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This paper addresses the problem of learning the concept of propagation in the theoretical formalism of pretopology, and then applying this methodology for the well-known problem of learning Lexical Taxonomy. The theory of pretopology, among others, aims at modeling complex relations between sets of entities.

The use of such fine-grained modeling implies limitations in terms of scalability. However, it allows for a more accurate capture of real-world relationships, such as the hypernymy relation, by modeling the task of relation extraction as a propagation model under certain structuring constraints, as opposed to traditional approaches that are limited to detecting relations between pairs of elements without considering knowledge on the expected structuring.

Our proposal is to define the pseudo-closure operator (modeling the concept of propagation) as a logical combination of heterogeneous neighborhoods, or sources. It allows the learning of models that exploit, for example, the knowledge acquired by both statistical and numerical approaches. We show that the learning of such an operator falls into the Multiple Instance (MI) framework, where the learning process is performed on bags of instances instead of individual instances. Although this framework is well suited for this task, using it for learning a pretopological space leads to a set of bags whose size is exponential. To overcome this problem, we propose a learning method (LPSMI) based on a low estimate of the bags covered by a concept under construction.

We first propose an experimental validation of our method, through the simulation of percolation processes (typically forest fires) learned with pretopological propagation models. It reveals that the proposed MI approach is particularly efficient on propagation model recognition task. We then provide a real-world contribution to the Lexical Taxonomy learning task, by modeling this task as a complex (semantic) propagation problem. We propose a very generic frame-

Introduction

Complex systems and complex networks have received increasing attention for several years. Such networks are used to model complex interactions between entities in a wide spectrum of domains such as organic ecosystems [START_REF] Levin | Ecosystems and the biosphere as complex adaptive systems[END_REF][START_REF] Norberg | Biodiversity and ecosystem functioning: a complex adaptive systems approach[END_REF], air pollution [START_REF] Athanasiadis | An agent-based intelligent environmental monitoring system[END_REF], energy management [START_REF] Amin | Toward a smart grid: power delivery for the 21st century[END_REF], world economy [START_REF] Farmer | Economics needs to treat the economy as a complex system[END_REF][START_REF] Foster | From simplistic to complex systems in economics[END_REF] and of course with uses in artificial intelligence domains such as social networks analysis [START_REF] Levorato | Group measures and modeling for social networks[END_REF] or text mining [START_REF] Cleuziou | A pretopological framework for the automatic construction of lexical-semantic structures from texts[END_REF] to name a few. All of these topics are difficult to model using standard tools but are essential to human development.

Complex systems can be approached using different theories, such as fuzzy logic [START_REF] Zadeh | Outline of a new approach to the analysis of complex systems and decision processes[END_REF], graph theory [START_REF] Pastor-Satorras | Epidemic processes in complex networks[END_REF][START_REF] Hart | Graph theory analysis of complex brain networks: new concepts in brain mapping applied to neurosurgery[END_REF], rough set theory [START_REF] Wu | The rough set theory and applications[END_REF] and pretopology [START_REF] Amor | Percolation, pretopology and complex systems modeling[END_REF] as major theoretical frameworks. The present work focuses on the theory of pretopology, known for its ability to finely model complex propagation phenomena. This theory is based on a propagation operator called pseudo-closure which forms the core of the theory of pretopology. It is usually defined on a collection of neighborhoods and subtly combines them. This powerful operator offers a formalism capable of describing, step by step, a non-trivial expansion process, such as coalition formation in game theory [START_REF] Auray | Fuzzy pretopological structures and formation of coalitions[END_REF], the propagation of an epidemic [START_REF] Liu | Complex systems and health systems, computational challenges[END_REF] or the propagation of semantic relations in semantic networks [START_REF] Cleuziou | Learning pretopological spaces for lexical taxonomy acquisition[END_REF]. The last application area is based on very challenging AI tasks, among which the exploitation problem [START_REF] Resnik | Semantic similarity in a taxonomy: An informationbased measure and its application to problems of ambiguity in natural language[END_REF] or the automatic or semi-automatic learning of Lexical Taxonomies (LT) from text corpora [START_REF] Cimiano | Learning concept hierarchies from text corpora using formal concept analysis[END_REF][START_REF] Taghizadeh | Automatic wordnet development for lowresource languages using cross-lingual wsd[END_REF].

Most of the work related to pretopology relies on a handcrafted pseudoclosure operator [START_REF] Ahat | Pollution modeling and simulation with multi-agent and pretopology[END_REF][START_REF] Van Le | An efficient pretopological approach for document clustering[END_REF][START_REF] Bui | Gesture trajectories modeling using quasipseudometrics and pre-topology for its evaluation[END_REF][START_REF] Cleuziou | A pretopological framework for the automatic construction of lexical-semantic structures from texts[END_REF]. The pseudo-closure operator is often defined as the conjunction of all neighborhoods. The problem is that such an operator limits us to a single pretopological space that may not be suitable for every application case. Moreover, in the common definition of the pseudo-closure operator, the same "credibility" and the same "utility" are given to each neighborhood. In applications where data are collected from multiple sources (or neighborhoods), this assumption is likely to be false.

Recent work addresses this problem by proposing more flexible solutions. Considering that a simple pretopological space cannot model all complex systems, Bui et al. [START_REF] Bui | A multi-criteria document clustering method based on topic modeling and pseudoclosure function[END_REF] introduce the concepts of weak and strong pseudo-closure operators leading to thick (i.e. noisy) and thin pretopological spaces, respectively. At the same time, Galindo et al. [START_REF] Galindo | Pretopological spaces as a classification tool for rnas represented as a succession[END_REF] define a set of pseudo-closure operators, each referring to slightly different (topological) neighborhoods as a function of a parameter r such that the smaller r, the thinnest the resulting pretopological space is.

But these approaches to extending pretopology theory remain limited. For example, there is no way to ignore or limit the impact of erroneous neighborhoods in favor of more reliable ones. Existing work proposes to use multiple predefined pretopological spaces, but this does not guarantee that any one of these spaces, or even a combination of these spaces [START_REF] Dalud-Vincent | Closed sets and closures in pretopology[END_REF], is suitable for the application's needs. Therefore, we need a methodology for constructing a pseudo-closure operator that matches an expected behavior, given a collection of neighborhoods. Since, in most cases, it is humanly impossible to define such a complex pretopological space, the methodology must be automatic and our proposal is to learn the pseudo-closure operator.

In this paper we present a method for automatic learning of a V-type pretopological space. Our method learns the underlying pseudo-closure operator, which defines the pretopological space. Cleuziou and Dias [START_REF] Cleuziou | Learning pretopological spaces for lexical taxonomy acquisition[END_REF] were the first to tackle the problem of learning a pseudo-closure operator from observations. For AI purposes, they designed a semi-supervised method for learning a pretopological space from which a lexical taxonomy is derived. To this end, the authors first model the pseudo-closure operator as a linear combination of neighborhoods and then use a genetic algorithm that produces a solution that best matches a given (partial) structure.

This paper aims at both generalizing and improving the original approach of Cleuziou and Dias [START_REF] Cleuziou | Learning pretopological spaces for lexical taxonomy acquisition[END_REF]. To this end, four main contributions are presented:

1. First, we generalize the problem to any application case. The proposed generic method learns a propagation concept instead of focusing on the construction of a structure (like a lexical taxonomy for instance).

2. Second, the pseudo-closure operator is modeled in a logical (rather than numerical) formalism thus providing a larger solution space and, more importantly, facilitating the subsequent learning process.

3. Third, the original stochastic learning strategy is abandoned in favor of an efficient learning approach, resulting in a multiple instance algorithm based on a greedy learning strategy.

4. Finally, the proposed new methodology is capitalized on the AI task of Lexical Taxonomy reconstruction, showing the effectiveness of both the pretopological theory and the proposed learning strategy in such a context.

The article is organized as follows: the basics of pretopology, useful for the understanding of the studied problem, are given in the following section (Section 2). The new modeling of the pseudo-closure operator as a logical combination (in positive1 disjunctive normal form (DNF)) of neighborhoods is then detailed in Section 2.3. The pseudo-closure operator is acquired by a supervised multiple instance learning process [START_REF] Dietterich | Solving the multiple instance problem with axis-parallel rectangles[END_REF][START_REF] Zhou | Multi-instance learning: A survey[END_REF]. Multiple instance learning is particularly suitable when an observation can be described by multiple instances. This methodology (presented in Section 3) is necessary because we learn a pretopological space from its known elementary closed sets. In pretopology theory, a single closed set (considered as an observation in the learning problem) can be obtained by several propagation models (multiple instances). In fact, the number of valid propagation models, or pseudo-closure operators, is exponential in the size of the elementary closed sets considered. This leads us to a learning problem with a set of input examples whose size is exponential. We propose in Section 4 a method to provide a (low) estimate of the number of positive bags covered (true positives) and the exact number of negative bags covered (false positives) without the need to explicitly generate the dataset.

Section 5 is devoted to quantitative and qualitative comparisons of the newly proposed Learn Pretopological Space Multiple Instance (LPSMI) approach with that presented in [START_REF] Cleuziou | Learning pretopological spaces for lexical taxonomy acquisition[END_REF] as well as a simpler greedy variation. We simulate a forest fire in a rectangular grid and then compare the performance of each algorithm by evaluating their ability to retrieve the underlying propagation model. The results confirm that the new approach performs best due to its more refined underlying quality measure, while maintaining good performance in terms of execution time.

Finally, the LPSMI methodology provides an elegant framework to efficiently contribute to the task of learning lexical taxonomies. Given a target lexical taxonomy structuring a set E of terms and a collection of semantic neighborhoods, a model capturing the hypernymy semantic relation is learned and then reused to build larger lexical taxonomies. This section (Section 6) presents both the framework for combining any state-of-the-art LT acquisition methods and the very promising results obtained experimentally on three real datasets.

Basics of Pretopology

The pretopology theory was born in the early 70's with the aim of relaxing topological axiomatics [START_REF] Belmandt | Manuel de prétopologie et ses applications[END_REF][START_REF] Brissaud | Basics of pretopology[END_REF]. Pretopology allows to study the relations between the elements of the power set P(E). A wide variety of works have shown the usefulness of this theory in many research areas: image analysis [START_REF] Meziane | Satellite image segmentation by mathematical pretopology and automatic classification[END_REF][START_REF] Bonnevay | Pretopological operators for gray-level image analysis[END_REF], classification [START_REF] Frélicot | A pretopology-based supervised pattern classifier[END_REF][START_REF] Ahat | Document classification with LSA and pretopology[END_REF], similarity or proximity detections tasks [START_REF] Van Le | An efficient pretopological approach for document clustering[END_REF], and recognition of complex propagation (or expansion) phenomena [START_REF] Amor | Generalized percolation processes using pretopology theory[END_REF][START_REF] Ahat | Pollution modeling and simulation with multi-agent and pretopology[END_REF]. We place our work in the latter area.

Pretopological spaces

A pretopological space is defined by a pair (E, a) where E is a non empty finite set of elements and a(.) a pseudo-closure operator. The pseudo-closure operator a(.) is a mapping from any set in P(E) to a larger set in P(E).

Definition 1 (Pseudo-closure operator). Let E be a set and a(.) an application of P(E) to P(E). Then a(.) is a pseudo-closure operator if: i a(∅) = ∅

ii ∀A ∈ P(E), A ⊆ a(A) The couple (E, a) is called a pretopological space.

The pseudo-closure operator is not idempotent, which means that, contrary to the closure operator of the topological theory, a(A) is not necessarily equal to a(a(A)), where A ∈ P(E). The pretopological pseudo-closure operator is an iterated function such that ∀A ∈ P(E), a(A) ⊆ a(a(A)) (cf. Item ii). Let k be a positive integer and A ∈ P(E), we note a k (A) the k successive applications of a(.) on A. It is formally defined as follows ∀A ∈ P(E), ∀k ∈ N, a 0 (A) = A and a k (A) = (a • a k-1 )(A)

Let k be a positive integer such that a k (A) = a k+1 (A), then a k (A) is called the closure of A, denoted F (A). Figure 1 shows the multiple steps necessary to compute a closed set. Definition 2 (Closed set). Let (E, a) be a pretopological space. Then K ∈ P(E) is a closed set if and only if a(K) = K. The closure of A ∈ P(E) is a closed set noted F (A). F (A) is obtained by applying the pseudo-closure operator until it converges to a fixed point.

∀A ∈ P(E), ∃k ∈ N, F (A) = a k (A) where a k (A) = a k+1 (A)

If A is a singleton, then F (A) is an elementary closed set.

Pretopological spaces of type V

The pretopological spaces are classified according to the behavior of their pseudo-closure operator. Pretopological spaces of type V are probably the most studied.

Definition 3 (Pretopological space of type V). A pretopological space (E, a) is of type V if and only if its pseudo-closure operator a(.) respects the isotonic property defined as follows:

iii ∀A, B ∈ P(E), A ⊆ B ⇒ a(A) ⊆ a(B)
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Figure 2: Computation of the elementary closed sets of two pretopological spaces. A dotted line shows the singleton from which the closure is computed, a dashed line shows an intermediate level of propagation and a solid line shows an elementary closed set. The proposed propagation steps on the left satisfy the requirements of a V-type pretopological space, while those on the right do not:

x 3 / ∈ a({x 2 , x 4 }) while x 3 ∈ a({x 4 }).
Figure 2 shows two pretopological spaces: the one on the left is a V-type pretopological space while the one on the right is not. V-type pretopological spaces have nice structuring properties, for example, the intersection of closed sets is a closed set. Largeron and Bonnevay [START_REF] Largeron | A pretopological approach for structural analysis[END_REF] rely on these properties to define an algorithm that structures the elements of a V-type pretopological space into a directed acyclic graph (DAG). This algorithm is the cornerstone of the work of Cleuziou and Dias [START_REF] Cleuziou | Learning pretopological spaces for lexical taxonomy acquisition[END_REF] in considering a lexical taxonomy as a DAG structuring the terms of natural language. Consider the set of elementary closed sets in Table 1, Figure 3 shows the idea behind this structuring process: first, all elementary closed sets are computed and then a DAG is deduced based on the inclusion scheme of the elementary closed sets.

This algorithm is equivalent to computing the transitive reduction of the graph defined by the adjacency matrix describing the elementary closed sets of the pretopological space. Aho et al. [START_REF] Aho | The transitive reduction of a directed graph[END_REF] show that the transitive reduction of any DAG can be computed from its transitive closure. Let M ecs be an adjacency matrix encoding a set of elementary closed sets, its transitive reduction M red , can be calculated as follows:

M red = M ecs ∧ ¬(M ecs • M ecs )
where ∧ and ¬ are pairwise logical AND and logical NOT and • is the Boolean matrix product (i.e. addition is replaced by a logical OR and multiplication

x ∈ E F ({x})

x 1 {x 1 , x 2 , x 3 , x 4 , x 5 } x 2 {x 2 , x 3 , x 4 , x 5 } x 3 {x 3 , x 5 } x 4 {x 4 , x 5 } x 5 {x 5 }
Table 1: A set of elementary closed sets of a pretopological space (E, a) of type V.
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Figure 3: The elementary closed sets of a pretopological space of type V can be organized according to their inclusion scheme. A directed acyclic graph is then deductible from this organization and vice versa.

by a logical AND). Although this does not necessarily improve the theoretical complexity of the algorithm proposed by Largeron and Bonnevay [START_REF] Largeron | A pretopological approach for structural analysis[END_REF], it could easily take advantage of modern hardware instructions to speed up, in practice, the computation of the DAG. Such a DAG is a perfect encoding of the set of elementary closed sets of a pretopological space of type V, since they can be retrieved by means of the transitive closure. However, it is absolutely not sufficient to retrieve the pseudoclosure operator (and thus the pretopological space) since the non-elementary closed sets are unknown. Moreover, only the final state of the expansion of a singleton is known but the intermediate steps are necessary to deduce a pseudoclosure operator.

