A

bags+Q(Ak)

Counting the number of negative bags covered by a solution is a rather easy
task, especially when compared to estimating the number of positive bags cov-
ered. This is mainly due to their small number: each element x ∈ E engenders

32

|E \ F ∗({x})| negatives bags. That is, one bag per element which does not
belong to the elementary closure of {x}.

Given a DNF Q, the set SQ = {FQ({x})}∀x∈E is computed. The number of
negative bags covered by Q for a given element x ∈ E is equal to the number of
unexpected elements in its closure, which is expressed by |FQ({x}) \ F ∗({x})|.
The total number BAGS−Q of negative bags covered by a solution Q can be
computed by summing, for all elements, the number of negative bags covered
by Q.

BAGS−Q =
∑
x∈E
|FQ({x}) \ F ∗({x})|

4.4. The intrinsic quality measure
Based on the count of positive and negative bags covered by a DNF Q, we

define a new quality measure taking into account both the retrieved elementary
closed sets (as the extrinsic quality measure) and the internal behavior of the
pretopological space (E, aQ) of type V.

We designed our quality measure so that DNFs exhibiting a high number of
positive bags covered and a low number of negative bags covered are promoted.
Since the number of positive and negative bags is not of the same order of
magnitude, we consider the log2 of the number of positive bags covered. Our
quality measure is inspired by the tozero score proposed by Blockeel et al. [13],
which is defined by:

h(Q) =
log2(BAGS

+
Q)

log2(BAGS
+
Q) +BAGS−Q + p

where p is, as stated by Blockeel et al. [13], “a parameter that influences how
strongly the measurement is pulled toward zero”. Small values of k tend to favor
high precision, since a small BAGS−Q will have a larger impact, while greater
values of k will be attenuated by a large BAGS+

Q , thus favoring high recall.
We call it an intrinsic quality measure because it takes into account the

result of the closure of any set included in the learned elementary closed sets
(i.e. the lattices L [{x}, F ∗({x})]) as opposed to the extrinsic quality measure
which considers only the elementary closed sets.

4.5. Multiple Instance LPS
LPSMI is a multiple instance variant of Greedy LPS. It takes as input a

set S∗ of target elementary closed sets and a collection V = {V1, . . . , Vk} of k
neighborhoods. LPSMI produces a positive DNF Q such that the elementary
closed sets computed by the pseudo-closure operator aQ(.) best match S∗.

LPSMI builds a positive DNF by adding a new disjunctive clause to the
DNF built in the previous iteration. LPSMI is implemented in the same spirit
as Greedy LPS, they differ mainly in the quality measure they rely on. LPSMI
finds the best clause based by relying on the intrinsic quality measure instead of

33

the extrinsic measure. Thus, we do not show pseudo-code of LPSMI because it
would be identical to Greedy LPS (Algorithm 2) but with the extrinsic measure
replaced by the intrinsic measure. Since the intrinsic quality measure is based
on the number of bags covered (by a potential solution Q), it is in itself the
reason why LPSMI belongs to the MI framework.

4.6. Scalability
As proposed in this paper, the main limitation of the LPS framework is

scalability. Indeed, the evaluation of a pretopological space requires structuring
it, which is often a very expensive operation. Since the solution space is huge,
since it is the same size as the number of combinations of input neighborhoods,
LPSMI has to repeat this costly structuring process many times. In addition,
computing the number of positive bags covered can also be expensive, if many
elements share the same elementary closed set.

The efficiency of LPSMI can therefore be massively improved either by speed-
ing up the structuring algorithm or, better, by limiting the number of structur-
ings. But these solutions often have a negative impact on the overall quality of
the final pretopological space.

Given an already trained pretopological space (E, a) of type V, computing
a single closed could be very expensive. In the worst case, all elements x of the
set E share the same elementary closed set, which is the whole set E, and the
computation of each elementary closed set is done one element at a time. The
structure of such a space would be a ring. In this case, the computation of each
elementary closed set would require applying the pseudo-closure operator |E|
times.

However, since we are currently considering only pretopological spaces of
type V, the computation of elementary closed sets can easily be made faster by
merging compatible subsets of closed sets. Suppose that somee parts of elemen-
tary closed sets have already been computed. For instance, the following two
pseudo-closures are known:

• a({x}) = {x, y}

• a({y}) = {y, z}

We then know, without needing to apply it, that the second application of
the pseudo-closure operator on {x} will include {y, z}. It is therefore possible
to skip a few steps of pseudo-closure, and go directly to the computation of
a({x, y, z}).

More formally, the closed set F (A) of a subset A ⊆ E includes the pseudo-
closure of any subset B ⊆ A.

∀A ∈ P(E),
⋃

B⊆A

a(B) ⊆ F (A)

34

Actually, the following also applies:

∀A ∈ P(E), a

 ⋃
B⊆A

a(B)

 ⊆ F (A)
Clearly, it would not make sense to maintain the list of all subsets of F (A).

But maintaining the list of the kth pseudo-closure step is feasible, k being the
current step. The step k+1 can be approximated by the union of all compatible
subsets in step k.

∀x ∈ E, ∀k ∈ N, a

 ⋃
∀y, ak({y})⊆ak({x})

ak({y})

 ⊆ ak+1(x)

Such an approximation has the potential to drastically reduce the number
of pseudo-closure applications. For example, in the worst case, the number of
computation step would go from |E| to only log2(|E|) per element.

However, the main concern comes from the learning algorithm, as we ob-
served in practice that the propagation speed to the elementary closed sets is
reasonable. The main issue comes from the fact that the solution space is very
large, especially given the small size of the inputs. If minimizing the comput-
ing tine is important, a solution could be to limit the depth of the beam search
strategy, which would lead to smaller conjunctive clauses. This would save time,
but could also introduce many false positives. Another possible improvement
to the current solution space exploration strategy could be to stop evaluating
a conjunctive clause as soon as it moves too far away from the target, thus
eliminating unnecessary pseudo-closure computations.

One could also sample the candidate conjunctive clauses in order to evaluate
a fixed number of solution at each iteration of the training loop. But it is not
clear how the sampling should be done, and it is not clear whether this can be
done without eliminating too many candidates. Finding a cheap heuristic for
sorting candidate clauses, as in the A∗ algorithm [42], would certainly reduce
the number of calls to the structuring method. But such a heuristic should not
depend on elementary closed sets to be really efficient. Unfortunately, such a
function is yet to be found.

As the time of writing, there is no satisfactory solution for efficiently learning
a pretopological space. Laborde [47] proposes an alternative learning algorithm,
but it remains rather restrictive since it assumes that there is an exact solution,
which is far from realistic. Its proposal consists in first extracting the set of
forbidden conjunctions. A forbidden conjunction is a conjunction which, if it
were part of the DNF defining the pretopological space, would introduce false
positives. Therefore, such clauses cannot be part of the final DNF if an exact
solution is expected. The final DNF is constructed by gathering all the others
conjunctive clauses into one large is disjunction. This algorithm is undoubtedly
faster than LPSMI since it does not requires structuring the space at all, whereas
LPSMI must do so for each candidate clause. However, it supposes that an

35

exact solution exists. Specifically, if a neighborhood contains a single incorrect
connection, then it cannot be part of the resulting DNF. In practice, most
neighborhoods contain errors, which is what motivated the combining approach
of the LPS framework. Therefore, this algorithm, as presented, would surely
produce an empty DNF when trained on real data. Nonetheless, this approach
still holds great promise, but, while counter-intuitive, it must allow erroneous
neighborhoods to be part of the final combination to be usable. One could argue
that relaxing this constraint should not be difficult, since instead of prohibiting
all clauses that engender at least one error, it should be possible to prohibit
only clauses that engender at least k errors. This is true, but detecting an error
is very cheap, whereas counting them requires structuring, or at least partial
structuring, which would be contrary to the original intent.

5. Experiment I — Retrieval of an underlying pretopological model

This experiment consists of evaluating the performance of different algo-
rithms on the task of retrieving a pretopological model when the data is known
to be modeled by a pretopological space.

5.1. Learning an underlying pretopological model
We constructed a method for learning a propagation model based on the so-

called intrinsic measure, as opposed to the extrinsic measure used in previous
contributions. We assume that, because the intrinsic measure takes into account
propagations on sets of elements (and not only on singletons), it better captures
both the quality and the potential of a model under construction and is more
suitable than the extrinsic measure. In order to validate these hypotheses,
and the efficiency of the associated MI approach, we propose an experimental
validation. This experiment consists in learning a propagation phenomenon,
for example a forest fire. We seek to evaluate the performances of each LPS
approach on the task of retrieving, or learning, an underlying pretopological
space.

We consider a rectangular grid containing a set E of cells. We also consider a
collection V = {V1, . . . , V8} of eight neighborhoods, corresponding to the eight
Moore neighborhoods represented in Figure 11. Given a known propagation
model aQ∗(.), we construct the pretopological space (of type V) (E, aQ∗). Our
goal is to learn a positive DNF Q such that aQ∗(.) and aQ(.) produce similar
closed sets.

We constructed three different models, aptly named according to our esti-
mation of their learning difficulty:

• Q∗Simple = q4 ∨ q6 ∨ q7

• Q∗Medium = (q4 ∧ q6) ∨ (q5 ∧ q8) ∨ q7

• Q∗Hard = q3 ∨ q5 ∨ (q2 ∧ q4) ∨ (q4 ∧ q7) ∨ (q6 ∧ q7 ∧ q8)

36

V1

V2

V3

V4

V5

V6

V7

V8

Figure 11: Moore’s neighborhoods

We then derive three pseudo-closure operators (denoted aQ∗Simple
, aQ∗Medium

and aQ∗Hard
) to learn from these DNFs (Q∗Simple, Q

∗
Medium and Q∗Hard respec-

tively). Each pseudo-closure operator is used to model the propagation of a
forest fire based on a percolation process [7]. Each DNF models a different
wind-influenced propagation process. For example, Q∗Simple models a forest fire
under the influence of a southwest wind: a cell x ∈ E burns when a cell located
to its north, east or northeast burns, so the fire propagates to the southwest
corner of the grid. Figure 12 shows the propagations obtained with Q∗Simple,
Q∗Medium and Q∗Hard, one clearly observes the fire modeled by Q∗Simple propa-
gating towards the south-west corner.

For each of these models, we constructed a set G = {G10.i}i∈{0...6} of seven
15 × 15 grids filled with an increasing percentage of obstructed cells. An ob-
structed cell is a cell x ∈ E such that all its neighborhoods contain only itself and
that the other neighborhoods do not contain this cell, i.e., ∀Vi ∈ V, Vi(x) = {x}
and ∀y 6= x, ∀Vi ∈ V, x /∈ Vi(y). Such a cell can neither be expanded nor
reached by applying a pseudo-closure operator. Thus, G0 contains 0% of ob-
structed cells, G10 contains 10% of obstructed cells, and so on unitl G60. Let us
specify that the obstructed cells in Gi+1 are those of Gi plus additional 10%.
Then, for each grid Gi ∈ G, we simulated the propagation of a fire ignited in
each cell x ∈ Gi. The resulting set of burned cells was then assigned to the value
of FQ∗({x}). Some of these simulations are shown in Figure 12. The green cells
are combustible cells, the gray ones are obstacles (i.e. obstructed cells). The
starting point of the fire is designated by the salmon-colored cell and burned
areas by the red cells.

For each experiment we first picked 30% of the inflammatory cells, and then
computed their expansion (i.e., elementary closed sets) according to each pro-
posed model to construct the set S∗ of target elementary closed sets. Then, S∗
and V were introduced as input to each of the LPS approaches — Genetic LPS
(numerical and logical formalisms), Greedy LPS and LPSMI — to compare their
results. Each algorithm was tested with two sets of parameters: the two Genetic
LPS were tested with an initial population of 100 and 500 individuals; Greedy
LPS and LPSMI were tested with a beam search of size 1 and 5. Finally, each ex-
periment was performed ten times, so for each Q ∈ {Q∗simple, Q

∗
medium, Q

∗
hard},

37

Trees Fire Obstacles Origin

Figure 12: Result of 9 simulations: from top to bottom, fire propagation is modeled by,
respectively, QSimple, QMedium and QHard. From left to right, each grid is filled with 10%,
30% and 60% obstacles.

we built ten collections of seven grids. Figures 13 to 15 show the average results
of each experiment: the F-measure obtained is indicated on the y-axis and the
execution time is proportional to the size of each point (the smaller the better).