The isotonic property will also be of crucial importance for the pseudoclosure learning framework we propose in the remainder. This property allows for efficient learning of a pretopological space: as we will see in Section 4, it allows for an accurate estimate of the number of positive and negative bags covered by a solution under construction. Consequently, only V-type pretopological spaces will be considered in the rest of this paper.

Pseudo-closure operator and type V

The objective of this subsection is to describe several ways to define a pseudoclosure operator suitable for the construction of a V-type pretopological space. The advantages and (especially) disadvantages of each method will be discussed, leading to a new proposal.

V 1 x 1 x 2 x 3 x 4 x 5 V 2 x 1 x 2 x 3 x 4 x 5 V 3 x 1 x 2 x 3 x 4 x 5 V 4 x 1 x 2 x 3 x 4 x 5 Figure 4: Four neighborhood relations (V 1 , V 2 , V 3 , V 4 ) on the set E = {x 1 , x 2 , x 3 , x 4 , x 5 }.
An arrow going from one element x ∈ E to another y ∈ E indicates that y ∈ V (x). Reflexive relations are ignored for simplicity.

A pseudo-closure operator is naturally defined by a neighborhood function on a given set E. A neighborhood function is an application of E to its power set P(E) such that any element x ∈ E belongs to its neighborhood V (x). It is formally defined as a function V : E → P(E) such that ∀x ∈ E, x ∈ V (x). A neighborhood function is equivalent to a binary relation R where an element x ∈ E is in relation with another element y ∈ E (denoted xRy) if and only if y ∈ V (x). A neighborhood function can then be visualized as a directed graph where the vertices are elements of the set E and an edge from x ∈ E to y ∈ E indicates xRy and thus y ∈ V (x). This representation is used in Figure 4 to illustrate four neighborhood functions.

Given such a neighborhood function, we can derive a pseudo-closure operator defined for any set A ∈ P(E) by a(A) = {x ∈ E | V (x) ∩ A = ∅}. This operator extends a set A ∈ P(E) to any element x ∈ E whose neighborhood intersects A. The resulting pretopological space (E, a) is known to be of type V [START_REF] Belmandt | Manuel de prétopologie et ses applications[END_REF][START_REF] Brissaud | Basics of pretopology[END_REF]. As an example, consider a V2 (.) as the pseudo-closure operator defined by the neighborhood relation V 2 described in Figure 4. The computation of the pseudoclosure of a set can be done visually by looking back along the edges: x 2 is in the pseudo-closure of {x 1 } since there is an edge from x 2 to x 1 . The closure of the singleton {x 1 } is then computed as follows:

{x 1 } a V 2 --→ {x 1 , x 2 } a V 2 --→ {x 1 , x 2 , x 3 } a V 2 --→ {x 1 , x 2 , x 3 , x 4 , x 5 }
Although this is a fairly common way of defining a pseudo-closure operator, it is not the most interesting way of taking advantage of the theory of pretopol-

x 1 x 2 x 3
x 4

x 5

x 1

x 2 x 3

x 4

x 5 ogy, since the closure operator is basically equivalent to the transitive closure operator on the graph defined by the neighborhoods function V . The pretopology theory indeed reveals its power in the multiple-criteria context, i.e. when the pseudo-closure operator is defined by a combination of multiple neighborhoods.

Let us consider a collection of k neighborhood functions V = {V 1 , . . . , V k } on E. Bui et al. [START_REF] Bui | A multi-criteria document clustering method based on topic modeling and pseudoclosure function[END_REF] define the two concepts of strong and weak pseudo-closure operators. These two pseudo-closure operators, respectively denoted a strong (.) and a weak (.), give rise to two pretopological spaces (E, a strong ) and (E, a weak ) of type V.

∀A ∈ P(E), a strong (A) = {x ∈ E | ∀V ∈ V, V (x) ∩ A = ∅} ∀A ∈ P(E), a weak (A) = {x ∈ E | ∃V ∈ V, V (x) ∩ A = ∅}
The strong pseudo-closure operator a strong (.) extends a set A ∈ P(E) to any element x ∈ E such that all the neighborhoods V i (x) intersect A; a weak (.) extends the set A to any element x ∈ E such that at least one of the k neighborhoods V i (x) intersects A. Figure 5 shows the structures arising from the weak and the strong pretopological spaces defined by the four neighborhoods in Figure 4.

A strong assumption is made in both cases: the strong pretopology assumes that every neighborhood is equally necessary to trigger an expansion, and weak pretopology assumes that every neighborhood is sufficient to trigger an expansion. These assumptions seem to be wrong most of the time. Thus, research has been conducted on a methodology to construct a multiple-neighborhood based pseudo-closure operator designed such that useful neighborhoods are selected and combined while erroneous ones are discarded. Cleuziou and Dias [START_REF] Cleuziou | Learning pretopological spaces for lexical taxonomy acquisition[END_REF] were the first to tackle this problem by proposing a pseudo-closure operator defined by a set of weighted neighborhoods.

Weighted modeling of pseudo-closure

This subsection first recalls the definition of (weighted) pseudo-closure proposed by Cleuziou and Dias [START_REF] Cleuziou | Learning pretopological spaces for lexical taxonomy acquisition[END_REF] and then highlights the limitations of such a numerical and linear modeling.

Cleuziou and Dias [START_REF] Cleuziou | Learning pretopological spaces for lexical taxonomy acquisition[END_REF] introduce the notion of parametrized pseudo-closure. A parametrized pseudo-closure operator is defined by a set of weighted neighborhood functions plus a bias weight. Let E be a set, V = {V 1 , . . . , V k } a set of k neighborhoods on E, w = {w 1 , . . . , w k } a set of k weights, and w 0 a bias weight. This operator is designed in such a way that a propagation is triggered if and only if a sufficient part of the neighborhoods agree on this propagation. We say that a neighborhood V ∈ V is agree on a propagation from a set A ∈ P(E) to an element x ∈ E when V (x) ∩ A = ∅. If the sum of the weights associated to these neighborhoods is greater than or equal to the bias weight w 0 , then the set A propagates to the element x.

This agreement process is defined by a linear threshold function f w () given by:

∀A ∈ P(E), ∀x ∈ E, f (A, x) = 1 if {0<i≤k|Vi(x)∩A =∅} w i ≥ w 0 0 otherwise
The parameterized pseudo-closure operator a w (.) is then expressed by ∀A ∈ P(E), a w (A) = {x ∈ E | f (A, x) = 1} and the pretopological space (E, a w ) is of type V [START_REF] Cleuziou | Learning pretopological spaces for lexical taxonomy acquisition[END_REF]. This definition of the pseudo-closure operator generalizes existing combination-based operators. For example, there exists weight assignments retrieving either weak or strong pseudo-closure operators from Bui et al. [START_REF] Bui | A multi-criteria document clustering method based on topic modeling and pseudoclosure function[END_REF]. The weak pseudo-closure operator is equivalent to any parameterized pseudoclosure operator such that each weight w i is greater than or equal to w 0 ; the strong pseudo-closure operator is equivalent to the parameterized pseudo-closure operator where each weight w i is equal to w0 k . Although this parameterized-pseudo closure operator allows to define much more flexible pretopological spaces than previous definitions of the pseudoclosure operator, two major limitations remain. First, the expressiveness of the linear modeling is still quite limited, as not all propagation phenomena can be expressed in the form of a linear model. For example, a simple rule such as "if V 1 and V 4 agree, or if V 2 and V 3 agree, then a propagation must be triggered" cannot be expressed by this approach. Second, given a set E and a collection of k neighborhoods on E, the number of weight vectors is unbounded while the number of pretopological spaces is bounded. This implies a large number of redundant weight vectors and makes the exploration of the weight vector spaces tedious, especially for the purpose of learning the pseudo-closure operator as we will see in the next section.

As an example, consider the collection V = {V 1 , V 2 , V 3 , V 4 } of four neighborhoods illustrated in Figure 4 and the two sets of elementary closed sets conforming to type V S * 1 and S * 2 illustrated in Figure 6 and Table 2. The problem is to find two sets of weights w 1 and w 2 such that the pseudo-closure operators a w1 (.) and a w2 (.) retrieve, respectively, the sets of elementary closed sets S * 1 and S * 2 . In order to illustrate the two limitations stated above (expressiveness and redundancy), we show that S * 1 cannot be retrieved by the linear weighting approach (lack of expressiveness) while it exposes an infinite number of equivalent
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Figure 6: Two sets of elementary closed sets.

x solutions to retrieve S * 2 (redundancy). Expressiveness. The target set S * 1 of elementary closed sets is retrievable by any weight assignment such that a propagation is triggered if and only if either V 1 and V 4 match, or V 2 and V 3 match. Such an assignment can be found by solving the system with the following constraints:

∈ E F * 1 (x) F * 2 (x) x 1 {x 1 , x 2 , x 3 , x 4 , x 5 } {x 1 , x 2 , x 3 , x 4 , x 5 } x 2 {x 2 , x 3 , x 4 , x 5 } {x 2 , x 3 , x 4 , x 5 } x 3 {x 3 , x 5 } {x 3 , x 4 , x 5 } x 4 {x 4 , x 5 } {x 4 , x 5 } x 5 {x 5 } {x 5 }
w 1 + w 4 ≥ w 0 w 0 > 0 w 2 + w 3 ≥ w 0 max {w 1 , w 4 } + max {w 2 , w 3 } < w 0
It can be shown that this system is unsolvable even if the solution we are looking for can be formulated as simply as

(V 1 ∧ V 4 ) ∨ (V 2 ∧ V 3 ).
It is well known that such a Boolean function is not a threshold function and therefore cannot be expressed with a weighting model.

Redundancy.

A solution allowing to perfectly retrieve the target set S * 2 of elementary closed sets is the vector w = (0.0, 0.5, 0.5, 1.0) with the bias weight w 0 = 1.0. It is easier (and equivalent) to represent w by the logical formula (V 2 ∧ V 3 ) ∨ V 4 meaning that x ∈ a w (A) if and only if at least one of the following two conditions is satisfied:

1. both V 2 and V 3 allow it (i.e. both V 2 (x) and V 3 (x) intersect A, not necessarily on the same element(s)), 2. V 4 allows it (i.e. V 4 (x) intersects A).

The vector w is then used to define the pseudo-closure operator a w (.), which behaves as follows:

{x 1 } V2∧V3 -----→ and V4 {x 1 , x 2 } V4 -→ {x 1 , x 2 , x 4 } V2∧V3 -----→ and V4 {x 1 , x 2 , x 3 , x 4 , x 5 } = F w ({x 1 }) {x 2 } V4 -→ {x 2 , x 4 } V2∧V3 -----→ and V4 {x 2 , x 3 , x 4 , x 5 } = F w ({x 2 }) {x 3 } V2∧V3 -----→ and V4 {x 3 , x 4 , x 5 } = F w ({x 3 }) {x 4 } V2∧V3 -----→ and V4 {x 4 , x 5 } = F w ({x 4 }) {x 5 } ∅ -→ {x 5 } = F w ({x 5 })
Each arrow describes a single step of propagation from an element x ∈ E to its elementary closure F w ({x}), and the clauses above and below each arrow are the ones participating in the propagation. Let us observe that it is easy to find another vector w = w defining an operator a w similar to a w (e.g. w = (0.0, 0.6, 0.4, 1.0) and w 0 = 1.0). In fact, the operator a w (.) is equivalent to any other operator a w (.) where w = (w 1 , w 2 , w 3 , w 4 ) and the bias w 0 satisfy the system of constraints below, which admits an infinite number of solutions.

w 0 > 0 w 1 < w 0 w 2 + w 3 ≥ w 0 w 2 < w 0 w 4 ≥ w 0 w 3 < w 0 w 1 < w 0 -max {w 2 , w 3 }
It seems worth mentioning that while both V 2 ∧ V 3 and V 4 are involved in the expansion from {x 2 , x 4 } to {x 2 , x 3 , x 4 , x 5 }, only V 2 ∧ V 3 is responsible for the inclusion of x 3 in a w ({x 2 , x 4 }). Moreover, the reasons of this propagation are not trivial; indeed, V 2 is at the origin of the propagation of {x 2 , x 4 } to x 3 because x 2 is in the neighborhood of x 3 ; whereas V 3 is at the origin because x 4 is in the neighborhood of x 3 .

A new logical approach

To overcome the two main limitations of weighted modeling discussed above (lack of expressiveness and redundancy), we propose to define a combination of neighborhoods as a disjunctive normal form (DNF) logical formula. We restrict our work to positive DNFs, i.e. DNFs without negative literals.

Such modeling requires translating the information provided by a neighborhood into a logical concept. This can be done by transforming any neighborhood function V i in the collection of neighborhoods V into a logical predicate q i : P(E) × E → {0, 1} determining whether the neighborhood V (x) of an element x ∈ E intersects a set A ∈ P(E).

∀V i ∈ V, A ∈ P(E), x ∈ E, q i (A, x) = 1 if V i (x) ∩ A = ∅ 0 otherwise (1)
Property 1. Any predicate q : P(E) × E → {0, 1} derived from a neighborhood function V : E → P(E) as defined in Equation (1) respects the isotonic property:

∀A, B ∈ P(E), ∀x ∈ E, A ⊆ B ⇒ q(A, x) ≤ q(B, x)
Proof. Let V be a neighborhood function defined on a set E and q the predicate derived from V .

∀X ∈ P(E), ∀x ∈ E, q(X, x) = 1 ⇔ V (x) ∩ X = ∅ ∀A, B ∈ P(E), ∀x ∈ E, A ⊆ B ⇒ [(V (x) ∩ A = ∅) ⇒ (V (x) ∩ B = ∅)] ⇒ q(A, x) ≤ q(B, x)
Thus, any predicate derived from a neighborhood function as defined in Equation (1) respects the isotonic property.

Let Q = {q i } ∀Vi∈V be a set of predicates. Then, a logical pseudo-closure operator a Q (.) can be derived from any positive DNF Q defined on the language (Q * ) * , namely, the infinite Cartesian power of the infinite Cartesian power of Q: Q * is the set of all conjunctive clauses, and (Q * ) * is the set of all the positive DNFs.

∀A ∈ P(E) , a Q (A) = {x ∈ E | Q(A, x)} Theorem 1.
Let Q be a positive DNF composed of predicates respecting the isotonic property, then the pretopological space (E, a Q ) derived from Q is of type V.

Proof. The pretopological space (E, a Q ) is of type V if and only if ∀A, B ∈ P(E), A ⊆ B ⇒ a Q (A) ⊆ a Q (B) (isotonic property). Let c i be the i-th conjunctive clause of Q and q ij the j-th literal in c i .

∀x ∈ E, x ∈ a Q (A) ⇔ Q(A, x) = 1 ⇔ ∃i, c i (A, x) = 1 ⇔ ∃i∀j, q ij (A, x) = 1
Since all predicates q ij (A, x) are of type V, the conjunctive clause c i (A, x) is obviously of type V as well, and so is the DNF

Q. So if Q is a positive DNF composed of predicates of type V, then (E, a Q ) is a pretopological space of type V.
In what follows, we consider only well-formed (or simplified) DNFs. That is, DNFs that satisfy the following properties:

• A clause is present only once • A clause is not subsumed by another (more general) For example, Q 1 = q 1 ∨q 1 and Q 2 = (q 1 ∧q 2 )∨q 1 are both ill-formed DNFs. Q 1 is ill-formed because the clause q 1 appears twice and Q 2 is also ill-formed because q 1 ∧ q 2 ⇒ q 1 , so q 1 ∧ q 2 is subsumed by q 1 . Q 3 = q 1 is the only well-formed DNF equivalent to both Q 1 and Q 2 . This simplification reduces the space of valid DNFs since it would, like the weight vector model, be infinite otherwise.