These graphs show that LPSMI gets the best score most of the time. We also
notice that a larger beam size provides better results with a very slight increase
in execution time: with a beam search of size 5, LPSMI is able to retrieve
the entire target solution without errors (its F-measure is equal to 1)! Greedy
LPS is the second best approach in terms of F-measure and offers quite similar
performances. However, the scores obtained by Greedy LPS do not seem to be
influenced by the size of its beam search, so unlike LPSMI, we cannot expect to
obtain better results by simply expanding the beam. The quality of the result
and the execution time of the Logical Genetic LPS are both very sensitive to
the size of the initial population. Thus, one can expect excellent results if one’s
population is large enough, but at the cost of huge execution time. In some
cases, it took hours to get a result while it was only a matter of seconds for

38

● ● ● ● ● ● ●● ● ● ● ● ● ●

●

● ● ● ●

● ●

●

● ●
● ●

● ●

●
●

●
●

●

●

●
● ●

●

●

●

● ●

●

●

●

●

●

●
●0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50 60

Obstacles count

F
m

ea
su

re

Execution time (in seconds)

● ●500 1000 1500

Algorithm

●

●

●

●

●

●

●

●

Multiple Instance LPS
beam size = 5

Multiple Instance LPS
beam size = 1

Greedy LPS
beam size = 5

Greedy LPS
beam size = 1

Logical Genetic LPS
initial population = 500

Logical Genetic LPS
initial population = 100

Numerical Genetic LPS
initial population = 500

Numerical Genetic LPS
initial population = 100

Figure 13: Performances of LPS algorithms on the learning task QSimple.

Greedy LPS and LPSMI. Finally, Numerical Genetic LPS performed the worst,
both in terms of F-measure and execution time. The only difference between
Numerical Genetic LPS and Logical Genetic LPS is the model they learned,
the former learns a weight vector while the latter learns a positive DNF. We
therefore attribute its poor performance to the inadequate and less expressive
numerical and linear approach.

This experiment clearly illustrates and confirms the motivation of the present
contribution: first, a positive DNF is more appropriate than a numerical vector
to model an expansion process; second, it shows that while genetic algorithms
have proven to be successful, their prerequisites (a huge initial population) are
too large in our context; third, we compare two greedy algorithms: LPSMI and
Greedy LPS which both learn a positive DNF but in different contexts. LPSMI
is a multiple instance algorithm while Greedy LPS is a classical supervised
algorithm; they use different quality measures: LPSMI finds the clause that
maximizes our intrinsic quality measure while Greedy LPS relies on an extrinsic
measure. This experiment shows that our MI approach retrieves a target model
more efficiently than more classical approaches, regardless of the complexity of
the model to be learned.

39

● ● ● ● ● ● ●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●
● ●0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50 60

Obstacles count

F
m

ea
su

re

Execution time (in seconds)

● ● ●1000 2000 3000 4000

Algorithm

●

●

●

●

●

●

●

●

Multiple Instance LPS
beam size = 5

Multiple Instance LPS
beam size = 1

Greedy LPS
beam size = 5

Greedy LPS
beam size = 1

Logical Genetic LPS
initial population = 500

Logical Genetic LPS
initial population = 100

Numerical Genetic LPS
initial population = 500

Numerical Genetic LPS
initial population = 100

Figure 14: Performances of LPS algorithms on the learning task QMedium.

● ●
●

● ● ● ●

●

●

●

●

● ● ●●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●
●0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50 60

Obstacles count

F
m

ea
su

re

Execution time (in seconds)

● ●1000 2000

Algorithm

●

●

●

●

●

●

●

●

Multiple Instance LPS
beam size = 5

Multiple Instance LPS
beam size = 1

Greedy LPS
beam size = 5

Greedy LPS
beam size = 1

Logical Genetic LPS
initial population = 500

Logical Genetic LPS
initial population = 100

Numerical Genetic LPS
initial population = 500

Numerical Genetic LPS
initial population = 100

Figure 15: Performances of LPS algorithms on the learning task QHard.

40

6. Experiment II — Learning lexical taxonomies with LPSMI

This experiment shows a concrete case of using the LPSMI algorithm in AI,
where the goal is to learn a structuring model for the task of Lexical Taxonomy
(LT) reconstruction.

6.1. Task and related works
The automatic extraction of lexical taxonomies is a widely studied research

area. This task consists in structuring a set E of terms into a hierarchy of
concepts according to the data found in a corpus C. Such a structure takes
the form of a Directed Acyclic Graph (DAG) using hypernym-hyponym pairs
(x, y) ∈ E × E such that x is an hypernym of y. The set E of terms can either
be given as input or automatically extracted from the corpus C.

Semantic relations, such as the hypernymy relation, can be inferred quite
effectively from term collocations. For example, Sanderson and Croft [67] pro-
posed to compute statistics on words found in a corpus to infer subsumption
relations between these words. Given two terms x and y, x subsumes y when x
is highly likely to occur in a document when y is already known to occur in the
same document. For example, if the term “tulip” is found in a document, then
it is highly likely that the term “flower” is present as well, since one can hardly
mention the concept of tulip without mentioning the broader concept of flower.
The reverse is not true, since a document about flowers can refer to tulips, but
also to roses or geraniums.

Hearst [43] proposed to extract hypernym-hyponym pairs by using carefully
crafted patterns, such as “y is a x”, where x and y are two terms. If a pair
(x, y) instantiates such a pattern in the corpus, it means that x is likely to be
a hypernym of y. This type of approach requires a set of input patterns, which
can either be manually constructed [43, 46] or automatically extracted [39, 68].

Pattern-based approaches generally produce taxonomies with good edge ac-
curacy, which means that an extracted hypernym-hyponym pair is usually cor-
rect. However, the edge coverage is usually low, which means that the taxonomy
lacks many edges.

While these methods rely on raw text corpora to extract hypernym-hyponym
pairs, other approaches take advantage of large semantic resources or networks,
such as Wikipedia [59], WordNet [57] or BabelNet [58], to retrieve these pairs.

OntoLearn [72] relies on Word-Class Lattices to select candidate definitions,
which are then filtered according to the domain of interest. Concepts and hyper-
nym relations are extracted from this set of definitions. The graph of relations
is then post-processed to restructure the graph into a tree (graph pruning) or
even a DAG (edge recovery).

ExTaSem! [31] extracts candidate hypernyms by leveraging definitions found
in BabelNet. This first step produces a set of noisy hypernym-hyponym pairs,
which is passed to a second step exploiting syntactic features (from the textual
definitions used earlier) to produce candidate paths from terms to their most
specific hypernyms. These paths are then weighted according to the similarity

41

between the vectors trained with SenseEmbed [44], then filtered according to
an empirical threshold. A lexical taxonomy finally emerges from the remaining
paths.

MultiWiBi [34] proposes to build a bitaxonomy from all the pages and cate-
gories present in Wikipedia. A bitaxonomy is defined as a pair (TP , TC) where
TP is a taxonomy of Wikipedia pages and TC a taxonomy of Wikipedia cate-
gories. MultiWiBi first builds a partial taxonomy of pages by extracting the
hypernyms from the first sentence of each page. According to Wikipedia guide-
lines, the first sentence is supposed to be a short textual definition of the page
title. The second phase of MultiWiBi is initialized with the pair (TP , TC) where
TP is the output of the first phase and TC is a pruned version of the Wikipedia
category taxonomy. Then, each taxonomy is used alternatively to enrich the
second. For example, to enrich TC , its concepts are first mapped to concepts
in TP , then the super-concepts are gathered by climbing the taxonomy and
remapped to concepts in TC .

The ContrastMedium algorithm, presented by Faralli et al. [32] also relies
on semantic resources other than raw text corpora. This method provides a
comprehensive pipeline for inducing a taxonomy by extracting structural in-
formation from a noisy semantic network linked to a reference (companion)
taxonomy.

Knowledge graphs contain typed relations between entities, where an entity
is a node of the graph and a relation is an edge. They are usually stored as
triples (h, r, t) where h and t are two entities and r is a relation; h is called
the head (the source node) and t is the tail (the destination node). A lexical
taxonomy can be seen as a knowledge graph restricted to hypernymy relations
(or more generally, to semantic relations). As such, work done on knowledge
graphs could be applied to lexical taxonomies.

Recent work proposes to learn embeddings for both entities and relationships
in a vector space [73]. These embeddings have proven useful for detecting and
capturing typed relations between entities. Entity embeddings are often vectors
capturing a set of latent features, while relation embeddings can be vectors
or matrices. In what follows, entities are noted in normal font (x) and their
embeddings with the same letter in bold face font (x).

A lot of work has been done on translation-based models, such as TransE [18].
These approaches share a common principle: given a triple (h, r, t), the embed-
ding t must be not too far from h+ r. Therefore, these approaches often learn
embeddings such that the distance between t and h+ r is minimized.∑

(h,r,t)∈S

‖h+ r − t‖22

where S is the set of training triples.
In TransE [18], both entity and relation embeddings are trained in the same

space, and a triplet (h, r, t) is modeled by the linear transformation t ≈ h+ r.
It appears that such a simple modeling is quite powerful and performs almost
as well as more expressive models, such as RESCAL [60] or SME [17], which

42

require much more computational power. However, TransE cannot reliably learn
many-to-one, one-to-many and many-to-many relations. Given an entity h and
a relation r, if they appear in at least two triples (h, r, t1) and (h, r, t2), then
t1 and t2 must share the same embeddings, even though they are very different
entities.

Other approaches focus on modeling semantic relations by learning word
embeddings from large corpora. Word embeddings are trained, most of the time,
according to the distributional hypothesis [40], which states that semantically
similar terms appear in similar contexts. Therefore, term embeddings appearing
in similar contexts are close to each other.

Modeling semantic relations between word embeddings can be done in the
same way as modeling typed relation between entity embeddings. These ap-
proaches typically rely on pre-trained word embeddings on large-scale corpora,
such as word2vec [55] or GloVe [64], which have shown great abilities to preserve
semantic relations. For example, Mikolov et al. [56] and Levy and Goldberg
[51] have shown that some relations can be modeled as simply as shift vectors.
Pocostales [65] proposed to apply this principle to extract hypernym-hyponym
pairs. His protocol is quite simple: given a set of known hypernym-hyponym
pairs (x, y), a hypernym vector h is computed as the average offset between
each vector representation: x and y.

Fu et al. [37] proposed a more fine-grained approach where multiple projec-
tion matrices, instead of a single hypernymy vector, are trained based on the
relative positions of the two embeddings. Given a word embedding y and a pro-
jection matrix φ, the hypernym embedding of y should be located near φ(y),
the projection of y by φ.

These methods are similar to the translation-based methods presented above,
except that the relation embeddings are computed after entity/word embeddings
are learned, and not at the same time. As such, one might expect better quality
of embeddings from the translation-based approaches. However, it is difficult,
if not impossible, to reuse these embeddings to discover missing relations in a
knowledge graph different from the learning one. Pre-trained word embeddings
are much more versatile since they are not tied to specific corpora. The meaning
of words often remains the same in different corpora, so word embeddings can
be reused on different corpora. On the other hand, entity embeddings are most
often linked to the knowledge graph they belong to, which makes it more difficult
to transfer them to other graphs.

While each approach is capable of extracting valuable pieces of information,
none of them exhaustively models the complex hypernym-hyponym semantic
relationship. However, each of them captures a piece of the truth. Our postulate
is that a wise combination of them could allow a more accurate modeling of the
hyponym-hypernym relationship between terms in a given domain. Cimiano
et al. [26] has already shown that, even with a very simple combination strategy,
combining multiple data sources is very profitable.