We have introduced a new logical model to represent a combination of neighborhoods on a given finite non-empty set E. This combination is a logical formula in positive disjunctive normal form used to define a decision function Q : P(E) × E → {0, 1}. This decision function allows us to construct a pretopological space (E, a Q ) of type V by defining the result of the pseudo-closure operator applied on a subset A ∈ P(E) as the set of all elements x ∈ E satisfying the decision function Q(A, x). Let us now show that the new proposed model is more expressive than the previous weighted model. Property 2. Any weighted pseudo-closure operator a w (.) can be reformulated as a logical pseudo-closure a Q (.).

Proof. Consider a set E, a collection V of k neighborhoods, a weight vector w = (w 1 , . . . , w k ), a bias weight w 0 and a positive DNF Q constructed by making a conjunctive clause of each combination of weights whose sum is greater than or equal to w 0 . Then the threshold function f is equivalent to Q. f (A, x) = 1 means that there is a combination of neighborhoods V = {V ∈ V | V (x) ∩ A = ∅} such that the sum of their associated weights is greater than w 0 . By construction of Q, the logical conjunction Vi∈V q i (A, x) belongs to Q and is true (by definition of V ).

On the contrary, f (A, x) = 0 means that there is no combination of neighborhoods V = {V ∈ V | V (x) ∩ A = ∅} such that the sum of their associated weights is greater than w 0 . By construction of Q, there does not exist either a conjunction c such that c(A, x) = 1.

As an example, let us consider the vector w = (0.0, 0.5, 0.5, 1.0) and the bias weight w 0 = 1.0 defined previously to retrieve the set S * 2 of elementary closed sets. If we omit w 1 , which is zero, there are five distinct combinations of weights whose sum is greater than or equal to w 0 : w 4 , (w 2 , w 3 ), (w 2 , w 4 ), (w 3 , w 4 ), and (w 2 , w 3 , w 4 ). An equivalent DNF is Q = (q 4 ) ∨ (q 2 ∧ q 3 ) ∨ (q 2 ∧ q 4 ) ∨ (q 3 ∧ q 4 ) ∨ (q 2 ∧ q 3 ∧ q 4 ). This DNF is obviously ill-formed, but it expresses exactly the same intent as w. This formula can be simplified into the well-formed (and more readable) DNF Q = (q 2 ∧ q 3 ) ∨ q 4 . Property 2 establishes that the logical pseudo-closure model is at least as expressive as the weighted model, but our new formalization was motivated by improving expressiveness over the previous model. Indeed, as mentioned before, some DNF cannot be expressed as a weight vector: we could not find a linear model able to retrieve the set S * 1 of elementary closed sets. We have already proposed a DNF that meets our needs: Q 2 = (q 1 ∧ q 2 ) ∨ (q 3 ∧ q 4 ), which cannot be modeled by a weight set.

To conclude on this section, we have introduced a simple and versatile model for the pseudo-closure operator which is based on a logical formalism. Our model is versatile because it is able to express a wider variety of V-type pretopological spaces than existing models. It is simple because the space of all DNFs is finite and easier to explore unlike the (infinite) space of weighted vectors. It is also simple because a DNF is much more human readable than a weight vector, and thus easier to interpret.

Learning a pretopological space of type V

In this section, we address the problem of learning a V-type pretopological space. Cleuziou and Dias [START_REF] Cleuziou | Learning pretopological spaces for lexical taxonomy acquisition[END_REF] introduced the framework Learn Pretopological Space (LPS). They propose to learn a pretopological space in a semi-supervised or, as they claim, a self-supervised manner. Their work is presented as an approach to automatically extract a lexical taxonomy. This is in fact a reductive view of the outcomes of learning pretopological (V-type) spaces. As we have shown in the previous section, a hierarchical structure is hidden behind any V-type pretopological space. The goal of the LPS framework is to learn a structuring model and it can be used to find a solution to any task whose output is a directed acyclic graph (DAG), lexical taxonomy extraction is an example of such tasks.

The original LPS algorithm uses a genetic algorithm to learn a structuring model. The learning algorithm is guided by an optimization function that measures the correspondence between the learned structure and a target structure; we call this function the extrinsic quality measure. In this section we outline our approach to learning a positive DNF using the same genetic algorithm, but in a supervised setting, instead of a semi-supervised setting as in the original work. Since this type of algorithm suffers from high complexity, we then introduce a greedy learning approach that reduces this complexity issue.

Extrinsic quality measure

Given a finite set E of elements, a set S * = {F * ({x})} x∈E of target elementary closed sets and a collection V of neighborhoods, the LPS task is to learn a pretopological space (E, a) whose underlying structuring S = {F ({x})} x∈E (i.e. its set of elementary closed sets) best matches S * . A quality measure, quantifying the degree of correspondence, is thus necessary to guide the learning process.

Cleuziou and Dias [START_REF] Cleuziou | Learning pretopological spaces for lexical taxonomy acquisition[END_REF] used the F-measure which computes a trade-off between accuracy and completeness when comparing two sets of closed sets. Accuracy is defined as the precision of the solution, and completeness by the recall of the solution:

Precision(S, S * ) = x∈E |F ({x}) ∩ F * ({x})| x∈E |F ({x})| Recall(S, S * ) = x∈E |F ({x}) ∩ F * ({x})| x∈E |F * ({x})| x ∈ E F ({x}) F * ({x}) |F ({x}) ∩ F * ({x})| x 1 {x 1 , x 2 , x 3 , x 4 , x 5 } {x 1 , x 2 , x 3 , x 4 , x 5 } 5 x 2 {x 2 , x 3 , x 4 , x 5 } {x 2 , x 3 , x 4 , x 5 } 4 x 3 {x 3 , x 4 , x 5 } {x 3 , x 5 } 2 x 4 {x 4 , x 5 } {x 4 , x 5 } 2 x 5 {x 5 } {x 5 } 1 
Precision:

14 15 ≈ 0.93 Recall: Precision (resp. recall) is defined as the ratio of the number of correctly retrieved elements in the learned elementary closed sets (S) to the total number of elements in the learned elementary closed sets S (resp. in the target elementary closed sets S * ). The F-measure is then defined as the harmonic mean between precision and recall. Table 3 illustrates the computation of the F-measure by comparing a closure function2 F (.) to a target structuring, F * (.), on a set E.

14 14 = 1 F-measure: 2 • 0.93•1 0.93+1 ≈ 0.96
In the specific context of the LPS problem, we call such a quality measure an extrinsic quality measure since it evaluates only the final elementary closed sets revealed by the structuring process, rather than the (internal or intrinsic) propagation process itself.

Genetic LPS

For clarity, we present two variants of LPS: Numerical Genetic LPS [START_REF] Cleuziou | Learning pretopological spaces for lexical taxonomy acquisition[END_REF] and Logical Genetic LPS whose outputs are pretopological spaces defined by a DNF. The term Genetic LPS framework refers to these two algorithms.

The Genetic LPS framework aims at learning a pretopological space by means of a genetic algorithm. Given a set S * of target elementary closed sets and a collection V of neighborhoods, its output is a combination of neighborhoods (a weight vector or a DNF, depending on the algorithm) defining a pseudo-closure operator leading to the highest extrinsic measure on the resulting set S of elementary closed sets. Algorithm 1 provides a pseudo-code of the generic Genetic LPS framework.

The algorithm starts by generating a set of random candidate solutions (Line 7). A pretopological space is then constructed from each candidate and its set of elementary closed sets is computed and evaluated against the target S * (Lines 12 and 13). Finally, a new set of candidates is computed by crossing and mutating the best candidates of the previous population (Line 28). The algorithm stops when the score of the best candidate remains stable for a given number of steps (Line 19).

In order to compute the extrinsic quality of a solution Q, the set S Q of elementary closed sets of the pretopological space (E, a Q ) must be computed. This structuring step is the most expensive operation we rely on, so we choose to define the complexity of LPS algorithms in terms of the number of structuring steps required.

Genetic algorithms tend to need many iterations to converge to a solution, which makes their execution a bit slow. The quality of their results is often related to the size of their initial population, which is itself related to the time needed to converge to an acceptable solution. For example, Algorithm 1 has a complexity (in terms of number of structurations) of O(initial_pop • max_iter) with initial_pop generally high. Moreover, due to the stochastic nature of these algorithms, multiple runs may lead to different outputs. For these reasons, we introduce in the next subsection a less expensive (greedy) learning approach.

Greedy LPS

The Greedy LPS is a greedy variant of the Logical Genetic LPS: given a set S * of target elementary closed sets and a collection V of neighborhoods, its output is a combination of the neighborhoods in V as a positive DNF Q. It uses a greedy heuristic designed to speed up the learning process.

The pseudo-code of the Greedy LPS is presented in Algorithm 2. The algorithm starts with an empty DNF Q (Line 6); conjunctive clauses are then successively added to Q. A beam search is performed to find the clause c such that the set of elementary closed sets S Q computed from the DNF Q = Q ∨ c maximizes the extrinsic measure defined above (Line 9). If the quality of Q is higher than the quality of the previous DNF Q, then c is added to Q and the next iteration starts, otherwise the algorithm stops.

Algorithm 3 is the engine of the Greedy LPS. Given a DNF Q, its output is a conjunctive clause c maximizing the extrinsic quality measure of the DNF Q ∨ c. The search of the clause c is done by specializing an empty clause until it can no longer be specialized (Line 2). It is called the first time in Line 9 of Algorithm 2. The function starts by evaluating all well-formed conjunctive clauses a little more specialized than the parameter base_clause, that is to say base_clause plus a predicate in P reds and not in base_clause (see the loop starting Line 9). Then, the set of evaluated conjunctive clauses is sorted and filtered to keep only the bests beam. The second loop of the function consists in calling itself recursively with the parameter base_clause fixed to one of the previously filtered clauses (Line 23), in order to evaluate larger clauses.

The Greedy LPS has a complexity of O(max_iter • |V| • beam) that is in practice much lower than that exhibited by the Genetic LPS since |V| • beam is typically much smaller than the initial population size of the Genetic LPS.

Algorithm 1: Genetic LPS 1 Function GeneticLPS (E, S * , V, max_iter, initial_pop, required_iter_convergence) 2 iter ← 0 3 iter_conv ← 0 4 score ← 0 5 stop ← f alse 6 Q ← ∅ 7 population ← initial_pop random solutions 8
while iter < max_iter and ¬stop do 

9 iter ← iter + 1 scores ← [ ] /* an empty array */ foreach Q ∈ population do S Q ← structuring(E, V, Q) Append extrinsic_measure(S Q , S * )
2 iter ← 0 3 score ← 0 4 stop ← f alse 5 P reds ← predicates derived from V 6 Q ← ∅ 7
while iter < max_iter and ¬stop do 

8 iter ← iter + 1 9 c ← F indBestClause(E, S * , P reds, Q, ∅, beam) Q ← Q ∨ c S Q ← structuring(E, Q) if clause = ∅ or extrinsic_measure(S Q , S * ) ≤ score then stop ← true end else score ← extrinsic_measure(S Q , S * ) Q ← Q end end return Q end Algorithm 3: Building the best clause Function FindBestClause (E, S * , Preds, Q, base_clause, beam) if |base_clause| ≥ |P reds| then /* base_clause contains all the predicates in P reds */ return base_clause end best_clause ← ∅ best_score ← 0 clauses ← [ ] scores ← [ ] foreach q ∈ P reds \ base_clause do c ← base_clause ∧ q Q ← Q ∨ c S Q ← structuring(E, Q ) score ← extrinsic_measure(S Q , S * ) clauses ← append c
Q ← Q ∨ beam_c S Q ← structuring(E, Q ) score ← extrinsic_measure(S Q , S * ) if score > best_score then 28 best_score ← score 29 best_clause ← c end end return best_clause end
The Greedy LPS is much simpler than the Genetic LPS framework and results in much shorter run times. In addition, further experimental comparisons (cf. Section 5) reveal that, despite the lack of completeness in exploring the solution space and due to the conciseness of the pseudo-closures produced, the greedy learning strategy significantly outperforms the stochastic approaches in the LPS task.

The premise of the following contribution is that the extrinsic measure used in the previous learning methodologies is not suitable for incremental learning strategies. Greedy LPS is expected to retrieve even better models by using an objective criterion that considers not only the quality of structuring (elementary closed sets) but also the potential of pseudo-closure (elementary and non-elementary closed sets).

For example, suppose one is learning the pretopological space presented in Figure 7. Given two candidate DNFs Q and Q , one needs to know which of the two closure operators F Q and F Q best retrieves the set S * of target elementary closed sets. Both Q and Q share the same (extrinsic) F-measure score, therefore the Greedy LPS is unable to determine which DNF is best. Choosing the wrong clause in the iteration i could have a huge impact on the clause chosen in the iteration i+1 (and further). Therefore, it is fundamental to be able to determine which of Q or Q is more useful.

Recall that only pretopological spaces of type V are considered, so ∀A,

B ∈ P(E), A ⊆ B ⇒ a(A) ⊆ a(B). Thus, the fact that F Q ({x 2 }) = {x 2 , x 3 }
can be used to deduce information about the closures of the super-sets of {x 2 }: any set A ∈ P(E) such that x 2 ∈ A will propagate to at least x 3 . Of course, the same applies to Q : {x 4 } and its super-sets will propagate to x 5 . Although the information provided by Q and Q are quantitatively equivalent, Q gives more useful information. Indeed, Q tells us that, because

x 5 ∈ F Q ({x 4 }), then x 5 ∈ F Q ({x 3 , x 4 }).
But the propagation of the set {x 3 , x 4 } does not provide any useful information since it is not reachable from any singleton3 (according to S * ). On the contrary, Q tells us that all the super-sets of {x 1 } propagate to x 3 . Since F * ({x 1 }) = E, all super-sets of x 1 are reachable (at least from {x 1 }), so this information is valuable for learning the target pretopological space. Thus, Q gives more qualitative information than Q .

A different quality measure that takes this intrinsic information into account is needed because such a method would be able to determine that, although Q and Q are equivalent in terms of F-measure (i.e., the extrinsic quality measure), Q has more potential with respect to subsequent iterations. The term potential is appropriate because, although Q informs us that x 3 ∈ F Q ({x 1 , x 2 }), this information is not reflected by the resulting elementary closed sets. However, it can be, and will be, important when learning additional clauses since it will influence the algorithm to learn a clause completing the (elementary) closure of {x 1 }. On the contrary, the extrinsic quality measure cannot influence the results of the following iterations in this way because it considers that any expansion is equally important, which is false as we have just shown. Moreover, the pretopological closure operator is defined in such a way that a single collection of elementary closed sets can be obtained by many pseudoclosure operators. For example, there are three ways to obtain an elementary closure F ({x}) = {x, y, z}, as illustrated below. This means that if we try to learn a pretopological space of type V from its elementary closed sets, we have to consider all the pseudo-closure operators leading to the same elementary closed sets. Given a set S * of elementary closed sets, we propose to learn a pseudoclosure operator able to retrieve S * . Such an operator seems not to be unique. This means that the target function can take several valid forms, each one being described by a different set of features (i.e. different combinations of neighborhoods). This is the formulation of the multiple instance problem [START_REF] Dietterich | Solving the multiple instance problem with axis-parallel rectangles[END_REF] on which the rest of the contribution is based.

x 1 x 2 x 3 x 4 x 5 S * x ∈ E F * ({x}) F Q ({x}) F Q ({x}) x 1 {x 1 , x 2 , x 3 , x 4 , x 5 } {x 1 , x 3 } {x 1 } x 2 {x 2 , x 3 , x 4 , x 5 } {x 2 , x 3 } {x 2 , x 3 } x 3 {x 3 , x 5 } {x 3 } {x 3 } x 4 {x 4 , x 5 } {x 4 } {x 4 , x 5 } x 5 {x 5 } {x 5 } {x 5 }

A multiple instance approach

The first objective of this section concerns the formulation of the LPS framework in the Multiple Instance (MI) formalism, which offers the possibility of introducing a new (intrinsic) fitness measure to overcome the limitations of the existing (extrinsic) measure, especially when combined with a greedy learning strategy. However, we will see that such an MI formulation will reveal a combinatorial problem in pseudo-closure learning. The second and crucial contribution of this section is to show how to overcome this combinatorial problem, first by using the properties of V-type pretopological spaces and finally by approximations.

The multiple instance (MI) problem [START_REF] Dietterich | Solving the multiple instance problem with axis-parallel rectangles[END_REF] arises when an observation can be described by several feature vectors, or instances. describing an observation is called a bag of instances and is labeled either positively or negatively: positively if at least one instance is positive, negatively if all instances are negative. Bag labels may be assigned differently depending on the target task [START_REF] Dietterich | Solving the multiple instance problem with axis-parallel rectangles[END_REF], but this simple bag labelling scheme, as proposed by Dietterich et al. [START_REF] Dietterich | Solving the multiple instance problem with axis-parallel rectangles[END_REF], is well suited for the LPS task.

The MI task consists in finding a function predicting the label of a new instance knowing only the labels of the bags. A famous example of MI task is the simple jailer problem [START_REF] Chevaleyre | Solving multiple-instance and multiplepart learning problems with decision trees and rule sets. application to the mutagenesis problem[END_REF]: given a locked door and a bunch of key rings, the task is to find which key opens it. But the only information we have is whether a key ring is useful or not, i.e., whether it contains at least one key capable of unlocking the door. An example of a simple jailer dataset is provided in Table 4. Recall that in real cases, the column "Instance labels" is unknown and is presented here in order to understand why bags 1 and 2 are positive (because they have at least one positive instance). On the contrary, bag 3 is labeled negatively because it contains no positive instances.

We propose to model the task of learning a pretopological space (E, a) based on its expected set of elementary closed sets by an MI learning task. An instance represents a propagation from a set A ∈ P(E) to an element x ∈ E and is labeled positively if x ∈ F * (A) according to S * , otherwise the instance is labeled negatively. As we saw briefly before, multiple propagations of a set A conform to S * . Thus, a bag corresponds to the set of instances modeling these propagations.

Building a MI dataset for the LPS task

The LPS task consists in learning a pretopological space (E, a Q ) of type V such that its set S Q of elementary closed sets corresponds to a target set S * of elementary closed sets. Let x be an element of E and its target elementary closure be F * ({x}) = {x, y, z}. In general, several steps are necessary to compute an elementary closed set. For example, the valid steps for propagation from {x} to {x, y, z} are {x, y}, {x, z} and {x, y, z}. If the pseudo-closure operator a Q (.) produces something different during the computation of F Q ({x}), then the target elementary closed set F * ({x}) cannot be retrieved.

The set of valid propagation steps for an element x are given by X = {X ∈ P(E) | x ∈ X, X ⊆ F * ({x})}. The set of all propagation steps valid for all elements in E can thus be projected on the Boolean lattice of subsets of E. We denote this lattice L and define two sub-lattice notations for all sets A and B such that

A ⊆ B ⊆ E. L [A, B] = F(A) ∩ P(B) L [A, B[ = L [A, B] \ B L [A, B]
is defined as the intersection between the super-sets of A (i.e. the filter F(A)) and the subsets of B (i.e. the power-set P(B)), i.e. the sets between A and B in the lattice

L. L [A, B[ is equal to L [A, B] deprived of its greatest element.
The LPS task can then be reformulated more precisely as the task of learning a pretopological space (E, a Q ) such that for any x ∈ E:

• Any set A ∈ L [{x}, F * ({x})] propagates to at least one element of F * ({x}) \ A. • No element of F * ({x}) is reachable from a set A ∈ L [{x}, F * ({x})].
This definitely sounds like the definition of positive and negative bags in an MI learning task! Indeed, it seems natural to formulate the LPS task as an MI learning problem. Each positive bag represents all allowed propagations of a given set A ∈ P(E), where A is a valid propagation step for an element x ∈ E. Therefore, positive bags are identified by a pair (x, A) ∈ E × P(E) and mean "the element x must eventually reach all elements in A and at least one propagation described in this bag must occur". Each element of the sub-lattice L [{x}, F * ({x})[ gives rise to a positive bag engendered by x. The positive bag (x, F * ({x})) does not exist since, by definition of a closed set, F * ({x}) does not propagate anymore.

A negative bag is identified by a couple (x, y) ∈ E × E and means "the element x must never propagate to y and none of the propagations described in this bag should occur". Any element not being part of the closed set of x gives rise to a negative bag engendered by x.

The set of all the positive and negative bags engendered by an element x ∈ E are respectively noted bags + (x) and bags -(x).

∀x ∈ E, bags + (x) = {(x, A) | ∀A ∈ L [{x}, F * ({x})[} ∀x ∈ E, bags -(x) = {(x, y) | ∀y ∈ E \ F * ({x})}
The number of positive and negative bags engendered by an element x is therefore given by:

∀x ∈ E, bags + (x) = 2 |F * ({x})|-1 -1 ∀x ∈ E, |bags -(x)| = F * ({x})
It is worth mentioning that in some cases where two (or more) elements x, y ∈ E share the same elementary closed set F * xy = F * ({x}) = F * ({y}), some positive bags are engendered by both x and y. In fact, any positive bag (x, A) where {x, y} ⊆ A ⊂ F * xy is engendered by both x and y. Such a positive bag can be designated as either by (x, A), (y, A) or ({x, y}, A) to insist on the plurality of its origins. This is not a trivial property since it poses some problems of evaluation of a potential solution, as explained in the Appendix A.

Instances of bags represent a unique propagation from a subset A ∈ P(E) to an element y ∈ E. An instance is identified by the bag to which it belongs and a couple (A, y) ∈ P(E) × E. The notation (A, y) is rather confusing because it looks like the notation used to identify positive bags. To clarify this notation, we use (x, A) to identify positive bags and A → y to identify instances. Moreover, it clearly expresses the semantics of an instance, which is "does the set A propagates to the element y?". As we shall see, this can be answered either by "yes", "no" or "maybe".

A positive bag (x, A) contains all the instances modeling an allowed propagation from the set A to an element y. Such a propagation is allowed if and only if y ∈ F * ({x}). Trivial propagations where y ∈ A are ignored because they provide no useful information. Thus, any element y ∈ F * ({x}) \ A gives rise to an instance of the positive bag (x, A).

On the contrary, a negative bag (x, y) contains all instances modeling a forbidden propagation from any valid propagation step of x to the element y. Thus, any subset A ∈ L [{x}, F * ({x})] gives rise to a negative instance of the bag (x, y).

Remark. In the case of LPS, there are no negative instance of a positive bag, as in traditional MI learning tasks. Indeed, the instances of a positive bag are always positive too, in the sense that a model covering all these instances will perfectly retrieve the set S * of target elementary closed sets. However, such a solution is only one solution among others perfectly retrieving S * , since any solution covering at least one instance of each positive bag (and rejecting every negative bags) will also be a perfect solution. Our MI formulation allows the learning of any perfect solution by ignoring the siblings (instances of the same bag) of the covered positive instances.

Instances of positive bags are always positive, but they do not need to be covered by a solution. However, all positive bags must be covered.

Let us illustrate this MI learning task using the set S * of target elementary closed sets represented in Figure 8. The target closed set of the singleton

{x 2 } is F * ({x 2 }) = {x 2 , x 3 , x 4 , x 5 }.
As shown in Table 5, x 2 engenders one positive bag per element in L [{x 2 }, F * ({x 2 })[ and one negative bag per element not in F * ({x 2 }). The set F * ({x 2 }) is a closed set and must not propagate anymore, that is why no positive bag describes its propagation. The definition of a positive bag states that at least one of its instances is positive, which is why every instance of every positive bag is labeled as "maybe"; the only exception is when a bag contains only one instance, then its instance is obviously positive.

S * x 1 x 2 x 3
x 4

x 5

Figure 8: A set S * of closed sets of a pretopological space of type V.

{x 1 } {x 2 } {x 3 } {x 4 } {x 5 } . . . {x 1 , x 5 } {x 2 , x 3 } {x 2 , x 4 } {x 2 , x 5 } {x 3 , x 4 } . . . . . . {x 1 , x 4 , x 5 } {x 2 , x 3 , x 4 } {x 2 , x 3 , x 5 } {x 2 , x 4 , x 5 } {x 3 , x 4 , x 5 } . . . . . . {x 1 , x 2 , x 3 , x 5 } {x 2 , x 3 , x 4 , x 5 } . . . {x 1 , x 2 , x 3 , x 4 , x 5 } Figure 9: The sub-lattice L [{x 2 }, F * ({x 2 })[ embedded in the Boolean lattice on E = {x 1 , x 2 , x 3 , x 4 , x 5 }.
There is an exact correspondence between this sub-lattice and the positive bags engendered by x 2 .

Figure 9 shows the sub-lattice L [{x 2 }, F * ({x 2 })[ which reflects the set of positive bags engendered by x 2 . A line from a subset to another expresses that the source subset must propagate to a higher set in the lattice. Such lines are transitive, meaning that the result of the pseudo-closure operator applied on the subset {x 2 , x 3 } must be equal to one of {x 2 , x 3 , x 4 }, {x 2 , x 3 , x 5 } or {x 2 , x 3 , x 4 , x 5 }. This is exactly the definition of the positive bag (x 2 , {x 2 , x 3 }), which states that {x 2 , x 3 } must propagate to x 4 , x 5 or both. Moreover, the absence of a line indicates that a propagation is forbidden, so, there is no line from a subset of L [{x 2 }, F * ({x 2 })] to another one which contains x 1 . This is the definition of the negative bag (x 2 , x 1 ). Some propagations are impossible, for example {x 2 , x 3 } cannot reach {x 3 , x 4 , x 5 } since the first is not included in the second. In this case, it is useless to insist on the absence of propagation. That is why it is not reported in the set of negative bags.

We have just explained how to construct an MI dataset for the LPS task, given a set E of elements and a set S * of target elementary closed sets. But it is not yet possible to learn anything about this dataset due to the missing feature columns. The features are given by a collection of neighborhoods V, more precisely by the predicates derived from these neighborhoods. Figure 10 shows a collection

V = {V 1 , V 2 , V 3 , V 4 } of four neighborhoods. The set Bag ID Instance ID Instance label Bag label (x 2 , {x 2 }) {x 2 } → x 3 maybe {x 2 } → x 4 maybe {x 2 } → x 5 maybe (x 2 , {x 2 , x 3 }) {x 2 , x 3 } → x 4 maybe {x 2 , x 3 } → x 5 maybe (x 2 , {x 2 , x 4 }) {x 2 , x 4 } → x 3 maybe {x 2 , x 4 } → x 5 maybe (x 2 , {x 2 , x 5 }) {x 2 , x 5 } → x 3 maybe {x 2 , x 5 } → x 4 maybe (x 2 , {x 2 , x 3 , x 4 }) {x 2 , x 3 , x 4 } → x 5 yes (x 2 , {x 2 , x 3 , x 5 }) {x 2 , x 3 , x 5 } → x 4 yes (x 2 , {x 2 , x 4 , x 5 }) {x 2 , x 4 , x 5 } → x 3 yes (x 2 , x 1 ) {x 2 } → x 1 Q = {q 1 , q 2 ,
q 3 , q 4 } of four predicates can then be constructed by following the instruction of Equation ( 1) in Section 2.3.2. The Boolean feature vector (q 1 (A, x), q 2 (A, x), q 3 (A, x), q 4 (A, x)) is then constructed for each instance A → x of the dataset. Table 6 shows the bags engendered by x 2 as well as the feature vector associated to each instance. Suppose the DNF Q = (q 1 ∧ q 4 ) ∨ (q 2 ∧ q 3 ) is learned by an unspecified MI learning process. The resulting pretopological space (E, a Q ) of type V would give the set {x 2 , x 3 , x 4 , x 5 } as the elementary closure of x 2 . It is obvious that {x 2 } ⊆ {x 2 , x 3 , x 4 , x 5 }, the isotonic property of the pseudo-closure operator can be exploited to deduce that a

Q ({x 2 }) ⊆ a Q ({x 2 , x 3 , x 4 , x 5 }) = {x 2 , x 3 , x 4 , x 5 }.
This means that the first step of the propagation of x 2 contains at least x 3 , x 4 or x 5 . It is essentially what the positive bag (x 2 , {x 2 }) expresses, so it is covered by Q. The same reasoning can be applied to explain why the positive bag

(x 2 , {x 2 , x 3 }) is covered: {x 2 } ⊆ {x 2 , x 3 } and F Q ({x 2 }) = {x 2 , x 3 , x 4 , x 5 }, so the isotonic property ensures that {x 2 , x 3 , x 4 , x 5 } ⊆ F Q ({x 2 , x 3 }).
Therefore, a Q ({x 2 , x 3 }) contains either x 4 or x 5 (or even both). The positive bag (x 2 , {x 2 , x 3 }) is thus covered. Of course, the same is true for the other positive bags.

The negative bag (x 2 , x 1 ) is rejected by the solution Q because the set {x 2 , x 3 , x 4 , x 5 } is a closed set in the pretopological space (E, a Q ) of type V. As a consequence of the isotonic property, any subset of {x 2 , x 3 , x 4 , x 5 } cannot propagate to an element that is not in {x 2 , x 3 , x 4 , x 5 }. In particular, the subsets in the lattice L [{x 2 }, F * ({x 2 })] do not propagate to x 1 . Therefore, the negative bag (x 2 , x 1 ) describing all the conceivable propagations from a subset in

L [{x 2 }, F * ({x 2 })] to x 1 is rejected by Q.
But what if the DNF Q = (q 1 ∧ q 4 ) is learned instead of Q? First, the elementary closed set of x 2 would be {x 2 , x 4 , x 5 }. Can we ensure that the negative bag (x 2 , x 1 ) remains rejected? This bag stipulates that any subset in L [{x 2 }, F * ({x 2 })] must not propagate to x 1 . For example, the set {x 3 , x 2 } should not propagate to x 1 . But x 3 is not reached by the propagation from x 2 to its elementary closed set. Therefore, the pseudo-closure of {x 3 , x 2 }, or a super-set, is never computed, which therefore makes it impossible to determine whether the negative bag (x 2 , x 1 ) is badly covered or not.

One solution would be to compute the pseudo-closure of all subsets in the sub-lattice L [{x 2 }, {F Q ({x 2 })}] to check whether they propagate to x 1 , but, as we explain in the following, it is not reasonable. We argue that, although this is indeed a flaw in our proposal, it is not dramatic in practice. Indeed, the ultimate goal of the LPS framework is to produce a DAG based on the set of elementary closed sets of the learned pretopological space. Thus, even if an erroneous propagation exists beyond an elementary closed set, it will not be present in the final structure. Therefore, it is safe to assume that such bags are rejected, as they should be.

The issue of the exponential MI dataset

As illustrated above, the Multiple Instance framework provides an elegant and accurate modeling for the non-trivial problem of learning a pretopological

V 1 x 1 x 2 x 3 x 4 x 5 V 2 x 1 x 2 x 3 x 4 x 5 V 3 x 1 x 2 x 3 x 4 x 5 V 4
x 1

x 2 x 3

x 4

x 5 Bag ID Instance ID q 1 q 2 q 3 q 4 Bag label space. However, since pretopology refers to the power-set P(E), the number of positive bags engendered by an element x ∈ E is exponential (proportional to the size of its elementary closure F * ({x})) thus revealing a major issue for the learning process.