Largeron and Bonnevay [48] showed that the underlying structure of a V-type
pretopological space is a DAG, thus matching with the structural expectation of

43

a lexical taxonomy. Next, Cleuziou and Dias [28] made use of the (multi-criteria
aspect of the) pretopology theory for the LT extraction task. They define, suc-
cessfully, a semi-supervised framework for automatically learning pretopological
spaces that structure a set of terms into a DAG.

In the present experiment, we propose to apply the LPSMI algorithm for
the LT task reconstruction. Given a set E of terms and a target (also called
reference) lexical taxonomy T of terms in E, our goal is to learn a model that
structures E as T . The LPSMI algorithm produces a V-type pretopological
space (E, aQ) where E is a list of terms of a given domain and aQ(.) is a logical
pseudo-closure operator defined by a DNF Q and modeling the propagation of
the hypernymy relation from one subset of terms to another.

The objective of this experiment is mainly to show the potential of the
tools offered by the pretopology theory to model complex semantic relations;
we focus on particular on the potential of the newly proposed LPSMI algorithm.
Our goal is not to compete with existing LT extraction approaches. Instead, we
propose a versatile and highly extensible framework taht allows for the combina-
tion of multiple, heterogeneous approaches, and we show that this combination
outperforms each individual approach. We furthermore investigate whether a
pretopological model learned on a set E of terms can be applied on a more
generic domain and/or a larger set E′ of terms, thus considering not only the
task of LT reconstruction but also the more exciting task of LT extraction.

6.2. Outline of the experiment
Given a set E of terms in a domain and a target lexical taxonomy T to

reconstruct, we propose to learn a semantic propagation model that structures
E into a DAG as similar to T as possible. We consider that a given term
x ∈ E propagates its meaning to all of its descendants in T (transitivity). Thus,
for each term x ∈ E, its target elementary closure, F ∗({x}), is the set of its
hyponyms, i.e. x itself and the set of terms below x in T . Let S∗ = {F ∗(x)}x∈E
the set of all target elementary closed sets, the LPSMI algorithm is designed for
the task of learning a pseudo-closure operator aQ(.) modeling the propagation
of the hypernymy relation.

The LPSMI algorithm offers an elegant framework for combining several
state-of-the-art hyponym/hypernym extraction methods within a single pre-
topological process. We argue that this allows our model to more accurately cap-
ture the propagation of semantic relations between sets of terms. To accomplish
this task, several approaches (algorithms) dedicated to hyponym/hypernym ex-
traction are considered, their results are converted into neighborhood relations,
and then used as inputs of the LPSMI algorithm. Given a hyponym/hypernym
extraction method M , a neighborhoods relation RM is defined such that for
all terms x, y ∈ E, xRMy means that x is a direct hypernym of y accord-
ing to the relation RM . The neighborhood VM (y) of the term y is given by

44

VM (y) = {y} ∪ {x ∈ E | xRMy}. Thus, VM (y) contains y4 and its (direct)
hypernyms according to the hyponym/hypernym extraction method M .

The LPSMI algorithm is highly generic and extensible in the sense that any
hyponym/hypernym extraction method (existing or future) can be easily in-
corporated into the LPS framework to serve the learning of the pseudo-closure
operator. Our approach could be even more flexible by considering predicates
that are not necessarily defined by neighborhood relations, as proposed by Cail-
laut et al. [22].

The experiment is conducted to validate the following three hypothesis:

1. the benefits of the multi-criteria combination. We believe that
the combining existing methods will produce better results. Therefore,
we compare the lexical taxonomies extracted by individual methods with
those obtained by combining all the methods considered in the LPSMI
process;

2. the relevance of pretopology theory for modeling lexical taxonomies.
To this end, we compare the results obtained with pretopological modeling
to those obtained with classical decision making methods (Support Vector
Machine and Decision Tree);

3. the model-domain dependency. The taxonomy of a given domain E
should be more easily retrievable by a model trained on a subdomain of E
than another model trained on a completely disjoint domain. This would
show that each domain has its own “implementation” of the same semantic
relation.

6.3. The set of neighborhood relations
In the following experiment, five state-of-the-art approaches are considered

that result in five neighborhood relations.

RSand.. A first relation, RSand., is inspired by the work of Sanderson and Croft
[67]. The authors propose to build a concept hierarchy based on the collocation
probability of each pair of a set of terms. A term x is assumed to subsume
another term y if the following property holds: P (x | y) ≥ 0.8 ∧ P (y | x) < 1.
Our relation RSand. differs from the original work by two aspects:

• the set of terms is known in advance and not extracted automatically,

• we do not rely on a manually defined threshold.

The relation RSand. is built on a set of terms from a common domain, and
thus known to be somehow semantically related. Furthermore, we know that our
target structures are trees-like: a term y usually has a unique direct hypernym

4The reflexivity of the neighborhood function is imposed by the pretopological formalism.

45

x. This means that given a set E of terms, there are approximately |E| pairs
(x, y) where x is a direct hypernym of y. This explains our choice to keep only
the |E| most probable relations. So, given a set of pairs (x, y) of terms in the
set E, a relation xRSand.y exists if the following two conditions are satisfied :

x RSand. y ⇔

{
P (y | x) < 1 and
|{(xi, yi) ∈ E × E | P (xi | yi) ≥ P (x | y)}| ≤ |E|

In the present application, the collocation probabilities are computed from
the english Wikipedia5 dump dated October 1, 2020: two terms are collocated
if they appear in the same Wikipedia page.

Rpatterns. The second relation Rpatterns is based on syntactic pattern extrac-
tion methods [43]. Six lexical patterns, known for their accuracy [46], are con-
sidered: “y is a x”, “y is an x”, “y are x that”, “x such as y”, “x like y”, “x
including y”. Two terms x and y are in relation xRpatterny if and only if they
instantiate at least one of the four patterns on a given corpus. In the following
experiment, we extract these patterns from the same Wikipedia corpus as for
the relation RSand..

Rstrmatch. The relation Rstrmatch is based on the computation of a similarity
on the character strings of two terms. Many terms actually look like their direct
hypernym: for example “craft” is an hypernym of “aircraft”. Given two terms
x and y, we split each word into 3-grams and compute the ratio of tokens in x
that are also in y. Two terms are in relation xRstrmatchy if and only if 80% of
the tokens from x are included in those from y.

The following two relations are based on word embeddings. Given a term y
and its corresponding embedding y, we assume that a linear transformation h
such that h(y) ≈ x exists, where x is the embedding of a hypernym x of y. We
trained these transformations on a set of pre-trained embedding of word2vec6.

RmeanH . The first embedding-based relation, RmeanH , is constructed by ap-
plying a translation on the embedding of each term, as proposed by Pocostales
[65].

Given a target lexical taxonomy T , we first extract its set of direct hypernym-
hyponym pairs (xi, yi) and their corresponding embedding pairs (xi,yi). We
assumed that the hypernymy relation is preserved by these word embedding
representations and can be retrieved by computing a shift between the hyponym
embedding yi and the hypernym embedding xi. For each pair of embedding
(xi,yi) found in the previous step, a hypernymy vector hi is computed: hi =
xi − yi.

5https://www.wikipedia.org/
6https://code.google.com/archive/p/word2vec/

46

Finally, the average hypernymy vector is computed: h = 1
n

∑n
i=1 hi (with

n the number of paris extracted from T). h is then used to predict the direct
hypernym x for each new term y. Two terms x and y are related xRmeanHy if
and only if x = argminz∈E

∥∥z − (y + h)
∥∥
2
; the predicted hypernym of y is the

term from E whose embedding is closest to y + h. In order to limit the false
positive rate, we also introduced a maximum distance beyond which two terms
are not considered as semantically linked. This threshold is set to 0.5 in our
experiments.

RFu. The second relation based on word embeddings, RFu, relies on the work
of Fu et al. [37]. The authors assume that the hypernymy relation between two
terms x and y dependends on the relative position of their respective embeddings
x and y.

They propose to compute a clustering of hypernym-hyponym pairs (x,y)
according to the offset vector x−y. Then, for each cluster i, they train the linear
projection φi projecting the embedding of an hyponym y to the embedding of
its hypernym.

A term x is considered a hypernym of another term y if the embedding x is
close to φi(y), where i is the cluster minimizing the euclidean distance between
x− y and its center. We used k-means to cluster the set of pairs into k groups.
It turned out that k = 5 was sufficient because our datasets were small enough.
We set the threshold used to determine whether x is close enough to φi(y) to
1. This threshold was found empirically and may be inappropriate if applied to
other data. Finally, the relation RFu can be defined as below:

∀x ∈ E, ∀y ∈ E, xRFuy ⇔ ‖x− φi∗(y)‖2 ≤ 1

where i∗ = argmini∈1...k(‖ci − (x− y)‖2), with ci the center of the cluster i.

6.4. Experimental Data and Results
We applied the LPSMI algorithm for the reconstruction of four domains

extracted from WordNet [57]: vehicles (108 terms), plants (554 terms), food
(1486 terms) and animals (688 terms). Three sub-domains per domain were
also extracted, as reported in Table 7.

We fed the LPSMI algorithm with a set of five predicates defined by the
neighborhood relations described in the previous sections, as explained in Sec-
tion 2.3.2. The three relations RSand., Rpatterns and Rstrmatch are acquired,
each, by an unsupervised data extraction process from raw texts. We consider
here the Wikipedia corpus. On the other hand, both RmeanH and RFu must be
trained. Depending on the objective, they will be trained on different datasets.
In the case of the task taxonomy reconstruction (Section 6.4.1), whose objective
is to train a model to extract a given taxonomy, the train and test datasets are
the same. This task is a preliminary to the more interesting taxonomy extraction
task (Section 6.4.2), whose objective is to extract a new taxonomy by applying
previously trained models.

47

Full domains Sub-domains Size Edges Transitive edges Depth

vehicles vehicles 108 109 413 8
wagons 7 6 10 4
crafts 35 34 103 6
motor vehicles 30 30 57 5

plants plants 554 553 2294 12
bulbous plants 28 27 56 4
aquatic plants 22 21 32 4
grasses 23 22 40 5

food food 1486 1527 6955 9
candy 63 62 85 4
bread 113 112 229 5
snack food 24 23 45 4

animals animals 688 689 4330 14
reptiles 39 130 130 6
fish 56 240 240 7
birds 119 353 353 6

Table 7: Sizes of the different extracted sub-domains

RmeanH and RFu are trained on a large set of embeddings, which cover a
large portion of the terms present in our three datasets (some terms are missing,
especially multi-word terms). Since we use the same set of embeddings to train
these relations, regardless of the target domain, a relation trained on one domain
can be transferred as is to predict relations on another domain. For example,
an average hypernym vector learned on crafts can be transferred as is to the
domains vehicles or plants. This is not the case with modern embedding-based
approaches, such as TransE [18], which are not designed to reuse embeddings on
a different task. Therefore, embeddings trained on the domain vehicles could
not be transferred to structure the domain food, mainly because the terms in
food are not part of the domain vehicles. This is why such approaches are
excluded from our study.

We modified the stopping criterion of the LPSMI algorithm to stop adding
clauses to the logic formula when the correspondence with the target elementary
closed sets starts to decrease (i.e. when the F-measure of the solution decreases).

6.4.1. Learn the hypernymy relation of a given domain
We used LPSMI to learn a pretopological model on each subdomain of Ta-

ble 7 by combining the neighborhood relations described in the previous subsec-
tion. We use the recall, precision, and F-measure to evaluate the quality of each
model. Recall and precision are defined in terms of the number of well retrieved
relations, based on the domain reference taxonomy. A hypernym-hyponym pair
(x, y) is retrieved if and only if y appears in the learned elementary closure

48

FQ({x}). Such a relation means that the model has learned that x is an hy-
pernym of y. This relation is correct if the same relation exists in the reference
taxonomy, i.e. if y ∈ F ∗({x}).