(x 2 , {x 2 }) {x 2 } → x 3 0 1 0 0 1 {x 2 } → x 4 1 0 0 1 {x 2 } → x 5 0 0 0 0 (x 2 , {x 2 , x 3 }) {x 2 , x 3 } → x 4 1 1 0 1 1 {x 2 , x 3 } → x 5 0 1 1 0 (x 2 , {x 2 , x 4 }) {x 2 , x 4 } → x 3 0 1 0 0 1 {x 2 , x 4 } → x 5 1 1 1 1 (x 2 , {x 2 , x 5 }) {x 2 , x 5 } → x 3 0 1 0 0 1 {x 2 , x 5 } → x 4 1 0 0 1 (x 2 , {x 2 , x 3 , x 4 }) {x 2 , x 3 , x 4 } → x 5 1 1 1 1 1 (x 2 , {x 2 , x 3 , x 5 }) {x 2 , x 3 , x 5 } → x 4 1 1 0 1 1 (x 2 , {x 2 , x 4 , x 5 }) {x 2 , x 4 , x 5 } → x 3 0 1 1 0 1 (x 2 , x 1 ) {x 2 } → x 1 1 0 0 0 0 {x 2 , x 3 } → x 1 1 0 0 0 {x 2 , x 4 } → x 1 1 0 0 0 {x 2 , x 5 } → x 1 1 0 0 0 {x 2 , x 3 , x 4 } → x 1 1 0 0 0 {x 2 , x 3 , x 5 } → x 1 1 0 0 0 {x 2 , x 4 , x 5 } → x 1 1 0 0 0 {x 2 , x 3 , x 4 , x 5 } → x 1 1 0 0 0
We have just shown how to construct a dataset based on a target set of elementary closed sets. With such a dataset, one can apply standard MI algorithms to learn a solution from it. A standard MI approach would require enumerating all instances to count the number of bags covered, which will not be a problem with the example given above. But in real-world problems, the number of positive bags generated is overwhelming. Indeed, we explained that ∀x ∈ E, all sets belonging to the sub-lattice L [{x}, F * ({x})[ engender a positive bag. Such a number of bags cannot be handled efficiently by a standard learning algorithm, because it is exponential in the size of F * ({x}).

A standard greedy MI algorithm would, for each learning step, collect the set of covered positive bags and remove them so that the next step would focus only on the remaining bags, and so on until all the positive bags are covered (or some other endpoint is reached). We note that such an algorithm does not really care whether know whether a given positive bag is covered or not. Rather, it cares about how many of them are covered, and whether the end criterion is met.

We therefore propose a method to count (or estimate) the number of bags covered by a solution. This method relies on a trick based on the properties of V-type pretopological spaces. Counting the number of negative bags covered is not a big problem, so we will not treat it in depth. On the other hand, counting the number of covered positive bags is a problem that requires much more effort. We show that while we are able to count the number of positive bags engendered, it is inefficient to accurately count the number of positive bags covered by a solution. Thus, we estimate this number by subtracting a (high) estimation of the positive bags rejected (i.e. not covered) by the solution from the number of positive bags in the dataset.

Estimation of true/false positives

In what follows, we propose a method for estimating the number of positive and negative bags covered by a solution. We begin by describing how to calculate the total number of positive bags in a dataset from the LPS task. This will serve as an introduction to estimating the number of positive bags covered by a solution (i.e. the number of true positives), since the counting mechanism is roughly similar. For completeness, we also show how to compute the total number of negative bags engendered. We then show how to compute the number of negative bags covered by a solution (i.e. the number of false positives).

Computation of the total number of positive/negative bags

The number of positive bags engendered by an element x ∈ E corresponds to the number of elements in the sub-lattice L [{x}, F * ({x})[.

∀x ∈ E, bags + (x) = 2 |F * ({x})|-1 -1
But the sum of the number of positive bags engendered by each x ∈ E does not always correspond to the total number of positive bags. Indeed, when several elements share the same elementary closed set, some bags are engendered by several elements. For example, if F * ({x}) = F * ({y}) = {x, y, z}, then the positive bag identified by (x, {x, y}) is engendered by both elements x and y; we notice that this bag is also identified by (y, {x, y}).

Considering the set {F * 1 , . . . , F * K } of the K distinct elementary closed sets of E such that for any x ∈ E there exists a k ∈ {1 . . . K} where

F * ({x}) = F * k ; E can be partitioned into the set A = {A 1 , . . . A K } of K equivalence classes where each class A k is composed of the elements whose closure is F * k (i.e. ∀x ∈ A k , F * ({x}) = F * k ).
For each equivalence class A k ∈ A, the number of positive bags engendered by the whole subset A k is computed using the inclusion-exclusion principle.

∀A k ∈ A, bags + (A k ) = |A k | i=1 (-1) i+1 X∈comb(A k ,i) x∈X L [{x}, F * k [ = |A k | i=1 (-1) i+1 |A k | i (2 |F * k |-i -1)
where comb(A k , i) expresses the set of all i-combinations of A k , or the power set of A k reduced to its elements of size i. Thus, the size of the intersection between all sub-lattices L [X, A k [, where |X| = i and X ⊆ A k , is alternately added and subtracted. Since all the considered sub-lattices have a lower element of size i and share the same upper element F * k , they also share the same size, which is 2 |F * k |-i -1 thus simplifying the expression of bags + (A k ) . 

∀A ∈ P(E), ∀B ∈ P(E), L [A, F (A)] ∩ L [B, F (B)] = ∅ ⇔ F (A) = F (B) (2) 
Proof. Consider a pretopological space (E, a) of type V and two sets A ∈ P(E) and B ∈ P(E).

• If F (A) = F (B) = K, then L [A, F (A)] and L [B, F (B)] share at least their greatest element K. Therefore, F (A) = F (B) ⇒ L [A, F (A)] ∩ L [B, F (B)] = ∅. • If L [A, F (A)] ∩ L [B, F (B)] = ∅, then ∃C ∈ P(E) such that A ⊆ C, B ⊆ C, C ⊆ F (A) and C ⊆ F (B).
Then, by definition of a pretopological space of type V,

F (A) = F (C). A ⊆ C ⊆ F (A) ⇒ F (A) ⊆ F (C) ⊆ F (A) ⇒ F (A) = F (C)
We can show that F (B) = F (C) in the same way. Therefore,

L [A, F (A)]∩ L [B, F (B)] = ∅ ⇒ F (A) = F (B).
Property 3 ensures that the total number BAGS + * of positive bags can be computed by simply summing the number of positive bags engendered for each equivalence class.

BAGS + * = A k ∈A bags + (A k )
The number of negative bags is much simpler to compute since it does not require relying on the inclusion-exclusion principle. The number of negative bags engendered by an element x ∈ E corresponds to the size of F * ({x}):

|bags -(x)| = |E \ F * ({x})|
The total number (BAGS - * ) of negative bags is obtained by summing the number of negative bags engendered by each element 

BAGS - * = x∈E |bags -(x)| 4 
+ Q (A k ) = |A k | i=1 (-1) i+1 X∈comb(A k ,i) bags + (X) -r + Q (X)
where bags + (X) is the number of positive bags engendered by the elements in X, duplicates included; r + Q (X) is the estimated number of positive bags that are (1) engendered by the elements in X and (2) rejected by Q. Then, the total number of positive bags covered can be estimated by summing bags + Q (A k ) for each equivalence class. Estimating the number of positive bags not covered by a solution (the function r + Q (.)) is a complex task, so we prefer to detail this process in Appendix A.

BAGS + Q = A k ∈A bags + Q (A k )
Counting the number of negative bags covered by a solution is a rather easy task, especially when compared to estimating the number of positive bags covered. This is mainly due to their small number: each element x ∈ E engenders |E \ F * ({x})| negatives bags. That is, one bag per element which does not belong to the elementary closure of {x}.

Given a DNF Q, the set S Q = {F Q ({x})} ∀x∈E is computed. The number of negative bags covered by Q for a given element x ∈ E is equal to the number of unexpected elements in its closure, which is expressed by |F Q ({x}) \ F * ({x})|. The total number BAGS - Q of negative bags covered by a solution Q can be computed by summing, for all elements, the number of negative bags covered by Q.

BAGS - Q = x∈E |F Q ({x}) \ F * ({x})|

The intrinsic quality measure

Based on the count of positive and negative bags covered by a DNF Q, we define a new quality measure taking into account both the retrieved elementary closed sets (as the extrinsic quality measure) and the internal behavior of the pretopological space (E, a Q ) of type V.

We designed our quality measure so that DNFs exhibiting a high number of positive bags covered and a low number of negative bags covered are promoted. Since the number of positive and negative bags is not of the same order of magnitude, we consider the log 2 of the number of positive bags covered. Our quality measure is inspired by the tozero score proposed by Blockeel et al. [START_REF] Blockeel | Multi-instance tree learning[END_REF], which is defined by:

h(Q) = log 2 (BAGS + Q ) log 2 (BAGS + Q ) + BAGS - Q + p
where p is, as stated by Blockeel et al. [START_REF] Blockeel | Multi-instance tree learning[END_REF], "a parameter that influences how strongly the measurement is pulled toward zero". Small values of k tend to favor high precision, since a small BAGS - Q will have a larger impact, while greater values of k will be attenuated by a large BAGS + Q , thus favoring high recall. We call it an intrinsic quality measure because it takes into account the result of the closure of any set included in the learned elementary closed sets (i.e. the lattices L [{x}, F * ({x})]) as opposed to the extrinsic quality measure which considers only the elementary closed sets.

Multiple Instance LPS

LPSMI is a multiple instance variant of Greedy LPS. It takes as input a set S * of target elementary closed sets and a collection V = {V 1 , . . . , V k } of k neighborhoods. LPSMI produces a positive DNF Q such that the elementary closed sets computed by the pseudo-closure operator a Q (.) best match S * .

LPSMI builds a positive DNF by adding a new disjunctive clause to the DNF built in the previous iteration. LPSMI is implemented in the same spirit as Greedy LPS, they differ mainly in the quality measure they rely on. LPSMI finds the best clause based by relying on the intrinsic quality measure instead of the extrinsic measure. Thus, we do not show pseudo-code of LPSMI because it would be identical to Greedy LPS (Algorithm 2) but with the extrinsic measure replaced by the intrinsic measure. Since the intrinsic quality measure is based on the number of bags covered (by a potential solution Q), it is in itself the reason why LPSMI belongs to the MI framework.

Scalability

As proposed in this paper, the main limitation of the LPS framework is scalability. Indeed, the evaluation of a pretopological space requires structuring it, which is often a very expensive operation. Since the solution space is huge, since it is the same size as the number of combinations of input neighborhoods, LPSMI has to repeat this costly structuring process many times. In addition, computing the number of positive bags covered can also be expensive, if many elements share the same elementary closed set.

The efficiency of LPSMI can therefore be massively improved either by speeding up the structuring algorithm or, better, by limiting the number of structurings. But these solutions often have a negative impact on the overall quality of the final pretopological space.

Given an already trained pretopological space (E, a) of type V, computing a single closed could be very expensive. In the worst case, all elements x of the set E share the same elementary closed set, which is the whole set E, and the computation of each elementary closed set is done one element at a time. The structure of such a space would be a ring. In this case, the computation of each elementary closed set would require applying the pseudo-closure operator |E| times.

However, since we are currently considering only pretopological spaces of type V, the computation of elementary closed sets can easily be made faster by merging compatible subsets of closed sets. Suppose that somee parts of elementary closed sets have already been computed. For instance, the following two pseudo-closures are known:

• a({x}) = {x, y} • a({y}) = {y, z}
We then know, without needing to apply it, that the second application of the pseudo-closure operator on {x} will include {y, z}. It is therefore possible to skip a few steps of pseudo-closure, and go directly to the computation of a({x, y, z}).

More formally, the closed set F (A) of a subset A ⊆ E includes the pseudoclosure of any subset B ⊆ A.

∀A ∈ P(E),

B⊆A a(B) ⊆ F (A)

Actually, the following also applies:

∀A ∈ P(E), a   B⊆A a(B)   ⊆ F (A)
Clearly, it would not make sense to maintain the list of all subsets of F (A). But maintaining the list of the k th pseudo-closure step is feasible, k being the current step. The step k + 1 can be approximated by the union of all compatible subsets in step k.

∀x ∈ E, ∀k ∈ N, a   ∀y, a k ({y})⊆a k ({x}) a k ({y})   ⊆ a k+1 (x)
Such an approximation has the potential to drastically reduce the number of pseudo-closure applications. For example, in the worst case, the number of computation step would go from |E| to only log 2 (|E|) per element.

However, the main concern comes from the learning algorithm, as we observed in practice that the propagation speed to the elementary closed sets is reasonable. The main issue comes from the fact that the solution space is very large, especially given the small size of the inputs. If minimizing the computing tine is important, a solution could be to limit the depth of the beam search strategy, which would lead to smaller conjunctive clauses. This would save time, but could also introduce many false positives. Another possible improvement to the current solution space exploration strategy could be to stop evaluating a conjunctive clause as soon as it moves too far away from the target, thus eliminating unnecessary pseudo-closure computations.

One could also sample the candidate conjunctive clauses in order to evaluate a fixed number of solution at each iteration of the training loop. But it is not clear how the sampling should be done, and it is not clear whether this can be done without eliminating too many candidates. Finding a cheap heuristic for sorting candidate clauses, as in the A * algorithm [START_REF] Hart | A formal basis for the heuristic determination of minimum cost paths[END_REF], would certainly reduce the number of calls to the structuring method. But such a heuristic should not depend on elementary closed sets to be really efficient. Unfortunately, such a function is yet to be found.

As the time of writing, there is no satisfactory solution for efficiently learning a pretopological space. Laborde [START_REF] Laborde | Pretopology, a mathematical tool for structuring complex systems: methods, algorithms and applications[END_REF] proposes an alternative learning algorithm, but it remains rather restrictive since it assumes that there is an exact solution, which is far from realistic. Its proposal consists in first extracting the set of forbidden conjunctions. A forbidden conjunction is a conjunction which, if it were part of the DNF defining the pretopological space, would introduce false positives. Therefore, such clauses cannot be part of the final DNF if an exact solution is expected. The final DNF is constructed by gathering all the others conjunctive clauses into one large is disjunction. This algorithm is undoubtedly faster than LPSMI since it does not requires structuring the space at all, whereas LPSMI must do so for each candidate clause. However, it supposes that an exact solution exists. Specifically, if a neighborhood contains a single incorrect connection, then it cannot be part of the resulting DNF. In practice, most neighborhoods contain errors, which is what motivated the combining approach of the LPS framework. Therefore, this algorithm, as presented, would surely produce an empty DNF when trained on real data. Nonetheless, this approach still holds great promise, but, while counter-intuitive, it must allow erroneous neighborhoods to be part of the final combination to be usable. One could argue that relaxing this constraint should not be difficult, since instead of prohibiting all clauses that engender at least one error, it should be possible to prohibit only clauses that engender at least k errors. This is true, but detecting an error is very cheap, whereas counting them requires structuring, or at least partial structuring, which would be contrary to the original intent.

Experiment I -Retrieval of an underlying pretopological model

This experiment consists of evaluating the performance of different algorithms on the task of retrieving a pretopological model when the data is known to be modeled by a pretopological space.

Learning an underlying pretopological model

We constructed a method for learning a propagation model based on the socalled intrinsic measure, as opposed to the extrinsic measure used in previous contributions. We assume that, because the intrinsic measure takes into account propagations on sets of elements (and not only on singletons), it better captures both the quality and the potential of a model under construction and is more suitable than the extrinsic measure. In order to validate these hypotheses, and the efficiency of the associated MI approach, we propose an experimental validation. This experiment consists in learning a propagation phenomenon, for example a forest fire. We seek to evaluate the performances of each LPS approach on the task of retrieving, or learning, an underlying pretopological space.

We consider a rectangular grid containing a set E of cells. We also consider a collection V = {V 1 , . . . , V 8 } of eight neighborhoods, corresponding to the eight Moore neighborhoods represented in Figure 11. Given a known propagation model a Q * (.), we construct the pretopological space (of type V) (E, a Q * ). Our goal is to learn a positive DNF Q such that a Q * (.) and a Q (.) produce similar closed sets.

We constructed three different models, aptly named according to our estimation of their learning difficulty: We then derive three pseudo-closure operators (denoted

• Q * Simple = q 4 ∨ q 6 ∨ q 7 • Q * M edium = (q 4 ∧ q 6 ) ∨ (q 5 ∧ q 8 ) ∨ q 7 • Q * Hard = q 3 ∨ q 5 ∨ (q 2 ∧ q 4 ) ∨ (q 4 ∧ q 7 ) ∨ (q 6 ∧ q 7 ∧ q 8 ) V 1 V 2 V 3 V 4 V 5 V 6 V 7 V 8
a Q * Simple , a Q * M edium
and a Q * Hard ) to learn from these DNFs (Q * Simple , Q * M edium and Q * Hard respectively). Each pseudo-closure operator is used to model the propagation of a forest fire based on a percolation process [START_REF] Amor | Generalized percolation processes using pretopology theory[END_REF]. Each DNF models a different wind-influenced propagation process. For example, Q * Simple models a forest fire under the influence of a southwest wind: a cell x ∈ E burns when a cell located to its north, east or northeast burns, so the fire propagates to the southwest corner of the grid. Figure 12 shows the propagations obtained with Q * Simple , Q * M edium and Q * Hard , one clearly observes the fire modeled by Q * Simple propagating towards the south-west corner.

For each of these models, we constructed a set G = {G 10.i } i∈{0...6} of seven 15 × 15 grids filled with an increasing percentage of obstructed cells. An obstructed cell is a cell x ∈ E such that all its neighborhoods contain only itself and that the other neighborhoods do not contain this cell, i.e., ∀V i ∈ V, V i (x) = {x} and ∀y = x, ∀V i ∈ V, x / ∈ V i (y). Such a cell can neither be expanded nor reached by applying a pseudo-closure operator. Thus, G 0 contains 0 % of obstructed cells, G 10 contains 10 % of obstructed cells, and so on unitl G 60 . Let us specify that the obstructed cells in G i+1 are those of G i plus additional 10 %. Then, for each grid G i ∈ G, we simulated the propagation of a fire ignited in each cell x ∈ G i . The resulting set of burned cells was then assigned to the value of F Q * ({x}). Some of these simulations are shown in Figure 12. The green cells are combustible cells, the gray ones are obstacles (i.e. obstructed cells). The starting point of the fire is designated by the salmon-colored cell and burned areas by the red cells.

For each experiment we first picked 30 % of the inflammatory cells, and then computed their expansion (i.e., elementary closed sets) according to each proposed model to construct the set S * of target elementary closed sets. Then, S * and V were introduced as input to each of the LPS approaches -Genetic LPS (numerical and logical formalisms), Greedy LPS and LPSMI -to compare their results. Each algorithm was tested with two sets of parameters: the two Genetic LPS were tested with an initial population of 100 and 500 individuals; Greedy LPS and LPSMI were tested with a beam search of size 1 and 5. Finally, each experiment was performed ten times, so for each we built ten collections of seven grids. Figures 13 to 15 show the average results of each experiment: the F-measure obtained is indicated on the y-axis and the execution time is proportional to the size of each point (the smaller the better). These graphs show that LPSMI gets the best score most of the time. We also notice that a larger beam size provides better results with a very slight increase in execution time: with a beam search of size 5, LPSMI is able to retrieve the entire target solution without errors (its F-measure is equal to 1)! Greedy LPS is the second best approach in terms of F-measure and offers quite similar performances. However, the scores obtained by Greedy LPS do not seem to be influenced by the size of its beam search, so unlike LPSMI, we cannot expect to obtain better results by simply expanding the beam. The quality of the result and the execution time of the Logical Genetic LPS are both very sensitive to the size of the initial population. Thus, one can expect excellent results if one's population is large enough, but at the cost of huge execution time. In some cases, it took hours to get a result while it was only a matter of seconds for q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.00 q q 500 1000 1500 Algorithm q q q q q q q q Multiple Instance LPS beam size = 5 Greedy LPS and LPSMI. Finally, Numerical Genetic LPS performed the worst, both in terms of F-measure and execution time. The only difference between Numerical Genetic LPS and Logical Genetic LPS is the model they learned, the former learns a weight vector while the latter learns a positive DNF. We therefore attribute its poor performance to the inadequate and less expressive numerical and linear approach. This experiment clearly illustrates and confirms the motivation of the present contribution: first, a positive DNF is more appropriate than a numerical vector to model an expansion process; second, it shows that while genetic algorithms have proven to be successful, their prerequisites (a huge initial population) are too large in our context; third, we compare two greedy algorithms: LPSMI and Greedy LPS which both learn a positive DNF but in different contexts. LPSMI is a multiple instance algorithm while Greedy LPS is a classical supervised algorithm; they use different quality measures: LPSMI finds the clause that maximizes our intrinsic quality measure while Greedy LPS relies on an extrinsic measure. This experiment shows that our MI approach retrieves a target model more efficiently than more classical approaches, regardless of the complexity of the model to be learned. q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.00 Obstacles count
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Experiment II -Learning lexical taxonomies with LPSMI

This experiment shows a concrete case of using the LPSMI algorithm in AI, where the goal is to learn a structuring model for the task of Lexical Taxonomy (LT) reconstruction.

Task and related works

The automatic extraction of lexical taxonomies is a widely studied research area. This task consists in structuring a set E of terms into a hierarchy of concepts according to the data found in a corpus C. Such a structure takes the form of a Directed Acyclic Graph (DAG) using hypernym-hyponym pairs (x, y) ∈ E × E such that x is an hypernym of y. The set E of terms can either be given as input or automatically extracted from the corpus C.

Semantic relations, such as the hypernymy relation, can be inferred quite effectively from term collocations. For example, Sanderson and Croft [START_REF] Sanderson | Deriving concept hierarchies from text[END_REF] proposed to compute statistics on words found in a corpus to infer subsumption relations between these words. Given two terms x and y, x subsumes y when x is highly likely to occur in a document when y is already known to occur in the same document. For example, if the term "tulip" is found in a document, then it is highly likely that the term "flower" is present as well, since one can hardly mention the concept of tulip without mentioning the broader concept of flower. The reverse is not true, since a document about flowers can refer to tulips, but also to roses or geraniums.

Hearst [START_REF] Hearst | Automatic acquisition of hyponyms from large text corpora[END_REF] proposed to extract hypernym-hyponym pairs by using carefully crafted patterns, such as "y is a x", where x and y are two terms. If a pair (x, y) instantiates such a pattern in the corpus, it means that x is likely to be a hypernym of y. This type of approach requires a set of input patterns, which can either be manually constructed [START_REF] Hearst | Automatic acquisition of hyponyms from large text corpora[END_REF][START_REF] Kozareva | A semi-supervised method to learn and construct taxonomies using the web[END_REF] or automatically extracted [START_REF] Gupta | Induced lexicosyntactic patterns improve information extraction from online medical forums[END_REF][START_REF] Snow | Learning syntactic patterns for automatic hypernym discovery[END_REF].

Pattern-based approaches generally produce taxonomies with good edge accuracy, which means that an extracted hypernym-hyponym pair is usually correct. However, the edge coverage is usually low, which means that the taxonomy lacks many edges.

While these methods rely on raw text corpora to extract hypernym-hyponym pairs, other approaches take advantage of large semantic resources or networks, such as Wikipedia [START_REF] Navigli | Learning word-class lattices for definition and hypernym extraction[END_REF], WordNet [START_REF] Miller | WordNet: An electronic lexical database[END_REF] or BabelNet [START_REF] Navigli | BabelNet: The automatic construction, evaluation and application of a wide-coverage multilingual semantic network[END_REF], to retrieve these pairs.

OntoLearn [START_REF] Velardi | Ontolearn reloaded: A graphbased algorithm for taxonomy induction[END_REF] relies on Word-Class Lattices to select candidate definitions, which are then filtered according to the domain of interest. Concepts and hypernym relations are extracted from this set of definitions. The graph of relations is then post-processed to restructure the graph into a tree (graph pruning) or even a DAG (edge recovery).

ExTaSem! [START_REF] Espinosa-Anke | Extasem! extending, taxonomizing and semantifying domain terminologies[END_REF] extracts candidate hypernyms by leveraging definitions found in BabelNet. This first step produces a set of noisy hypernym-hyponym pairs, which is passed to a second step exploiting syntactic features (from the textual definitions used earlier) to produce candidate paths from terms to their most specific hypernyms. These paths are then weighted according to the similarity between the vectors trained with SenseEmbed [START_REF] Iacobacci | Sensembed: Learning sense embeddings for word and relational similarity[END_REF], then filtered according to an empirical threshold. A lexical taxonomy finally emerges from the remaining paths.

MultiWiBi [START_REF] Flati | Multiwibi: The multilingual wikipedia bitaxonomy project[END_REF] proposes to build a bitaxonomy from all the pages and categories present in Wikipedia. A bitaxonomy is defined as a pair (T P , T C ) where T P is a taxonomy of Wikipedia pages and T C a taxonomy of Wikipedia categories. MultiWiBi first builds a partial taxonomy of pages by extracting the hypernyms from the first sentence of each page. According to Wikipedia guidelines, the first sentence is supposed to be a short textual definition of the page title. The second phase of MultiWiBi is initialized with the pair (T P , T C ) where T P is the output of the first phase and T C is a pruned version of the Wikipedia category taxonomy. Then, each taxonomy is used alternatively to enrich the second. For example, to enrich T C , its concepts are first mapped to concepts in T P , then the super-concepts are gathered by climbing the taxonomy and remapped to concepts in T C .

The ContrastMedium algorithm, presented by Faralli et al. [START_REF] Faralli | The contrastmedium algorithm: Taxonomy induction from noisy knowledge graphs with just a few links[END_REF] also relies on semantic resources other than raw text corpora. This method provides a comprehensive pipeline for inducing a taxonomy by extracting structural information from a noisy semantic network linked to a reference (companion) taxonomy.

Knowledge graphs contain typed relations between entities, where an entity is a node of the graph and a relation is an edge. They are usually stored as triples (h, r, t) where h and t are two entities and r is a relation; h is called the head (the source node) and t is the tail (the destination node). A lexical taxonomy can be seen as a knowledge graph restricted to hypernymy relations (or more generally, to semantic relations). As such, work done on knowledge graphs could be applied to lexical taxonomies.

Recent work proposes to learn embeddings for both entities and relationships in a vector space [START_REF] Wang | Knowledge graph embedding: A survey of approaches and applications[END_REF]. These embeddings have proven useful for detecting and capturing typed relations between entities. Entity embeddings are often vectors capturing a set of latent features, while relation embeddings can be vectors or matrices. In what follows, entities are noted in normal font (x) and their embeddings with the same letter in bold face font (x).

A lot of work has been done on translation-based models, such as TransE [START_REF] Bordes | Translating embeddings for modeling multi-relational data[END_REF]. These approaches share a common principle: given a triple (h, r, t), the embedding t must be not too far from h + r. Therefore, these approaches often learn embeddings such that the distance between t and h + r is minimized.

(h,r,t)∈S h + r -t 2 2
where S is the set of training triples.

In TransE [START_REF] Bordes | Translating embeddings for modeling multi-relational data[END_REF], both entity and relation embeddings are trained in the same space, and a triplet (h, r, t) is modeled by the linear transformation t ≈ h + r. It appears that such a simple modeling is quite powerful and performs almost as well as more expressive models, such as RESCAL [START_REF] Nickel | A three-way model for collective learning on multi-relational data[END_REF] or SME [START_REF] Bordes | A semantic matching energy function for learning with multi-relational data[END_REF], which require much more computational power. However, TransE cannot reliably learn many-to-one, one-to-many and many-to-many relations. Given an entity h and a relation r, if they appear in at least two triples (h, r, t 1 ) and (h, r, t 2 ), then t 1 and t 2 must share the same embeddings, even though they are very different entities.

Other approaches focus on modeling semantic relations by learning word embeddings from large corpora. Word embeddings are trained, most of the time, according to the distributional hypothesis [START_REF] Harris | Distributional structure[END_REF], which states that semantically similar terms appear in similar contexts. Therefore, term embeddings appearing in similar contexts are close to each other.

Modeling semantic relations between word embeddings can be done in the same way as modeling typed relation between entity embeddings. These approaches typically rely on pre-trained word embeddings on large-scale corpora, such as word2vec [START_REF] Mikolov | Efficient estimation of word representations in vector space[END_REF] or GloVe [START_REF] Pennington | Glove: Global vectors for word representation[END_REF], which have shown great abilities to preserve semantic relations. For example, Mikolov et al. [START_REF] Mikolov | Linguistic regularities in continuous space word representations[END_REF] and Levy and Goldberg [START_REF] Levy | Linguistic regularities in sparse and explicit word representations[END_REF] have shown that some relations can be modeled as simply as shift vectors.

Pocostales [START_REF] Pocostales | Nuig-unlp at semeval-2016 task 13: A simple word embedding-based approach for taxonomy extraction[END_REF] proposed to apply this principle to extract hypernym-hyponym pairs. His protocol is quite simple: given a set of known hypernym-hyponym pairs (x, y), a hypernym vector h is computed as the average offset between each vector representation: x and y.

Fu et al. [START_REF] Fu | Learning semantic hierarchies via word embeddings[END_REF] proposed a more fine-grained approach where multiple projection matrices, instead of a single hypernymy vector, are trained based on the relative positions of the two embeddings. Given a word embedding y and a projection matrix φ, the hypernym embedding of y should be located near φ(y), the projection of y by φ.

These methods are similar to the translation-based methods presented above, except that the relation embeddings are computed after entity/word embeddings are learned, and not at the same time. As such, one might expect better quality of embeddings from the translation-based approaches. However, it is difficult, if not impossible, to reuse these embeddings to discover missing relations in a knowledge graph different from the learning one. Pre-trained word embeddings are much more versatile since they are not tied to specific corpora. The meaning of words often remains the same in different corpora, so word embeddings can be reused on different corpora. On the other hand, entity embeddings are most often linked to the knowledge graph they belong to, which makes it more difficult to transfer them to other graphs.

While each approach is capable of extracting valuable pieces of information, none of them exhaustively models the complex hypernym-hyponym semantic relationship. However, each of them captures a piece of the truth. Our postulate is that a wise combination of them could allow a more accurate modeling of the hyponym-hypernym relationship between terms in a given domain. Cimiano et al. [START_REF] Cimiano | Learning taxonomic relations from heterogeneous sources of evidence[END_REF] has already shown that, even with a very simple combination strategy, combining multiple data sources is very profitable.

Largeron and Bonnevay [START_REF] Largeron | A pretopological approach for structural analysis[END_REF] showed that the underlying structure of a V-type pretopological space is a DAG, thus matching with the structural expectation of a lexical taxonomy. Next, Cleuziou and Dias [START_REF] Cleuziou | Learning pretopological spaces for lexical taxonomy acquisition[END_REF] made use of the (multi-criteria aspect of the) pretopology theory for the LT extraction task. They define, successfully, a semi-supervised framework for automatically learning pretopological spaces that structure a set of terms into a DAG.

In the present experiment, we propose to apply the LPSMI algorithm for the LT task reconstruction. Given a set E of terms and a target (also called reference) lexical taxonomy T of terms in E, our goal is to learn a model that structures E as T . The LPSMI algorithm produces a V-type pretopological space (E, a Q ) where E is a list of terms of a given domain and a Q (.) is a logical pseudo-closure operator defined by a DNF Q and modeling the propagation of the hypernymy relation from one subset of terms to another.

The objective of this experiment is mainly to show the potential of the tools offered by the pretopology theory to model complex semantic relations; we focus on particular on the potential of the newly proposed LPSMI algorithm. Our goal is not to compete with existing LT extraction approaches. Instead, we propose a versatile and highly extensible framework taht allows for the combination of multiple, heterogeneous approaches, and we show that this combination outperforms each individual approach. We furthermore investigate whether a pretopological model learned on a set E of terms can be applied on a more generic domain and/or a larger set E of terms, thus considering not only the task of LT reconstruction but also the more exciting task of LT extraction.