We made the decision to ignore reflexive relations (x is a hypernym of itself),
which are required by the pretopology formalism, as this would excessively in-
flate the F-measure and thus not reflect the actual performance of our models.
Therefore, we define the F-Measure as follows:

Recall =
∑

x∈E |F ∗({x}) ∩ FQ({x})| − |E|∑
x∈E |F ∗({x})| − |E|

Precision =

∑
x∈E |F ∗({x}) ∩ FQ({x})| − |E|∑

x∈E |FQ({x})| − |E|

F-Measure = 2 · P +R

P ·R
First and foremost we show that the combination of various lexical taxonomy

extraction methods within a structuring model learned by the LPSMI algorithm
increases the quality of the output taxonomy. Each neighborhood relation was
used to construct a lexical taxonomy for each domain and subdomain, resulting
in five taxonomies per subdomain. These taxonomies are extracted by first
transposing the adjacency matrices of the neighborhoods, and then computing
their transitive closures. We compared the quality of these taxonomies with the
taxonomies extracted by applying LPSMI. The results in Table 8 clearly show
that the taxonomies extracted by a pretopological combination of neighborhood
relations outperform each of the lexical taxonomies constructed from a single
data source.

These results experimentally validate the first hypothesis on the benefits to
be expected from a multi-criteria combination. Furthermore, in order to eval-
uate the relevance of the pretopological combination itself, we seek to compare
two approaches for learning structures: on the one hand, (supervised) learning
of a structuring model (e.g. LPS) and on the other hand, (supervised) learn-
ing of relations (e.g. by traditional classifiers such as Support Vector Machine
(SVM) or Decision Tree (DT)).

Although recent work tends to rely on neural Language Models to learn
semantic relations, the comparison with SVM and DT is actually appropriate
to demonstrate the benefits of LPSMI. LPSMI and SVM indeed share some
common behaviors since they can both be used to learn non-linearly separable
classes. SVM does this by applying a kernel mathematical function to its in-
put while LPSMI relies on a learning criterion similar to the information gain
used in DT. However, learning a structuring model, as LPSMI does, allows to
integrate prior constraints on the final induced structures; for example, the pre-
topological (V type) formalism on which the LPSMI method is based guarantees
the generation of structures in the form of DAGs. In comparison, approaches
that learn relations do not allow to integrate these constraints; the relations
between elements are predicted independently of each other, and the structure
derived from these relations does not offer any guarantee to satisfy the expected

49

Sanderson patterns meanH Fu strmatch LPSMI

vehicles 0.284 0.255 0.343 0.512 0.126 0.621

wagons 0.822 0.006 0.574 0.673 0.185 0.951

crafts 0.384 0.295 0.403 0.692 0.216 0.801

motor vehicles 0.362 0.036 0.294 0.353 0.165 0.671

plants 0.253 0.124 0.046 0.472 0.055 0.531

bulbous plants 0.063 0.006 0.045 0.063 0.072 0.121

aquatic plants 0.291 0.062 0.054 0.005 0.005 0.062

grasses 0.146 0.443 0.355 0.702 0.374 0.861

food 0.213 0.065 0.026 0.252 0.124 0.391

candy 0.373 0.006 0.373 0.412 0.325 0.711

bread 0.313 0.006 0.235 0.313 0.382 0.661

snack food 0.224 0.006 0.273 0.302 0.195 0.451

animals 0.144 0.193 0.085 0.531 0.056 0.352

reptiles 0.254 0.273 0.165 0.432 0.066 0.531

fish 0.293 0.145 0.214 0.482 0.136 0.561

birds 0.184 0.303 0.155 0.582 0.155 0.661

Average rank 3.31 4.62 4.38 2.38 4.81 1.12

Table 8: Comparison of F-measures obtained by individual state-of-the-art methods with the
(combining) LPSMI approach. The scores are labeled according to their rank.

properties (e.g. absence of cycle).
The consideration of the global structure in the learning process thus distin-

guishes the learning of structuring models from the learning of relations. For
example, SVM or DT classifiers "decide" a relation on a pair of elements using
only the description of this pair. On the contrary, the LPS method allows to
"contextualize" this decision rule by relying on all the elements of the closure
under construction.

In the following experiment, we use Support Vector Machine (SVM) and De-
cision Tree (DT) the implementations provided respectively, by the R packages
e1071 7 and rpart8. We have performed two experiments per learning algorithm:
the first one aims at comparing the performances of models learned by LPSMI,
SVM and DT on the same (binary) relations. The second one aims at discover-
ing if better results can be obtained without the thresholding step required by
LPSMI, i.e. with continuous data instead of binary neighborhoods.

We found out that performance of the two types of models (binary and con-
tinuous) were not significantly different. In fact, the SVM trained on binary
data performed slightly better than its counterpart trained on continuous data,
while the DT performed better with continuous data. In order to remain con-

7https://CRAN.R-project.org/package=e1071
8https://CRAN.R-project.org/package=rpart

50

SVM Decision Tree LPSMI

domain R P F R P F R P F

vehicles 0.44 0.92 0.59 0.43 0.98 0.60 0.45 0.97 0.62
wagons 0.90 1.00 0.95 0.70 1.00 0.82 0.90 1.00 0.95
crafts 0.67 0.88 0.76 0.79 0.69 0.73 0.71 0.91 0.80
motor vehicles 0.64 0.72 0.68 0.22 1.00 0.36 0.69 0.64 0.67

plants 0.34 0.74 0.47 0.34 0.74 0.47 0.43 0.67 0.53
bulbous plants 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.50 0.12
aquatic plants 0.03 1.00 0.06 0.03 1.00 0.06 0.03 1.00 0.06
grasses 0.78 0.97 0.86 0.78 0.97 0.86 0.78 0.97 0.86

food NA NA NA NA NA NA 0.26 0.81 0.39
candy 0.58 0.92 0.71 0.58 0.92 0.71 0.58 0.92 0.71
bread 0.52 0.91 0.66 0.52 0.91 0.66 0.52 0.91 0.66
snack food 0.29 0.81 0.43 0.29 0.81 0.43 0.31 0.82 0.45

animals 0.53 0.70 0.60 0.38 0.85 0.53 0.22 0.88 0.35
reptiles 0.32 0.95 0.48 0.28 1.00 0.43 0.37 0.96 0.53
fish 0.47 0.68 0.55 0.37 0.68 0.48 0.48 0.68 0.56
birds 0.50 0.94 0.66 0.50 0.94 0.65 0.51 0.93 0.66

Table 9: Recall, precision and F-measure scores obtained by models learned by SVM, Decision
Tree and our proposal, LPSMI, for the task of capturing the hypernymy relation of a given
domain.

sistent with LPSMI, we present only results obtained by the models trained on
binary data.

Since SVMs and DTs expect tabular data as input instead of a collection of
neighborhoods, we transformed our datasets such that the instances are pairs
(x, y) and their class labels are 1 if x is a hypernym (direct or not) of y, 0 other-
wise. Each instance has five features corresponding to the five neighborhoods.
Since, unlike a pretopological model, SVM and DT do not mimic a propagation
process and therefore cannot reuse information gathered in the previous steps
(since there is only one step), the feature values in the transformed datasets are
obtained from the transitive closures of the neighborhoods. Thus, the SVM and
DT models were trained on data pre-propagated. A graph whose nodes are the
terms of E and whose edges are relations learned by SVM or DT can then be
constructed. The output taxonomies are the transitive closures of these graphs.

Table 9 shows the performance of each algorithm for the task of capturing
the hypernymy relation of a given sub-domain. The implementations used for
SVM and DT fail to learn models on the domain food because of the size of the
dataset, which contains over 2 millions instances (term pairs). The performance
of LPSMI is often better, or at least similar, to that of SVM or DT.

Finally, we show the logical formulas learned by LPSMI in Table 10. We
observe that some predicates appear more frequently than others, for instance
the predicate qFu appears in almost all formulas. Moreover, it is often the
only component of a conjunctive clause and is therefore not constrained by

51

any other predicate. This is consistent with the performance of the individual
predicates (Table 8) as RFu is the best relation among the five considered in this
study. The predicate qpatterns appears alone half of the time and is combined
with other predicates the other half. It is unsurprising that qpatterns appears
alone since pattern-based approaches are known to be very accurate. But when
qpatterns is combined with another predicate, it acts as a “barrier” preventing
the hypernymy relation from spreading too far.

We also observe that the most complex formula is learned on the largest
domains, food and animals. We believe that this phenomenon arises from the
existence of multiple natures of hypernymy relations. For instance, one part of
the structure of the taxonomy of the domain food may be governed by a given
hypernymy relation while another part is governed by a different hypernymy
relation. Larger formulas can handle this diversity more easily, by specializing
a subset of the formula to model a particular nature, or shape, of the relation.
Fu et al. [37], whose work inspired the predicate qFu, take this diversity into
account by first clustering word pairs together, and then learning one model per
cluster. We therefore believe that it is not a coincidence that qFu is the best
performing predicate of this study. Although it is not sufficient on its own, as
indicated by the better results obtained by LPSMI, SVM and DT, which are
able to take advantage of other types of data by combining them.

We asked whether a model trained on one given domain can be efficiently
reused to build the lexical taxonomy of another domain. This may be difficult
because, as suggested earlier, the singularities of one domain may not match
those of another domain. But, maybe, a model learned on a subdomain could
be a good candidate for extracting the lexical taxonomy of its full domain. For
instance, a model learned on the sub-domain crafts might capture the nature of
the relations of the domain vehicles better than it does on the domain plants.
This is the third hypothesis to be evaluated and the subject of the following
subsection.

6.4.2. Applying a learned pretopological space to other domains
The purpose of our second experiment is to determine whether a single model

trained on a specific domain can be reused for structuring any other domain.
We believe that, given a set E of terms from a domain to be reconstructed, it is
more reliable to learn a structuring model based on a set E′ ⊆ E of terms from a
sub-domain rather than a model based on a completely disjoint set E′′ of terms,
such that E′′∩E = ∅. Thus, for example, we assume that a model trained on the
sub-domain crafts will perform better than another model trained on grasses
for the structuring the domain vehicles. In order to validate this hypothesis,
a structuring model (E′, a) was trained by the LPSMI algorithm for each sub-
domain. Then, the three domains vehicles, plants and food were structured with
respect to the previously learned models. As a result, we obtained nine lexical
taxonomies per domains. Table 11 shows the F-measure scores assigned to these
taxonomies.

This experiment tends to invalidate our prior hypothesis, since only the
domain animals seems to be better retrieved by the models trained on its sub-

52

Domain Formula

vehicles (Fu) ∨ (patterns ∧ strmatch)
∨ (Sand. ∧ patterns) ∨ (Sand. ∧ strmatch)

wagons (Sand.) ∨ (meanH)

crafts (Sand. ∧ strmatch) ∨ (meanH ∧ strmatch)
∨ (Sand. ∧ patterns) ∨ (Fu)

motor vehicles (patterns) ∨ (strmatch) ∨ (Sand.)

plants (Sand. ∧ patterns) ∨ (strmatch) ∨ (Fu)

bulbous plants (strmatch) ∨ (Sand. ∧ Fu)

aquatic plants (patterns)

grasses (strmatch) ∨ (Fu)

food (Sand. ∧ Fu) ∨ (patterns ∧ Fu) ∨ (meanH ∧ Fu)
∨ (Fu ∧ strmatch) ∨ (patterns ∧meanH)

∨ (meanH ∧ strmatch) ∨ (patterns ∧ strmatch)
∨ (Sand. ∧ patterns) ∨ (Sand. ∧meanH)

∨ (Sand. ∧ strmatch)

candy (Fu) ∨ (Sand. ∧meanH) ∨ (strmatch)

bread (strmatch) ∨ (Fu)

snack food (Fu) ∨ (Sand. ∧meanH) ∨ (strmatch)

animals (Fu ∧ strmatch) ∨ (Sand. ∧ Fu) ∨ (meanH ∧ Fu)
∨ (Sand. ∧ patterns) ∨ (Sand. ∧ strmatch)
∨ (Sand. ∧meanH) ∨ (patterns ∧meanH)

reptiles (Fu) ∨ (Sand. ∧meanH) ∨ (patterns ∧meanH)

∨ (strmatch)

fish (patterns) ∨ (Sand. ∧meanH) ∨ (strmatch) ∨ (Fu)

birds (patterns) ∨ (Sand. ∧meanH) ∨ (Fu) ∨ (strmatch)

Table 10: Logical formulas learned by LPSMI for each domain.