Outline of the experiment

Given a set E of terms in a domain and a target lexical taxonomy T to reconstruct, we propose to learn a semantic propagation model that structures E into a DAG as similar to T as possible. We consider that a given term x ∈ E propagates its meaning to all of its descendants in T (transitivity). Thus, for each term x ∈ E, its target elementary closure, F * ({x}), is the set of its hyponyms, i.e. x itself and the set of terms below x in T . Let S * = {F * (x)} x∈E the set of all target elementary closed sets, the LPSMI algorithm is designed for the task of learning a pseudo-closure operator a Q (.) modeling the propagation of the hypernymy relation.

The LPSMI algorithm offers an elegant framework for combining several state-of-the-art hyponym/hypernym extraction methods within a single pretopological process. We argue that this allows our model to more accurately capture the propagation of semantic relations between sets of terms. To accomplish this task, several approaches (algorithms) dedicated to hyponym/hypernym extraction are considered, their results are converted into neighborhood relations, and then used as inputs of the LPSMI algorithm. Given a hyponym/hypernym extraction method M , a neighborhoods relation R M is defined such that for all terms x, y ∈ E, xR M y means that x is a direct hypernym of y according to the relation R M . The neighborhood V M (y) of the term y is given by

V M (y) = {y} ∪ {x ∈ E | xR M y}.
Thus, V M (y) contains y4 and its (direct) hypernyms according to the hyponym/hypernym extraction method M .

The LPSMI algorithm is highly generic and extensible in the sense that any hyponym/hypernym extraction method (existing or future) can be easily incorporated into the LPS framework to serve the learning of the pseudo-closure operator. Our approach could be even more flexible by considering predicates that are not necessarily defined by neighborhood relations, as proposed by Caillaut et al. [START_REF] Caillaut | Learning pretopological spaces to extract ego-centered communities[END_REF].

The experiment is conducted to validate the following three hypothesis:

1. the benefits of the multi-criteria combination. We believe that the combining existing methods will produce better results. Therefore, we compare the lexical taxonomies extracted by individual methods with those obtained by combining all the methods considered in the LPSMI process;

2. the relevance of pretopology theory for modeling lexical taxonomies.

To this end, we compare the results obtained with pretopological modeling to those obtained with classical decision making methods (Support Vector Machine and Decision Tree);

3. the model-domain dependency. The taxonomy of a given domain E should be more easily retrievable by a model trained on a subdomain of E than another model trained on a completely disjoint domain. This would show that each domain has its own "implementation" of the same semantic relation.

The set of neighborhood relations

In the following experiment, five state-of-the-art approaches are considered that result in five neighborhood relations. R Sand. . A first relation, R Sand. , is inspired by the work of Sanderson and Croft [START_REF] Sanderson | Deriving concept hierarchies from text[END_REF]. The authors propose to build a concept hierarchy based on the collocation probability of each pair of a set of terms. A term x is assumed to subsume another term y if the following property holds:

P (x | y) ≥ 0.8 ∧ P (y | x) < 1.
Our relation R Sand. differs from the original work by two aspects:

• the set of terms is known in advance and not extracted automatically,

• we do not rely on a manually defined threshold.

The relation R Sand. is built on a set of terms from a common domain, and thus known to be somehow semantically related. Furthermore, we know that our target structures are trees-like: a term y usually has a unique direct hypernym

x. This means that given a set E of terms, there are approximately |E| pairs (x, y) where x is a direct hypernym of y. This explains our choice to keep only the |E| most probable relations. So, given a set of pairs (x, y) of terms in the set E, a relation xR Sand. y exists if the following two conditions are satisfied :

x R Sand. y ⇔ P (y | x) < 1 and |{(x i , y i ) ∈ E × E | P (x i | y i ) ≥ P (x | y)}| ≤ |E|
In the present application, the collocation probabilities are computed from the english Wikipedia5 dump dated October 1, 2020: two terms are collocated if they appear in the same Wikipedia page. R patterns . The second relation R patterns is based on syntactic pattern extraction methods [START_REF] Hearst | Automatic acquisition of hyponyms from large text corpora[END_REF]. Six lexical patterns, known for their accuracy [START_REF] Kozareva | A semi-supervised method to learn and construct taxonomies using the web[END_REF], are considered: "y is a x", "y is an x", "y are x that", "x such as y", "x like y", "x including y". Two terms x and y are in relation xR pattern y if and only if they instantiate at least one of the four patterns on a given corpus. In the following experiment, we extract these patterns from the same Wikipedia corpus as for the relation R Sand. . R strmatch . The relation R strmatch is based on the computation of a similarity on the character strings of two terms. Many terms actually look like their direct hypernym: for example "craft" is an hypernym of "aircraft". Given two terms x and y, we split each word into 3-grams and compute the ratio of tokens in x that are also in y. Two terms are in relation xR strmatch y if and only if 80 % of the tokens from x are included in those from y.

The following two relations are based on word embeddings. Given a term y and its corresponding embedding y, we assume that a linear transformation h such that h(y) ≈ x exists, where x is the embedding of a hypernym x of y. We trained these transformations on a set of pre-trained embedding of word2vec6 . R meanH . The first embedding-based relation, R meanH , is constructed by applying a translation on the embedding of each term, as proposed by Pocostales [START_REF] Pocostales | Nuig-unlp at semeval-2016 task 13: A simple word embedding-based approach for taxonomy extraction[END_REF].

Given a target lexical taxonomy T , we first extract its set of direct hypernymhyponym pairs (x i , y i ) and their corresponding embedding pairs (x i , y i ). We assumed that the hypernymy relation is preserved by these word embedding representations and can be retrieved by computing a shift between the hyponym embedding y i and the hypernym embedding x i . For each pair of embedding (x i , y i ) found in the previous step, a hypernymy vector h i is computed:

h i = x i -y i .
Finally, the average hypernymy vector is computed: h = 1 n n i=1 h i (with n the number of paris extracted from T ). h is then used to predict the direct hypernym x for each new term y. Two terms x and y are related xR meanH y if and only if x = arg min z∈E z -(y + h) 2 ; the predicted hypernym of y is the term from E whose embedding is closest to y + h. In order to limit the false positive rate, we also introduced a maximum distance beyond which two terms are not considered as semantically linked. This threshold is set to 0.5 in our experiments. R F u . The second relation based on word embeddings, R F u , relies on the work of Fu et al. [START_REF] Fu | Learning semantic hierarchies via word embeddings[END_REF]. The authors assume that the hypernymy relation between two terms x and y dependends on the relative position of their respective embeddings x and y.

They propose to compute a clustering of hypernym-hyponym pairs (x, y) according to the offset vector x-y. Then, for each cluster i, they train the linear projection φ i projecting the embedding of an hyponym y to the embedding of its hypernym.

A term x is considered a hypernym of another term y if the embedding x is close to φ i (y), where i is the cluster minimizing the euclidean distance between xy and its center. We used k-means to cluster the set of pairs into k groups. It turned out that k = 5 was sufficient because our datasets were small enough. We set the threshold used to determine whether x is close enough to φ i (y) to 1. This threshold was found empirically and may be inappropriate if applied to other data. Finally, the relation R F u can be defined as below:

∀x ∈ E, ∀y ∈ E, xR F u y ⇔ x -φ i * (y) 2 ≤ 1
where i * = arg min i∈1...k ( c i -(x -y) 2 ), with c i the center of the cluster i.

Experimental Data and Results

We applied the LPSMI algorithm for the reconstruction of four domains extracted from WordNet [START_REF] Miller | WordNet: An electronic lexical database[END_REF]: vehicles (108 terms), plants (554 terms), food (1486 terms) and animals (688 terms). Three sub-domains per domain were also extracted, as reported in Table 7.

We fed the LPSMI algorithm with a set of five predicates defined by the neighborhood relations described in the previous sections, as explained in Section 2.3.2. The three relations R Sand. , R patterns and R strmatch are acquired, each, by an unsupervised data extraction process from raw texts. We consider here the Wikipedia corpus. On the other hand, both R meanH and R F u must be trained. Depending on the objective, they will be trained on different datasets. In the case of the task taxonomy reconstruction (Section 6.4.1), whose objective is to train a model to extract a given taxonomy, the train and test datasets are the same. This task is a preliminary to the more interesting taxonomy extraction task (Section 6.4.2), whose objective is to extract a new taxonomy by applying previously trained models. R meanH and R F u are trained on a large set of embeddings, which cover a large portion of the terms present in our three datasets (some terms are missing, especially multi-word terms). Since we use the same set of embeddings to train these relations, regardless of the target domain, a relation trained on one domain can be transferred as is to predict relations on another domain. For example, an average hypernym vector learned on crafts can be transferred as is to the domains vehicles or plants. This is not the case with modern embedding-based approaches, such as TransE [START_REF] Bordes | Translating embeddings for modeling multi-relational data[END_REF], which are not designed to reuse embeddings on a different task. Therefore, embeddings trained on the domain vehicles could not be transferred to structure the domain food, mainly because the terms in food are not part of the domain vehicles. This is why such approaches are excluded from our study.

We modified the stopping criterion of the LPSMI algorithm to stop adding clauses to the logic formula when the correspondence with the target elementary closed sets starts to decrease (i.e. when the F-measure of the solution decreases).

Learn the hypernymy relation of a given domain

We used LPSMI to learn a pretopological model on each subdomain of Table 7 by combining the neighborhood relations described in the previous subsection. We use the recall, precision, and F-measure to evaluate the quality of each model. Recall and precision are defined in terms of the number of well retrieved relations, based on the domain reference taxonomy. A hypernym-hyponym pair (x, y) is retrieved if and only if y appears in the learned elementary closure F Q ({x}). Such a relation means that the model has learned that x is an hypernym of y. This relation is correct if the same relation exists in the reference taxonomy, i.e. if y ∈ F * ({x}).

We made the decision to ignore reflexive relations (x is a hypernym of itself), which are required by the pretopology formalism, as this would excessively inflate the F-measure and thus not reflect the actual performance of our models. Therefore, we define the F-Measure as follows:

Recall = x∈E |F * ({x}) ∩ F Q ({x})| -|E| x∈E |F * ({x})| -|E| Precision = x∈E |F * ({x}) ∩ F Q ({x})| -|E| x∈E |F Q ({x})| -|E| F-Measure = 2 • P + R P • R
First and foremost we show that the combination of various lexical taxonomy extraction methods within a structuring model learned by the LPSMI algorithm increases the quality of the output taxonomy. Each neighborhood relation was used to construct a lexical taxonomy for each domain and subdomain, resulting in five taxonomies per subdomain. These taxonomies are extracted by first transposing the adjacency matrices of the neighborhoods, and then computing their transitive closures. We compared the quality of these taxonomies with the taxonomies extracted by applying LPSMI. The results in Table 8 clearly show that the taxonomies extracted by a pretopological combination of neighborhood relations outperform each of the lexical taxonomies constructed from a single data source.

These results experimentally validate the first hypothesis on the benefits to be expected from a multi-criteria combination. Furthermore, in order to evaluate the relevance of the pretopological combination itself, we seek to compare two approaches for learning structures: on the one hand, (supervised) learning of a structuring model (e.g. LPS) and on the other hand, (supervised) learning of relations (e.g. by traditional classifiers such as Support Vector Machine (SVM) or Decision Tree (DT)).

Although recent work tends to rely on neural Language Models to learn semantic relations, the comparison with SVM and DT is actually appropriate to demonstrate the benefits of LPSMI. LPSMI and SVM indeed share some common behaviors since they can both be used to learn non-linearly separable classes. SVM does this by applying a kernel mathematical function to its input while LPSMI relies on a learning criterion similar to the information gain used in DT. However, learning a structuring model, as LPSMI does, allows to integrate prior constraints on the final induced structures; for example, the pretopological (V type) formalism on which the LPSMI method is based guarantees the generation of structures in the form of DAGs. In comparison, approaches that learn relations do not allow to integrate these constraints; the relations between elements are predicted independently of each other, and the structure derived from these relations does not offer any guarantee to satisfy the expected properties (e.g. absence of cycle). The consideration of the global structure in the learning process thus distinguishes the learning of structuring models from the learning of relations. For example, SVM or DT classifiers "decide" a relation on a pair of elements using only the description of this pair. On the contrary, the LPS method allows to "contextualize" this decision rule by relying on all the elements of the closure under construction.

In the following experiment, we use Support Vector Machine (SVM) and Decision Tree (DT) the implementations provided respectively, by the R packages e10717 and rpart8 . We have performed two experiments per learning algorithm: the first one aims at comparing the performances of models learned by LPSMI, SVM and DT on the same (binary) relations. The second one aims at discovering if better results can be obtained without the thresholding step required by LPSMI, i.e. with continuous data instead of binary neighborhoods.

We found out that performance of the two types of models (binary and continuous) were not significantly different. In fact, the SVM trained on binary data performed slightly better than its counterpart trained on continuous data, while the DT performed better with continuous data. In order to remain con- sistent with LPSMI, we present only results obtained by the models trained on binary data. Since SVMs and DTs expect tabular data as input instead of a collection of neighborhoods, we transformed our datasets such that the instances are pairs (x, y) and their class labels are 1 if x is a hypernym (direct or not) of y, 0 otherwise. Each instance has five features corresponding to the five neighborhoods. Since, unlike a pretopological model, SVM and DT do not mimic a propagation process and therefore cannot reuse information gathered in the previous steps (since there is only one step), the feature values in the transformed datasets are obtained from the transitive closures of the neighborhoods. Thus, the SVM and DT models were trained on data pre-propagated. A graph whose nodes are the terms of E and whose edges are relations learned by SVM or DT can then be constructed. The output taxonomies are the transitive closures of these graphs.

Table 9 shows the performance of each algorithm for the task of capturing the hypernymy relation of a given sub-domain. The implementations used for SVM and DT fail to learn models on the domain food because of the size of the dataset, which contains over 2 millions instances (term pairs). The performance of LPSMI is often better, or at least similar, to that of SVM or DT.

Finally, we show the logical formulas learned by LPSMI in Table 10. We observe that some predicates appear more frequently than others, for instance the predicate q F u appears in almost all formulas. Moreover, it is often the only component of a conjunctive clause and is therefore not constrained by any other predicate. This is consistent with the performance of the individual predicates (Table 8) as R F u is the best relation among the five considered in this study. The predicate q patterns appears alone half of the time and is combined with other predicates the other half. It is unsurprising that q patterns appears alone since pattern-based approaches are known to be very accurate. But when q patterns is combined with another predicate, it acts as a "barrier" preventing the hypernymy relation from spreading too far.

We also observe that the most complex formula is learned on the largest domains, food and animals. We believe that this phenomenon arises from the existence of multiple natures of hypernymy relations. For instance, one part of the structure of the taxonomy of the domain food may be governed by a given hypernymy relation while another part is governed by a different hypernymy relation. Larger formulas can handle this diversity more easily, by specializing a subset of the formula to model a particular nature, or shape, of the relation. Fu et al. [START_REF] Fu | Learning semantic hierarchies via word embeddings[END_REF], whose work inspired the predicate q F u , take this diversity into account by first clustering word pairs together, and then learning one model per cluster. We therefore believe that it is not a coincidence that q F u is the best performing predicate of this study. Although it is not sufficient on its own, as indicated by the better results obtained by LPSMI, SVM and DT, which are able to take advantage of other types of data by combining them.

We asked whether a model trained on one given domain can be efficiently reused to build the lexical taxonomy of another domain. This may be difficult because, as suggested earlier, the singularities of one domain may not match those of another domain. But, maybe, a model learned on a subdomain could be a good candidate for extracting the lexical taxonomy of its full domain. For instance, a model learned on the sub-domain crafts might capture the nature of the relations of the domain vehicles better than it does on the domain plants. This is the third hypothesis to be evaluated and the subject of the following subsection.