53

Train domain vehicles (mean) plants (mean) food (mean) animals (mean)

wagons 0.25 0.13 0.05 0.19
crafts 0.34 0.34 0.12 0.14 0.15 0.14 0.06 0.16
motor vehicles 0.43 0.16 0.21 0.22

bulbous plants 0.12 0.05 0.12 0.05
aquatic plants 0.25 0.16 0.12 0.08 0.06 0.10 0.19 0.10
grasses 0.12 0.06 0.12 0.06

candy 0.19 0.06 0.13 0.07
bread 0.12 0.15 0.05 0.05 0.13 0.13 0.05 0.06
snack food 0.15 0.05 0.12 0.06

reptiles 0.32 0.06 0.13 0.11
fish 0.42 0.38 0.15 0.12 0.29 0.24 0.20 0.18
birds 0.41 0.16 0.29 0.24

Table 11: F-measure scores obtained by pretopological models for full domain reconstruction.
The models were trained on sub-domains (rows) and applied on full-domain (columns). The
column “(mean)” shows the average score obtained by models learned on the three sub-domains
for the reconstruction of a given complete domain.

domains. If we ignore the model trained on the very small sub-domain wagons,
the models trained on the sub-domain vehicles perform as well as those trained
on the sub-domain animals. On the other hand, the poor result obtained in the
structuring of plants are in fact due to the sparsity of the relations extracted
from the domain plants, which prevents the learning of a good propagation
model.

The performance of each model varies greatly depending on the domain being
reconstructed. This suggests that the concept of hypernym/hyponym might be
different depending on the target domain, so that learning a single structuring
model to govern them all is, at least, very difficult, even for common domains
such as those considered in this study.

We also performed this experiment with models learned by SVM and DT
on binary data (Table 12). While our previous experiment showed that LPSMI
was able to more reliably retrieve the lexical taxonomy of a given domain than
either SVM or DT, Table 12 suggests that LPSMI is no more suitable than SVM
and DT for extracting a broader lexical taxonomy of a sub-domain. Indeed,
performance of each approach on the generalization task is quite similar (except
for DT which performs very poorly when trained on the sub-domain animals).

As a higher-level discussion, note that the learning problem considered by
the SVM and DT approaches is very different in nature from the LPS learning
approach. On one hand, SVM and DT aim to maximize the accuracy of decisions
on a set of term pairs without any further constraints on the final structure. On
the other hand, LPS approaches, such as LPSMI, learn a propagation model
that provides structures that are as accurate as possible and at the same time

54

Train domain vehicles (mean) plants (mean) food (mean) animals (mean)

wagons 0.25 0.13 0.05 0.19
crafts 0.30 0.32 0.05 0.11 0.12 0.15 0.05 0.15
motor vehicles 0.41 0.15 0.27 0.21

bulbous plants 0.25 0.12 0.06 0.19
aquatic plants 0.25 0.21 0.12 0.10 0.06 0.08 0.19 0.15
grasses 0.12 0.06 0.12 0.06

candy 0.12 0.05 0.12 0.06
bread 0.12 0.12 0.05 0.05 0.13 0.12 0.05 0.05
snack food 0.12 0.05 0.12 0.05

reptiles 0.12 0.05 0.12 0.07
fish 0.38 0.29 0.15 0.12 0.27 0.22 0.20 0.17
birds 0.38 0.15 0.27 0.23

(a) SVM

Train domain vehicles (mean) plants (mean) food (mean) animals (mean)

wagons 0.28 0.25 0.21 0.14
crafts 0.36 0.26 0.25 0.18 0.21 0.18 0.14 0.11
motor vehicles 0.15 0.05 0.12 0.05

bulbous plants 0.25 0.12 0.06 0.19
aquatic plants 0.25 0.21 0.12 0.10 0.06 0.08 0.19 0.15
grasses 0.12 0.06 0.12 0.06

candy 0.12 0.05 0.12 0.06
bread 0.12 0.12 0.05 0.05 0.13 0.12 0.05 0.05
snack food 0.12 0.05 0.12 0.05

reptiles 0.00 0.00 0.00 0.02
fish 0.00 0.04 0.00 0.02 0.00 0.04 0.04 0.06
birds 0.12 0.05 0.12 0.11

(b) Decision Tree

Table 12: F-measure scores obtained by different models for full domain reconstruction. The
models were trained on sub-domains (rows) and applied on full-domains (columns). The
column “(mean)” shows the average score obtained by the models learned on three sub-domains
for the reconstruction of a given full domain.

55

satisfies the isotonic property that constrains the final structure to be a DAG9.
Very concretely, the isotonic property prevents a relation y → z (z ∈ F ({y}))
from being made in cases where x → y (y ∈ F ({x})) exists but x → z (z /∈
F ({x})) does not. Such a structuring constraint has an undeniable impact on
the quantitative evaluation scores which do not summarize the whole structure
obtained but simply consider the final structure as a set of independent pairs.

6.5. Propagation of the semantic relation
The aim of this last section is to detail and illustrate on an example the com-

plex propagation process offered by the pretopological framework in the context
of LT. Considering the set E of 35 terms corresponding to the sub-domain
crafts, and the five neighborhood relations giving rise to five neighborhoods
VSand., Vpatterns, VmeanH , VFu and Vstrmatch defined on P(E); LPSMI learns a
pretopological space (E, aQ) defined, for any x ∈ E and for any A ∈ P(E), by
the following DNF.

Q(A, x) = (qSand.(A, x) ∧ qstrmatch(A, x)) ∨ qpatterns(A, x) ∨ qFu(A, x)

Given a term x ∈ E, its set FQ({x}) of hyponyms is built by successive
applications of the pseudo-closure operator aQ(.). Each application of aQ(.)
leverages the information gathered from previous applications, further propa-
gating the semantic relation. Figure 16 illustrates this process by focusing on
the first two steps of expanding the singleton {vessels} to its elementary closed
set. In this example, although aQ({vessels}) is not able to directly retrieve the
expected hyponym “tugboats”, the second application of the pseudo-closure op-
erator aQ(aQ({vessels})) leverages the information provided by aQ({vessels})
to determine that “tugboats” is ultimately a hyponym of “vessels”.

As observed in Figure 16, the second clause (qSand.∧ qstrmatch) of Q triggers
the propagation of the subset aQ({vessels}) = {vessels, boats, ships} to the
term “tugboats”. The precise propagation mechanism, detailed in Figure 17,
reveals that both qSand. and qstrmatch are satisfied through different elements:

• qSand.(aQ({vessels}), tugboats) is satisfied by the relation

ships RSand. tugboats

• qstrmatch(aQ({vessels}), tugboats) is satisfied by the relation

boats Rstrmatch tugboats

The structuring of the learned pretopological space into a lexical taxonomy
is done according to its elementary closed sets, as shown in [48]. For each term
x ∈ FQ({vessels}), its elementary closed set FQ({x}) is calculated. A lexical

9Considering that elements with the same closure constitute a single node in the structure.

56

vessels

boats ships

houseboats

tugboats oil tankers

cargo ships

small boats

VSand. ∧ Vstrmatch Vpatterns VFu

Figure 16: Step by step propagation of a semantic relation. The expansion starts from the
singleton {vessels}.

vessels

boats
ships

tugboats

aQ({vessels})

strmatch

Sand.

Figure 17: The set {vessels, boats, ship} is expanded to the term “tugboats” by the conjunctive
clause qSand.∧qstrmatch because “ships” is a hypernym of “tugboats” according to qSand. and
“boats” is a hypernym of “tugboats” according to qstrmatch.

57

vessels

boats ships
houseboats

small boats tugboats

oil tanker

cargo ships

Figure 18: Inclusion relations between a collection of elementary closed sets. A squared node
is an elementary closed set of size 1 and represents a leaf of the lexical taxonomy.

vessels

boats ships

tugboatshouseboatssmall boats oil tanker cargo ships

Figure 19: A learned taxonomy with vessels as root concept.

taxonomy is deduced from the way the closed sets include each other: Figure 18
shows the inclusion relations between the elements represented in Figure 16.
For example, FQ({houseboats}) ⊂ FQ({boats}) means that the concept boats
subsumes the concept houseboats, so the concept boats will be on top of the
concept houseboats in the resulting lexical taxonomy. The lexical taxonomy
engendered from the closed sets described in Figure 18 is presented in Figure 19.

6.6. Benchmarks
Finally, we compare the performance of LPSMI with competing systems on

the Task 13 of the SemEval 2016 campaign [16]. The systems were evaluated on
their performance in retrieving taxonomies from the following three domains:
food, science and environment. As we only experimented with the domain food,
we will not consider the last two.

The experiment is the same as the one presented in the previous section:
the systems have been trained (or not if they do not need supervision) on the
domains vehicles and plants, which habe been given by the organizers. Given a
list of terms, the task is to produce a lexical taxonomy structuring at least the
terms given as input, new terms can also be added to the taxonomy.

Five systems were submitted but only three produced a taxonomy for food.
The performance of these systems, as well as the baseline proposed by the

58

organizers, is presented in Table 1310. The gold standard taxonomies used in
SemEval exclusively describe direct hypernym-hyponym pairs. Thus, transitive
relations are excluded from this study, unlike previously.

System Recall Precision F-Measure

Baseline 0.26 0.50 0.34
JUNLP 0.34 0.15 0.20
TAXI 0.34 0.26 0.29
USAAR 0.24 0.71 0.36

Table 13: Performance of competing systems in Task 13 of SemEval 2016 on the domain food.

Train domain Recall Precision F-Measure

vehicles 0.26 0.42 0.32
wagons 0.31 0.00 0.00
crafts 0.26 0.42 0.32
motor vehicles 0.32 0.04 0.07
plants 0.22 0.48 0.30
bulbous plants 0.25 0.35 0.29
aquatic plants 0.09 0.10 0.10
grasses 0.25 0.14 0.18

Table 14: Performances of LPSMI models, trained on different sub-domains, for the recon-
struction of the taxonomy food.

Baseline. The baseline is based on the same principle as our relation strmatch.
A hypernym-hyponym pair (x, y) is extracted when the hypernym x is a prefix
or a suffix of the hyponym y. For example, “candy” and “corn” are hypernyms
of “corn candy” along this baseline.

The performance of the baseline is quite good compared to other systems,
even though it is a very naive approach. It works well since the experiment
consists in structuring a set of terms of the same semantic domain. For example,
half (37 out of 74) of the hyponyms in “sauce” are either prefixed or suffixed
with “sauce”. In addition, only a few terms (7 out of 47) beginning or ending
with “sauce” are not hyponyms of “sauce”. Of course, this criticism also applies
to our neighborhoods strmatch.

JUNLP [53]. JUNLP is composed of two modules. The first queries Babel-
Net [58] to obtain a list of hyponyms, which is then filtered to reduce noise. Ba-
belNet is a multilingual semantic network built from various sources, including

10Precision and recall are available at alt.qcri.org/semeval2016/task13/index.php?id=
evaluation.

59

WordNet. Since the evaluation uses gold taxonomies extracted from WordNet,
it used only the Wikipedia source of BabelNet.

The second module is based on the same assumption as the Baseline: poten-
tial hypernyms are extracted based on overlaps between words. For example, the
overlap between “biochemistry” and “chemistry” is “chemistry”, then “chemistry”
is likely to be a hypernym of “biochemistry”. It uses this same assumption to
enrich the lexical taxonomy with words that are not in the input term list. For
example, while “pudding” was not in the term list, it was added as a hypernym
of “chocolate pudding” and “vanilla pudding”.

TAXI [62]. TAXI was designed with scalability and simplicity in mind. The
assumption behind TAXI is that it is better to process a lot of data with simple
tools than to process little data with a sophisticated system. Thus, a lot of effort
has been put into the corpora feeding TAXI. They used three general purpose
corpora (Wikipedia, 59G and CommonCrawl) and built a domain specific corpus
using BootCaT [11] to crawl the web.

Next, they used the same approach as the baseline to extract hypernym-
hyponym pairs, as well as lexico-syntactic patterns. They train an SVM model
on the trials taxonomies (vehicles and plants) to determine whether a pair (x, y)
is a hypernym-hyponym pair.

USAAR [70]. The USAAR system assumes that many hypernym-hyponym
pairs can be detected by their endocentric grammatical construction. A gram-
matical construction is endocentric when one of its components performs the
same linguistic function as itself. For example, “aircraft” is an endocentric con-
struction since it is a noun, as well as its component “craft”. Furthermore, “craft”
is indeed a hypernym of “aircraft”.

The performance of LPSMI models is very heterogeneous depending on the
dataset used to train them, as shown by Table 1411. Training on plants, or a
sub-domain, seems difficult, mainly because our neighborhoods cannot capture
the hypernymy relation of these domains. The model trained on the sub-domain
wagons also performed poorly, but this is not surprising since wagons has only
height terms and seven edges. On the other hand, the poor performance of the
model trained on motor vehicles is more surprising, especially since the model
trained on crafts performs well. The two domains have two lexical taxonomies
with almost identical sizes, but the crafts taxonomy is a bit deeper (see Ta-
ble 7). Therefore, the taxonomy crafts has twice as many transitive edges as
the taxonomy motor vehicles. This could explain the performance gap between
these two models.

LPSMI’s performances depends heavily on the quality of its training data.
First, it needs a sufficiently large amount of data: wagons has too little data,
but crafts and vehicles seem to be quite large, although the size of the respective
taxonomies is rather small (they can be done by hand). More importantly, the

11Transitive edges are ignored, which explains the differences with previous results.

60

Web source Method vehicles plants animals

wikipedia OntoLearn DAG_0_99 0.19 0.28 0.27
wikipedia OntoLearn DAG_1_3 0.17 0.26 0.25
wikipedia Kozareva&Hovy 0.16 0.14 0.16
wikipedia LPSMI supervised 0.31 0.39 0.22
wikipedia LPSMI semi-supervised 0.35 0.17 0.10

Yahoo!Boss Kozareva&Hovy 0.49 0.34 0.30

Table 15: Comparison of state-of-the-art methodologies using the cumulative Fowlkes and
Mallows measure (F&M).

neighborhoods provided to LPSMI must capture some of the target relations.
It seems obvious, but it is difficult to estimate in advance the quality of a given
neighborhood, on a given task. Our experiments clearly show this fact: the
same neighborhoods work very well on vehicles but not on plants. Therefore,
the model trained on vehicles is very efficient, while the one trained on plants
is not.

In order to complement this comparative study, and thus provide additional
insight, we compared the taxonomies induced by LPSMI with those generated by
two acquisition methods that are references in the community: the OntoLearn
Realoaded approach [72] and the approach proposed by Kozareva and Hovy
(K&H) [46]. This quantitative comparison was performed using data provided
by the authors12 on the following WordNet sub-domains: Vehicles, Plants and
Animals (688 terms). Since Kozareva and Hovy initially used the Yahoo!Boss
search engine, we replicated their algorithm using Wikipedia data in order to
compare the methods on common bases and to understand the influence of
the source information corpus (Web source) on the quality of the extracted
structures.

The evaluation criterion used this time is the Cumulative Fowlkes and Mal-
lows measure (F&M) as defined in [72], used in [15] and for which executable
sources are made available13; this measure compares an extracted taxonomy
and the gold standard by measuring the matching between the partitions (of
terms) induced at each level of the structures to be compared.

Table 15 presents the results of this comparative study. The table is divided
into two parts, the first five rows contain the results of the different methods
(OntoLearn Reloaded, K&H and LPSMI) based on information extracted from
Wikipedia (free) while the last row corresponds to the original K&H method
based on Yahoo!Boss (not free). By comparing the results obtained by K&H
on Wikipedia and on Yahoo!Boss, we can see how crucial the source is in this

12http://ontolearn.org/
13https://alt.qcri.org/semeval2015/task17/

61

process; the choice of Yahoo!Boss explains in part the good scores observed by
K&H in the literature.

The upper part of the table presents results that can be reasonably com-
pared since the associated methodologies use the same source of information
(Wikipedia) but in different ways. The five methodologies compared are : On-
toLearn Reloaded with two different parameters for the pruning step (DAG [1,3]
and DAG [0,99]), K&H and two uses of the LPSMI algorithm :

• LPSMI for the reconstruction task: the model is learned from the complete
taxonomy, then the taxonomy is reconstructed from the learned model
(which naturally leads to good results).

• semi-supervised LPSMI: a set of 9 models was learned from 9 sub-domains
(3 from each initial domain). Each model is then used to reconstruct a
complete taxonomy. The model finally retained for a taxonomy to be
reconstructed is the one that induces the most relations (without explo-
sion14).

Unlike OntoLearn Reloaded and K&H, LPSMI is not a methodology dedi-
cated to the extraction of taxonomies but a generic algorithm for learning pre-
topological spaces. Nevertheless, we observe that the LPSMI algorithm obtains
quite competitive results on this task, outperforming even dedicated methods
on the dataset vehicles.

7. Conclusion

We introduce a new method to learn (in a supervised context) a pretopolog-
ical space based on its elementary closed sets: LPS multiple instances (LPSMI).
This method is the continuation of the work done by Cleuziou and Dias [28]
where a pseudo-closure was modeled by a numerical vector and learned by a ge-
netic algorithm. Due to the lack of expressiveness of the numerical formalism,
we switched to a more appropriate logical modeling: a positive DNF defining
a pseudo-closure operator. This new definition of a pretopological space al-
lows to consider many more solutions while restricting the hypotheses space,
thus making its exploration both easier and faster. LPSMI is also faster than
its competitors in delivering results because its learning strategy explores the
search space more efficiently thanks to an appropriate (intrinsic) quality mea-
sure.

Learning a pretopological space is a wonderful improvement in how one can
take advantage of pretopology theory. In previous work, the pseudo-closure op-
erator was hand-crafted and based on a collection of neighborhoods supposed
to accurately model a given phenomenon. Learning a pseudo-closure operator

14We observe that some models do not sufficiently regulate the propagation of relations,
thus generating many cycles and making their evaluation impossible in practice.

62

allows one to construct a better combination among any collection of neigh-
borhoods, such that only useful neighborhoods are considered in the learned
pseudo-closure operator.

The learning of pretopological spaces remains an open problem, mainly due
to its difficulties in scaling to large amount of data. Given an already trained
pretopological space, computing its set of elementary closed sets can be costly
depending on the propagation speed defined by the pretopological operator.
Although, since we are currently only considering V-type pretopological spaces,
the computation of the elementary closed sets can easily be speed up by merging
compatible pseudo-closures. Let us say that we have computed a first round of
pseudo-closures such that a({x}) = {x, y} and a({y}) = {y, z}, then we already
know that a2({x}) will contain z. Then, we can skip a pseudo-closure step by
computing a(a({x})∪a({y})) instead of a(a({x})). However, the major concern
comes from the learning algorithm, because we observed that the propagation
speed to the elementary closed sets is reasonable. Indeed, the solution space is
very large, especially given the small size of the inputs. A possible improvement
to the current strategy of exploring the solution space could be to compute
only partial closed sets and move as soon as the candidate solution gets too
far from the target. As the time of writing, there is no satisfying solution for
efficiently learning a pretopological space. Laborde [47] propose an alternative
learning algorithm, but it remains rather restrictive since it assumes that an
exact solution exists, which is far from realistic.

By applying the LPSMI algorithm to the task of learning a lexical taxonomy,
we have shown that the pretopology theory is well suited to model the semantic
relations between terms in a given domain. We have also shown that a model
learned with LPSMI will almost always be preferable to a solution based on a
single data source.

Work needs to be done to remove the dependency on the binary neighbor-
hood. A naive solution to this problem would be to build many binary neighbor-
hoods from many thresholds, but this would be very expensive in terms of space
and time complexity. We plan to study solutions based on fuzzy pretopology [10]
or any broader theory [45]. Future works will also focus on other modeling of
the pseudo-closure operator. For example, a pseudo-closure operator based on
first logic order formulas could lead to even better expressiveness. We plan to
learn, at the same time, a combination of continuous neighborhoods and a set of
parameters modifying these neighborhoods (typically, a threshold) in the hope
of reducing the false positive rate of the learned solution. We also plan to refine
our estimation of the positive/negative bags covered by a solution, as a better
approximation could lead to more accurate solutions.

LPSMI needs to be tested on a broader range of application cases such as
the modeling of expansion behaviors in networks (social networks, biological
networks, road networks etc. . .). We have already shown the relevance of pre-
topology to model complex propagation in networks [22]. Since this is the prob-
lem that motivated the learning of a pretopological space, we will continue to
use our method to learn models useful for text mining, such as the task of build-
ing lexical taxonomies. We also plan to use it to learn temporal ordering models

63

of events, in texts, based on annotated corpora such as TimeBank-Dense [23].

References

[1] Ahat, M., Amor, S.B., Bui, M., Jhean-Larose, S., Denhière, G., 2010. Doc-
ument classification with LSA and pretopology. Stud. Inform. Univ. 8,
125–144.

[2] Ahat, M., Amor, S.B., Bui, M., Lamure, M., Courel, M., 2009a. Pollution
modeling and simulation with multi-agent and pretopology, in: Complex
(1), Springer. pp. 225–231.

[3] Ahat, M., Amor, S.B., Bui, M., Lamure, M., Courel, M.F., 2009b. Pollu-
tion modeling and simulation with multi-agent and pretopology. Complex
Sciences , 225–231.

[4] Aho, A.V., Garey, M.R., Ullman, J.D., 1972. The transitive reduction of a
directed graph. SIAM Journal on Computing 1, 131–137.

[5] Amin, S.M., Wollenberg, B.F., 2005. Toward a smart grid: power delivery
for the 21st century. IEEE power and energy magazine 3, 34–41.

[6] Amor, S.B., Lavallée, I., Bui, M., 2006. Percolation, pretopology and com-
plex systems modeling. Complex Systems Modeling and Cognition Euro-
control and EPHE Joint Research Lab 41.

[7] Amor, S.B., Levorato, V., Lavallée, I., 2007. Generalized percolation pro-
cesses using pretopology theory, in: RIVF, IEEE. pp. 130–134.

[8] Athanasiadis, I.N., Mitkas, P.A., 2004. An agent-based intelligent envi-
ronmental monitoring system. Management of Environmental Quality: An
International Journal 15, 238–249.

[9] Auray, J., Duru, G., 1982. Fuzzy pretopological structures and formation
of coalitions. IFAC Proceedings Volumes 15, 459–463.

[10] Badard, R., 1981. Fuzzy pretopological spaces and their representation.
Journal of mathematical analysis and applications 81, 378–390.

[11] Baroni, M., Bernardini, S., 2004. Bootcat: Bootstrapping corpora and
terms from the web., in: LREC, Citeseer. p. 1313.

[12] Belmandt, Z., 1993. Manuel de prétopologie et ses applications .

[13] Blockeel, H., Page, D., Srinivasan, A., 2005. Multi-instance tree learning,
in: ICML, ACM. pp. 57–64.

[14] Bonnevay, S., 2009. Pretopological operators for gray-level image analysis.
Stud. Inform. Univ. 7, 173–195.

64

[15] Bordea, G., Buitelaar, P., Faralli, S., Navigli, R., 2015. Semeval-2015 task
17: Taxonomy extraction evaluation (texeval), in: Proceedings of the 9th
International Workshop on Semantic Evaluation, Association for Compu-
tational Linguistics.

[16] Bordea, G., Lefever, E., Buitelaar, P., 2016. Semeval-2016 task 13: Taxon-
omy extraction evaluation (texeval-2), in: Proceedings of the 10th Interna-
tional Workshop on Semantic Evaluation (SemEval-2016), pp. 1081–1091.

[17] Bordes, A., Glorot, X., Weston, J., Bengio, Y., 2014. A semantic matching
energy function for learning with multi-relational data. Machine Learning
94, 233–259.

[18] Bordes, A., Usunier, N., García-Durán, A., Weston, J., Yakhnenko, O.,
2013. Translating embeddings for modeling multi-relational data, in:
Burges, C.J.C., Bottou, L., Ghahramani, Z., Weinberger, K.Q. (Eds.), Ad-
vances in Neural Information Processing Systems 26: 27th Annual Con-
ference on Neural Information Processing Systems 2013. Proceedings of a
meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States., pp.
2787–2795.

[19] Brissaud, M., Lamure, M., Milan, J.J., Auray, J.P., Nicoloyannis, N., Duru,
G., Terrenoire, M., Tounissoux, D., Zighed, D.A., Bonnevay, S., et al., 2011.
Basics of pretopology.

[20] Bui, M., Amor, S.B., Lamure, M., Basileu, C., 2014. Gesture trajectories
modeling using quasipseudometrics and pre-topology for its evaluation, in:
International Conference on Information Processing and Management of
Uncertainty in Knowledge-Based Systems, Springer. pp. 116–134.

[21] Bui, Q.V., Sayadi, K., Bui, M., 2015. A multi-criteria document clustering
method based on topic modeling and pseudoclosure function, in: Proceed-
ings of the Sixth International Symposium on Information and Communi-
cation Technology, ACM. pp. 38–45.

[22] Caillaut, G., Cleuziou, G., Dugué, N., 2019. Learning pretopological spaces
to extract ego-centered communities, in: Pacific-Asia Conference on Knowl-
edge Discovery and Data Mining, p. to appear.

[23] Cassidy, T., McDowell, B., Chambers, N., Bethard, S., 2014. An annota-
tion framework for dense event ordering. Technical Report. CARNEGIE-
MELLON UNIV PITTSBURGH PA.

[24] Chevaleyre, Y., Zucker, J., 2001. Solving multiple-instance and multiple-
part learning problems with decision trees and rule sets. application to
the mutagenesis problem, in: Canadian Conference on AI, Springer. pp.
204–214.

65

[25] Cimiano, P., Hotho, A., Staab, S., 2005a. Learning concept hierarchies from
text corpora using formal concept analysis. J. Artif. Intell. Res.(JAIR) 24,
305–339.

[26] Cimiano, P., Pivk, A., Schmidt-Thieme, L., Staab, S., 2005b. Learning tax-
onomic relations from heterogeneous sources of evidence. Ontology Learn-
ing from Text: Methods, evaluation and applications 123, 59–73.

[27] Cleuziou, G., Buscaldi, D., Levorato, V., Dias, G., 2011. A pretopological
framework for the automatic construction of lexical-semantic structures
from texts, in: Proceedings of the 20th ACM international conference on
Information and knowledge management, ACM. pp. 2453–2456.

[28] Cleuziou, G., Dias, G., 2015. Learning pretopological spaces for lexical
taxonomy acquisition, in: Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, Springer. pp. 493–508.

[29] Dalud-Vincent, M., Brissaud, M., Lamure, M., 2009. Closed sets and clo-
sures in pretopology. International Journal of Pure and Applied Mathe-
matics 50, 391–402.

[30] Dietterich, T.G., Lathrop, R.H., Lozano-Pérez, T., 1997. Solving the mul-
tiple instance problem with axis-parallel rectangles. Artif. Intell. 89, 31–71.

[31] Espinosa-Anke, L., Saggion, H., Ronzano, F., Navigli, R., 2016. Extasem!
extending, taxonomizing and semantifying domain terminologies, in: Pro-
ceedings of the 30th conference on artificial intelligence (AAAI’16).

[32] Faralli, S., Panchenko, A., Biemann, C., Ponzetto, S.P., 2017. The con-
trastmedium algorithm: Taxonomy induction from noisy knowledge graphs
with just a few links, in: Proceedings of the 15th Conference of the Euro-
pean Chapter of the Association for Computational Linguistics: Volume 1,
Long Papers, pp. 590–600.

[33] Farmer, J.D., 2012. Economics needs to treat the economy as a complex
system, in: Paper for the INET Conference ‘Rethinking Economics and
Politics.

[34] Flati, T., Vannella, D., Pasini, T., Navigli, R., 2016. Multiwibi: The
multilingual wikipedia bitaxonomy project. Artificial Intelligence 241, 66–
102.

[35] Foster, J., 2005. From simplistic to complex systems in economics. Cam-
bridge Journal of Economics 29, 873–892.

[36] Frélicot, C., Lebourgeois, F., 1998. A pretopology-based supervised pattern
classifier, in: ICPR, IEEE Computer Society. pp. 106–109.

66

[37] Fu, R., Guo, J., Qin, B., Che, W., Wang, H., Liu, T., 2014. Learning
semantic hierarchies via word embeddings, in: Proceedings of the 52nd
Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 1199–1209.

[38] Galindo, J.F., Rubiano, G., Daza, E.E., 2014. Pretopological spaces as a
classification tool for rnas represented as a succession. MATCH Commun.
Math. Comput. Chem 72, 453–474.

[39] Gupta, S., MacLean, D.L., Heer, J., Manning, C.D., 2014. Induced lexico-
syntactic patterns improve information extraction from online medical fo-
rums. Journal of the American Medical Informatics Association 21, 902–
909.

[40] Harris, Z.S., 1954. Distributional structure. Word 10, 146–162.

[41] Hart, M.G., Ypma, R.J., Romero-Garcia, R., Price, S.J., Suckling, J., 2016.
Graph theory analysis of complex brain networks: new concepts in brain
mapping applied to neurosurgery. Journal of neurosurgery 124, 1665–1678.

[42] Hart, P.E., Nilsson, N.J., Raphael, B., 1968. A formal basis for the heuris-
tic determination of minimum cost paths. IEEE transactions on Systems
Science and Cybernetics 4, 100–107.

[43] Hearst, M.A., 1992. Automatic acquisition of hyponyms from large text
corpora, in: 14th International Conference on Computational Linguistics,
COLING 1992, Nantes, France, August 23-28, 1992, pp. 539–545. URL:
https://www.aclweb.org/anthology/C92-2082/.

[44] Iacobacci, I., Pilehvar, M.T., Navigli, R., 2015. Sensembed: Learning sense
embeddings for word and relational similarity, in: Proceedings of the 53rd
Annual Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pp. 95–105.

[45] Khedr, F., Abd-Allah, M.A., Abdelgaber, E., 2019. Fuzzy soft pretopolog-
ical spaces. Global Journal of Mathematics Vol 13.

[46] Kozareva, Z., Hovy, E., 2010. A semi-supervised method to learn and con-
struct taxonomies using the web, in: Proceedings of the 2010 conference on
empirical methods in natural language processing, Association for Compu-
tational Linguistics. pp. 1110–1118.

[47] Laborde, J., 2019. Pretopology, a mathematical tool for structuring com-
plex systems: methods, algorithms and applications. Ph.D. thesis. PSL
Research University.

[48] Largeron, C., Bonnevay, S., 2002. A pretopological approach for structural
analysis. Inf. Sci. 144, 169–185.

67

[49] Levin, S.A., 1998. Ecosystems and the biosphere as complex adaptive
systems. Ecosystems 1, 431–436.

[50] Levorato, V., 2014. Group measures and modeling for social networks.
Journal of Complex Systems 2014.

[51] Levy, O., Goldberg, Y., 2014. Linguistic regularities in sparse and explicit
word representations, in: Proceedings of the eighteenth conference on com-
putational natural language learning, pp. 171–180.

[52] Liu, Z., 2015. Complex systems and health systems, computational chal-
lenges. Ph.D. thesis. Versailles-St Quentin en Yvelines.

[53] Maitra, P., Das, D., 2016. Junlp at semeval-2016 task 13: A language
independent approach for hypernym identification, in: Proceedings of the
10th International Workshop on Semantic Evaluation (SemEval-2016), pp.
1310–1314.

[54] Meziane, A., Iftene, T., Selmaoui, N., 1997. Satellite image segmentation
by mathematical pretopology and automatic classification, in: Aerospace
Remote Sensing’97, International Society for Optics and Photonics. pp.
232–236.

[55] Mikolov, T., Chen, K., Corrado, G., Dean, J., 2013a. Efficient estimation
of word representations in vector space. arXiv preprint arXiv:1301.3781 .

[56] Mikolov, T., Yih, W.t., Zweig, G., 2013b. Linguistic regularities in contin-
uous space word representations, in: Proceedings of the 2013 conference of
the north american chapter of the association for computational linguistics:
Human language technologies, pp. 746–751.

[57] Miller, G.A., 1998. WordNet: An electronic lexical database. MIT press.

[58] Navigli, R., Ponzetto, S.P., 2012. BabelNet: The automatic construction,
evaluation and application of a wide-coverage multilingual semantic net-
work. Artificial Intelligence 193, 217–250.

[59] Navigli, R., Velardi, P., 2010. Learning word-class lattices for definition
and hypernym extraction, in: Hajic, J., Carberry, S., Clark, S. (Eds.),
ACL 2010, Proceedings of the 48th Annual Meeting of the Association
for Computational Linguistics, July 11-16, 2010, Uppsala, Sweden, The
Association for Computer Linguistics. pp. 1318–1327. URL: https://www.
aclweb.org/anthology/P10-1134/.

[60] Nickel, M., Tresp, V., Kriegel, H.P., 2011. A three-way model for collective
learning on multi-relational data., in: Icml, pp. 809–816.

[61] Norberg, J., 2004. Biodiversity and ecosystem functioning: a complex
adaptive systems approach. Limnology and Oceanography 49, 1269–1277.

68

[62] Panchenko, A., Faralli, S., Ruppert, E., Remus, S., Naets, H., Fairon,
C., Ponzetto, S.P., Biemann, C., 2016. Taxi at semeval-2016 task 13: a
taxonomy induction method based on lexico-syntactic patterns, substrings
and focused crawling, in: Proceedings of the 10th International Workshop
on Semantic Evaluation (SemEval-2016), pp. 1320–1327.

[63] Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A., 2015.
Epidemic processes in complex networks. Reviews of modern physics 87,
925.

[64] Pennington, J., Socher, R., Manning, C.D., 2014. Glove: Global vec-
tors for word representation, in: Moschitti, A., Pang, B., Daelemans,
W. (Eds.), Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2014, October 25-29, 2014, Doha,
Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL,
ACL. pp. 1532–1543. URL: https://doi.org/10.3115/v1/d14-1162,
doi:10.3115/v1/d14-1162.

[65] Pocostales, J., 2016. Nuig-unlp at semeval-2016 task 13: A simple word
embedding-based approach for taxonomy extraction, in: Proceedings of the
10th International Workshop on Semantic Evaluation (SemEval-2016), pp.
1298–1302.

[66] Resnik, P., et al., 1999. Semantic similarity in a taxonomy: An information-
based measure and its application to problems of ambiguity in natural
language. J. Artif. Intell. Res.(JAIR) 11, 95–130.

[67] Sanderson, M., Croft, B., 1999. Deriving concept hierarchies from text, in:
Proceedings of the 22nd annual international ACM SIGIR conference on
Research and development in information retrieval, ACM. pp. 206–213.

[68] Snow, R., Jurafsky, D., Ng, A.Y., 2005. Learning syntactic patterns for au-
tomatic hypernym discovery, in: Advances in neural information processing
systems, pp. 1297–1304.

[69] Taghizadeh, N., Faili, H., 2016. Automatic wordnet development for low-
resource languages using cross-lingual wsd. J. Artif. Intell. Res.(JAIR) 56,
61–87.

[70] Tan, L., Bond, F., van Genabith, J., 2016. Usaar at semeval-2016 task
13: Hyponym endocentricity, in: Proceedings of the 10th International
Workshop on Semantic Evaluation (SemEval-2016), pp. 1303–1309.

[71] Van Le, T., Truong, T.N., Nguyen, H.N., Pham, T.V., 2013. An efficient
pretopological approach for document clustering, in: Intelligent Networking
and Collaborative Systems (INCoS), 2013 5th International Conference on,
IEEE. pp. 114–120.

69

[72] Velardi, P., Faralli, S., Navigli, R., 2013. Ontolearn reloaded: A graph-
based algorithm for taxonomy induction. Comput. Linguistics 39, 665–707.
URL: https://doi.org/10.1162/COLI_a_00146, doi:10.1162/COLI_a\
_00146.

[73] Wang, Q., Mao, Z., Wang, B., Guo, L., 2017. Knowledge graph embedding:
A survey of approaches and applications. IEEE Transactions on Knowledge
and Data Engineering 29, 2724–2743.

[74] Wu, C., Yue, Y., Li, M., Adjei, O., 2004. The rough set theory and appli-
cations. Engineering Computations 21, 488–511.

[75] Zadeh, L.A., 1973. Outline of a new approach to the analysis of complex
systems and decision processes. IEEE Transactions on Systems, Man, and
Cybernetics SMC-3, 28–44.

[76] Zhou, Z.H., 2004. Multi-instance learning: A survey. Department of Com-
puter Science & Technology, Nanjing University, Tech. Rep .

A. Number of positive bags covered by a solution

The number of positive bags covered by a solution Q (the number of true
positives) is estimated by subtracting the estimated number of rejected (or not
yet covered) positive bags from the total number of positive bags in the MI
dataset. Due to the complexity of the pseudo-closure operator, it is not possible
to accurately count the number of rejected positive bags in a reasonable time
span. We propose a method to estimate this number.

We consider a finite set E, a set S∗ of target elementary closed sets and
a solution Q under construction. For any element x ∈ E, we consider the
true/right subset of its learned elementary closed set, denoted F ∗Q({x}) =
FQ({x}) ∩ F ∗({x}). The definition of the pretopological space (E, aQ) of type
V guarantees, for any element x ∈ E and any set A ∈ P(E), that if x ∈ A then
F ∗Q({x}) ⊆ FQ(A), because F ∗Q({x}) ⊆ FQ({x}) and FQ({x}) ⊆ FQ(A) accord-
ing to the isotonic property (Definition 3). This means that any set containing
x will be correctly expanded, by the pseudo-closure operatoraQ(.), to at least
all elements of F ∗Q({x}).

∀A ∈ P(E), x ∈ A⇒ F ∗Q({x}) ⊆ FQ(A)

In what follows, a (strong) assumption is made that all positive bags (x,A)
such that F ∗Q({x}) ⊆ A ⊂ F ∗({x}), i.e. the bags described by the sub-lattice
L
[
F ∗Q({x}), F ∗({x})

[
, are not covered by Q. This is the elementary coverage

hypothesis.

Definition 4 (The elementary coverage assumption). For any x ∈ E, the set
of positive bags whose coverage (by Q) is not ensured by the elementary closed
set learned from x (FQ({x})) is defined as follows:

70

ec(x) = L
[
F ∗Q({x}), F ∗({x})

[
ec(x) is the set of positive bags (1) engendered by x and (2) rejected by Q if

we consider the only knowledge provided by F ∗Q({x}). This is a high estimate
because the positive bag (x,A) can be covered by Q while not being considered
as such by ec(x). This case occurs when A is strictly between F ∗Q({x}) and
F ∗({x}), i.e. F ∗Q({x}) ⊂ A ⊂ F ∗({x}), and A propagates to an element of
F ∗({x}), i.e. aQ(A) ∩ F ∗({x}) \ A 6= ∅. In such a case, the positive bag (x,A)
is theoretically covered but ec(x) marks it as rejected. This problem can be
solved by computing the closure of each super-set of F ∗Q({x}), which is terribly
inefficient in practice. Although this is not a dramatic problem because it only
affects non-elementary closed sets, which are not reflected in the final DAG
structure.

A low estimation of the positive bags whose coverage (by Q) is provided by
the elementary closed set of an element x ∈ E can be computed by subtracting
the size of ec(x) to the total number of positive bags engendered by x.

Figure 20 illustrates how the number of covered positive bags is estimated.
Let E = {x1, x2, x3, x4}, F ∗({x1}) = {x1, x2, x3, x4} and a DNF Q such that
FQ({x1}) = {x1, x2}. The whole set of positive bags engendered by the element
x1 is described by the sub-lattice L [{x1}, F ∗({x1})[. The smallest set that is not
properly expanded by aQ(.) is F ∗Q({x1}) = {x1, x2}. Thus, we assume that all
sets above {x1, x2} (i.e. ec(x1)) are not properly expanded as well. This seems
wrong since FQ({x1, x2, x4}) = F ∗({x1}), so the positive bag (x1, {x1, x2, x4})
is covered by Q but ignored by our estimation. The number of positive bags
covered by FQ({x1}) (the green area) is then calculated by subtracting the size
of ec(x1) from the total number of positive bags engendered by x1. So, there is
|L [{x1}, F ∗({x1})[| − |ec(x1)| = 4 positive bags engendered by x1 and covered
by Q.

For all x ∈ E, we can estimate (by a lower bound) the number of positive
bags engendered by x and covered by Q, by subtracting the number of bags not
yet covered from the number of bags engendered. But, as with the calculation
of the total number of positive bags, care must be taken when several elements
share the same elementary closed set. We again use the inclusion-exclusion
principle to compute a better estimation of the positive bags not covered by
Q. We define the function r+Q : ∪Ak∈AP(Ak) → N which, given a subset B of
an equivalence class Ak, produces an estimate of the number of positive bags
engendered by the elements in B whose coverage by Q is not always guaranteed
by all the elementary closed sets of the elements in B.

On a general purpose, we first define how to compute the size of the union of
n sub-lattices L1, . . . ,Ln having the same upper element, noted >, and different
lower elements ⊥1, . . . ,⊥n.

71

{x1} {x2} {x3} {x4}

{x1, x2} {x1, x3} {x1, x4} {x2, x3} {x2, x4} {x3, x4}

{x1, x2, x3} {x1, x2, x4} {x1, x3, x4} {x2, x3, x4}

{x1, x2, x3, x4}

FQ()

FQ()

F ∗Q({x1})

F ∗({x1})

ec(x1)

Figure 20: Estimation of the number of positive bags engendered by x1 that are covered by
a solution Q. We suppose F ∗({x1}) = {x1, x2, x3, x4} and FQ({x1}) = {x1, x2}. Positive
bags whose coverage is ensured by FQ({x1}) are highlighted by the green area, which is
L [{x1}, F ∗({x1})[\ ec(x1).

∣∣∣∣∣
n⋃

i=1

Li

∣∣∣∣∣ =
n∑

i=1

(−1)i+1
∑

B∈comb({1...n},i)

∣∣∣∣∣∣
⋂
j∈B
Lj

∣∣∣∣∣∣
=

n∑
i=1

(−1)i+1
∑

B∈comb({1...n},i)

2|>|−|∪j∈B⊥j |

comb({1 . . . n}, i) expresses the power-set of {1 . . . n} reduced to its elements
of size i. Thus, the size of the union of sub-lattices is calculated by alternatively
adding and subtracting the sizes of the intersections between the sub-lattices.
The intersection between several sub-lattices sharing the same top element >
is the sub-lattice whose biggest element is > (obviously) and whose bottom
element is the union of the bottom elements of the considered sub-lattices. Then
the size of this intersection is expressed by 2|>|−|∪j∈B⊥j |.

Given any i-permutation B of the equivalence class Ak, we use the ele-
mentary coverage assumption to estimate the number of positive bags whose
coverage, by Q, is not always ensured by all the elementary closed sets of the
elements in B. That is, the number of positive bags which belong to, at least,
one element of {ec(x)}x∈B .

∀B ∈ comb(Ak, i), r
+
Q(B) =

∣∣∣∣∣ ⋃
x∈B
L
[
F ∗Q({x}) ∪B,F ∗k

]∣∣∣∣∣− 1

We have to subtract 1 in order to ignore the top element F ∗k , since a positive
bag cannot be identified by a closed set.

72

Then, for any equivalence class Ak ∈ A, the estimated number of positive
bags engendered by (the elements of) Ak and covered by Q is calculated as
follows:

∀Ak ∈ A, bags+Q(Ak) =

|Ak|∑
i=1

(−1)i+1
∑

B∈comb(Ak,i)

|L [B,F ∗k [| − r+Q(B)

=

|Ak|∑
i=1

(−1)i+1
∑

B∈comb(Ak,i)

2|F
∗
k |−i − 1− r+Q(B)

The estimated total number of positive bags covered by Q is finally deduced,
thanks to Property 3, by summing bags+Q(Ak) for all Ak ∈ A.

BAGS+
Q =

∑
Ak∈A

bags+Q(Ak)

Example. Let’s consider a set E = {x1, x2, x3, x4} such that F ∗({x1}) =
F ∗({x3}) = {x1, x2, x3, x4} = F ∗1 . Both x1 and x2 belong to the equivalence
class A1 = {x1, x3}. Suppose we learn a DNF Q such that FQ({x1}) = {x1, x2}
and FQ({x3}) = {x3, x4}. Figure 21 shows three lattices:

• (Lx1
) the set of positive bags engendered by x1 whose coverage is ensured

by FQ({x1})

• (Lx3
) the set of positive bags engendered by x3 whose coverage is ensured

by FQ({x3})

• (Lx1x3) the set of positive bags engendered by both x1 and x3 whose
coverage is ensured by both FQ({x1}) and FQ({x3}).

The inclusion-exclusion principle is, again, used to estimate the number of
positive bags whose coverage is ensured by the elementary closed sets of elements
of the equivalence class A1. First, for all x ∈ A1 the number of positive bags
engendered by x whose coverage is ensured by FQ({x}), i.e.

∣∣bags+(x)∣∣−|ec(x)|,
are summed. Therefore, the positive bag (A1, {x1, x3}) is counted twice. This
error is removed by subtracting the number of positive bags whose coverage is
ensured by both FQ({x1}) and FQ({x3}), i.e. |L [{x1, x3}, F ∗1 [| − r+Q({x1, x3}).
The calculation is expressed below.

bags+Q(A1) =
(
|L [{x1}, F ∗1 [| − r+Q({x1})

)
+
(
|L [{x3}, F ∗1 [| − r+Q({x3})

)
−
(
|L [{x1, x3}, F ∗1 [| − r+Q({x1, x3})

)
= (7− 3) + (7− 3)− (3− 2)

= 7

73

Lx1

{1} {2} {3} {4}

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}

{1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}

{1, 2, 3, 4}

FQ()

Lx3

{1} {2} {3} {4}

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}

{1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}

{1, 2, 3, 4}

FQ()

Lx1x3

{1} {2} {3} {4}

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}

{1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}

{1, 2, 3, 4}

{1} {2} {3} {4}

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}

{1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}

{1, 2, 3, 4}

+

−

=

Figure 21: Calculation of the estimate of the number of positive bags engendered by A1 =
{x1, x3} and covered by Q, with E = {x1, x2, x3, x4}, F ∗

1 = E, FQ({x1}) = {x1, x2} and
FQ({x3}) = {x3, x4}. The first line describes the first step of the inclusion-exclusion principle
and the second line describes the second step. A strike-through sets represent the rejected
positive bags. The “x” parts are deleted for readability, so the set {1, 2} corresponds to the
set {x1, x2}.

74