Applying a learned pretopological space to other domains

The purpose of our second experiment is to determine whether a single model trained on a specific domain can be reused for structuring any other domain. We believe that, given a set E of terms from a domain to be reconstructed, it is more reliable to learn a structuring model based on a set E ⊆ E of terms from a sub-domain rather than a model based on a completely disjoint set E of terms, such that E ∩E = ∅. Thus, for example, we assume that a model trained on the sub-domain crafts will perform better than another model trained on grasses for the structuring the domain vehicles. In order to validate this hypothesis, a structuring model (E , a) was trained by the LPSMI algorithm for each subdomain. Then, the three domains vehicles, plants and food were structured with respect to the previously learned models. As a result, we obtained nine lexical taxonomies per domains. Table 11 shows the F-measure scores assigned to these taxonomies.

This experiment tends to invalidate our prior hypothesis, since only the domain animals seems to be better retrieved by the models trained on its sub-Domain Formula vehicles (F u) ∨ (patterns ∧ strmatch)

∨ (Sand. ∧ patterns) ∨ (Sand. ∧ strmatch) wagons (Sand.) ∨ (meanH) crafts (Sand. ∧ strmatch) ∨ (meanH ∧ strmatch) ∨ (Sand. ∧ patterns) ∨ (F u)
motor vehicles (patterns) ∨ (strmatch) ∨ (Sand.) The models were trained on sub-domains (rows) and applied on full-domain (columns). The column "(mean)" shows the average score obtained by models learned on the three sub-domains for the reconstruction of a given complete domain.

plants (Sand. ∧ patterns) ∨ (strmatch) ∨ (F u) bulbous plants (strmatch) ∨ (Sand. ∧ F u) aquatic plants (patterns) grasses (strmatch) ∨ (F u) food (Sand. ∧ F u) ∨ (patterns ∧ F u) ∨ (meanH ∧ F u) ∨ (F u ∧ strmatch) ∨ (patterns ∧ meanH) ∨ (meanH ∧ strmatch) ∨ (patterns ∧ strmatch) ∨ (Sand. ∧ patterns) ∨ (Sand. ∧ meanH) ∨ (Sand. ∧ strmatch) candy (F u) ∨ (Sand. ∧ meanH) ∨ (strmatch) bread (strmatch) ∨ (F u) snack food (F u) ∨ (Sand. ∧ meanH) ∨ (strmatch) animals (F u ∧ strmatch) ∨ (Sand. ∧ F u) ∨ (meanH ∧ F u) ∨ (Sand. ∧ patterns) ∨ (Sand. ∧ strmatch) ∨ (Sand. ∧ meanH) ∨ (patterns ∧ meanH) reptiles (F u) ∨ (Sand. ∧ meanH) ∨ (patterns ∧ meanH) ∨ (strmatch) fish (patterns) ∨ (Sand. ∧ meanH) ∨ (strmatch) ∨ (F u) birds (patterns) ∨ (Sand. ∧ meanH) ∨ (F u) ∨ (strmatch)
domains. If we ignore the model trained on the very small sub-domain wagons, the models trained on the sub-domain vehicles perform as well as those trained on the sub-domain animals. On the other hand, the poor result obtained in the structuring of plants are in fact due to the sparsity of the relations extracted from the domain plants, which prevents the learning of a good propagation model.

The performance of each model varies greatly depending on the domain being reconstructed. This suggests that the concept of hypernym/hyponym might be different depending on the target domain, so that learning a single structuring model to govern them all is, at least, very difficult, even for common domains such as those considered in this study.

We also performed this experiment with models learned by SVM and DT on binary data (Table 12). While our previous experiment showed that LPSMI was able to more reliably retrieve the lexical taxonomy of a given domain than either SVM or DT, Table 12 suggests that LPSMI is no more suitable than SVM and DT for extracting a broader lexical taxonomy of a sub-domain. Indeed, performance of each approach on the generalization task is quite similar (except for DT which performs very poorly when trained on the sub-domain animals).

As a higher-level discussion, note that the learning problem considered by the SVM and DT approaches is very different in nature from the LPS learning approach. On one hand, SVM and DT aim to maximize the accuracy of decisions on a set of term pairs without any further constraints on the final structure. On the other hand, LPS approaches, such as LPSMI, learn a propagation model that provides structures that are as accurate as possible and at the same time Table 12: F-measure scores obtained by different models for full domain reconstruction. The models were trained on sub-domains (rows) and applied on full-domains (columns). The column "(mean)" shows the average score obtained by the models learned on three sub-domains for the reconstruction of a given full domain.

satisfies the isotonic property that constrains the final structure to be a DAG 9 . Very concretely, the isotonic property prevents a relation y → z (z ∈ F ({y})) from being made in cases where x → y (y ∈ F ({x})) exists but x → z (z / ∈ F ({x})) does not. Such a structuring constraint has an undeniable impact on the quantitative evaluation scores which do not summarize the whole structure obtained but simply consider the final structure as a set of independent pairs.

Propagation of the semantic relation

The aim of this last section is to detail and illustrate on an example the complex propagation process offered by the pretopological framework in the context of LT. Considering the set E of 35 terms corresponding to the sub-domain crafts, and the five neighborhood relations giving rise to five neighborhoods V Sand. , V patterns , V meanH , V F u and V strmatch defined on P(E); LPSMI learns a pretopological space (E, a Q ) defined, for any x ∈ E and for any A ∈ P(E), by the following DNF.

Q(A, x) = (q Sand. (A, x) ∧ q strmatch (A, x)) ∨ q patterns (A, x) ∨ q F u (A, x)
Given a term x ∈ E, its set F Q ({x}) of hyponyms is built by successive applications of the pseudo-closure operator a Q (.). Each application of a Q (.) leverages the information gathered from previous applications, further propagating the semantic relation. Figure 16 illustrates this process by focusing on the first two steps of expanding the singleton {vessels} to its elementary closed set. In this example, although a Q ({vessels}) is not able to directly retrieve the expected hyponym "tugboats", the second application of the pseudo-closure operator a Q (a Q ({vessels})) leverages the information provided by a Q ({vessels}) to determine that "tugboats" is ultimately a hyponym of "vessels".

As observed in Figure 16, the second clause (q Sand. ∧ q strmatch ) of Q triggers the propagation of the subset a Q ({vessels}) = {vessels, boats, ships} to the term "tugboats". The precise propagation mechanism, detailed in Figure 17, reveals that both q Sand. and q strmatch are satisfied through different elements:

• q Sand. (a Q ({vessels}), tugboats) is satisfied by the relation ships R Sand. tugboats • q strmatch (a Q ({vessels}), tugboats) is satisfied by the relation boats R strmatch tugboats
The structuring of the learned pretopological space into a lexical taxonomy is done according to its elementary closed sets, as shown in [START_REF] Largeron | A pretopological approach for structural analysis[END_REF]. For each term x ∈ F Q ({vessels}), its elementary closed set F Q ({x}) is calculated. A lexical vessels boats ships houseboats tugboats oil tankers cargo ships small boats The set {vessels, boats, ship} is expanded to the term "tugboats" by the conjunctive clause q Sand. ∧ q strmatch because "ships" is a hypernym of "tugboats" according to q Sand. and "boats" is a hypernym of "tugboats" according to q strmatch . vessels boats ships houseboats small boats tugboats oil tanker cargo ships taxonomy is deduced from the way the closed sets include each other: Figure 18 shows the inclusion relations between the elements represented in Figure 16.

V Sand. ∧ V strmatch V patterns V F u
For example, F Q ({houseboats}) ⊂ F Q ({boats}) means that the concept boats subsumes the concept houseboats, so the concept boats will be on top of the concept houseboats in the resulting lexical taxonomy. The lexical taxonomy engendered from the closed sets described in Figure 18 is presented in Figure 19.

Benchmarks

Finally, we compare the performance of LPSMI with competing systems on the Task 13 of the SemEval 2016 campaign [START_REF] Bordea | Semeval-2016 task 13: Taxonomy extraction evaluation (texeval-2)[END_REF]. The systems were evaluated on their performance in retrieving taxonomies from the following three domains: food, science and environment. As we only experimented with the domain food, we will not consider the last two.

The experiment is the same as the one presented in the previous section: the systems have been trained (or not if they do not need supervision) on the domains vehicles and plants, which habe been given by the organizers. Given a list of terms, the task is to produce a lexical taxonomy structuring at least the terms given as input, new terms can also be added to the taxonomy.

Five systems were submitted but only three produced a taxonomy for food. The performance of these systems, as well as the baseline proposed by the organizers, is presented in Table 13 10 . The gold standard taxonomies used in SemEval exclusively describe direct hypernym-hyponym pairs. Thus, transitive relations are excluded from this study, unlike previously.

System

Recall Baseline. The baseline is based on the same principle as our relation strmatch.

A hypernym-hyponym pair (x, y) is extracted when the hypernym x is a prefix or a suffix of the hyponym y. For example, "candy" and "corn" are hypernyms of "corn candy" along this baseline. The performance of the baseline is quite good compared to other systems, even though it is a very naive approach. It works well since the experiment consists in structuring a set of terms of the same semantic domain. For example, half (37 out of 74) of the hyponyms in "sauce" are either prefixed or suffixed with "sauce". In addition, only a few terms (7 out of 47) beginning or ending with "sauce" are not hyponyms of "sauce". Of course, this criticism also applies to our neighborhoods strmatch. JUNLP [START_REF] Maitra | Junlp at semeval-2016 task 13: A language independent approach for hypernym identification[END_REF]. JUNLP is composed of two modules. The first queries Babel-Net [START_REF] Navigli | BabelNet: The automatic construction, evaluation and application of a wide-coverage multilingual semantic network[END_REF] to obtain a list of hyponyms, which is then filtered to reduce noise. Ba-belNet is a multilingual semantic network built from various sources, including WordNet. Since the evaluation uses gold taxonomies extracted from WordNet, it used only the Wikipedia source of BabelNet.

The second module is based on the same assumption as the Baseline: potential hypernyms are extracted based on overlaps between words. For example, the overlap between "biochemistry" and "chemistry" is "chemistry", then "chemistry" is likely to be a hypernym of "biochemistry". It uses this same assumption to enrich the lexical taxonomy with words that are not in the input term list. For example, while "pudding" was not in the term list, it was added as a hypernym of "chocolate pudding" and "vanilla pudding". TAXI [START_REF] Panchenko | Taxi at semeval-2016 task 13: a taxonomy induction method based on lexico-syntactic patterns, substrings and focused crawling[END_REF]. TAXI was designed with scalability and simplicity in mind. The assumption behind TAXI is that it is better to process a lot of data with simple tools than to process little data with a sophisticated system. Thus, a lot of effort has been put into the corpora feeding TAXI. They used three general purpose corpora (Wikipedia, 59G and CommonCrawl) and built a domain specific corpus using BootCaT [START_REF] Baroni | Bootcat: Bootstrapping corpora and terms from the web[END_REF] to crawl the web.

Next, they used the same approach as the baseline to extract hypernymhyponym pairs, as well as lexico-syntactic patterns. They train an SVM model on the trials taxonomies (vehicles and plants) to determine whether a pair (x, y) is a hypernym-hyponym pair.

USAAR [START_REF] Tan | Usaar at semeval-2016 task 13: Hyponym endocentricity[END_REF]. The USAAR system assumes that many hypernym-hyponym pairs can be detected by their endocentric grammatical construction. A grammatical construction is endocentric when one of its components performs the same linguistic function as itself. For example, "aircraft" is an endocentric construction since it is a noun, as well as its component "craft". Furthermore, "craft" is indeed a hypernym of "aircraft".

The performance of LPSMI models is very heterogeneous depending on the dataset used to train them, as shown by Table 14 11 . Training on plants, or a sub-domain, seems difficult, mainly because our neighborhoods cannot capture the hypernymy relation of these domains. The model trained on the sub-domain wagons also performed poorly, but this is not surprising since wagons has only height terms and seven edges. On the other hand, the poor performance of the model trained on motor vehicles is more surprising, especially since the model trained on crafts performs well. The two domains have two lexical taxonomies with almost identical sizes, but the crafts taxonomy is a bit deeper (see Table 7). Therefore, the taxonomy crafts has twice as many transitive edges as the taxonomy motor vehicles. This could explain the performance gap between these two models.

LPSMI's performances depends heavily on the quality of its training data. First, it needs a sufficiently large amount of data: wagons has too little data, but crafts and vehicles seem to be quite large, although the size of the respective taxonomies is rather small (they can be done by hand). More importantly, the neighborhoods provided to LPSMI must capture some of the target relations. It seems obvious, but it is difficult to estimate in advance the quality of a given neighborhood, on a given task. Our experiments clearly show this fact: the same neighborhoods work very well on vehicles but not on plants. Therefore, the model trained on vehicles is very efficient, while the one trained on plants is not.

In order to complement this comparative study, and thus provide additional insight, we compared the taxonomies induced by LPSMI with those generated by two acquisition methods that are references in the community: the OntoLearn Realoaded approach [START_REF] Velardi | Ontolearn reloaded: A graphbased algorithm for taxonomy induction[END_REF] and the approach proposed by Kozareva and Hovy (K&H) [START_REF] Kozareva | A semi-supervised method to learn and construct taxonomies using the web[END_REF]. This quantitative comparison was performed using data provided by the authors 12 on the following WordNet sub-domains: Vehicles, Plants and Animals (688 terms). Since Kozareva and Hovy initially used the Yahoo!Boss search engine, we replicated their algorithm using Wikipedia data in order to compare the methods on common bases and to understand the influence of the source information corpus (Web source) on the quality of the extracted structures.

The evaluation criterion used this time is the Cumulative Fowlkes and Mallows measure (F&M) as defined in [START_REF] Velardi | Ontolearn reloaded: A graphbased algorithm for taxonomy induction[END_REF], used in [START_REF] Bordea | Semeval-2015 task 17: Taxonomy extraction evaluation (texeval)[END_REF] and for which executable sources are made available 13 ; this measure compares an extracted taxonomy and the gold standard by measuring the matching between the partitions (of terms) induced at each level of the structures to be compared. Table 15 presents the results of this comparative study. The table is divided into two parts, the first five rows contain the results of the different methods (OntoLearn Reloaded, K&H and LPSMI) based on information extracted from Wikipedia (free) while the last row corresponds to the original K&H method based on Yahoo!Boss (not free). By comparing the results obtained by K&H on Wikipedia and on Yahoo!Boss, we can see how crucial the source is in this process; the choice of Yahoo!Boss explains in part the good scores observed by K&H in the literature.

The upper part of the table presents results that can be reasonably compared since the associated methodologies use the same source of information (Wikipedia) but in different ways. The five methodologies compared are : On-toLearn Reloaded with two different parameters for the pruning step (DAG [START_REF] Ahat | Document classification with LSA and pretopology[END_REF][START_REF] Ahat | Pollution modeling and simulation with multi-agent and pretopology[END_REF] and DAG [0,99]), K&H and two uses of the LPSMI algorithm :

• LPSMI for the reconstruction task: the model is learned from the complete taxonomy, then the taxonomy is reconstructed from the learned model (which naturally leads to good results).

• semi-supervised LPSMI: a set of 9 models was learned from 9 sub-domains (3 from each initial domain). Each model is then used to reconstruct a complete taxonomy. The model finally retained for a taxonomy to be reconstructed is the one that induces the most relations (without explosion 14 ).

Unlike OntoLearn Reloaded and K&H, LPSMI is not a methodology dedicated to the extraction of taxonomies but a generic algorithm for learning pretopological spaces. Nevertheless, we observe that the LPSMI algorithm obtains quite competitive results on this task, outperforming even dedicated methods on the dataset vehicles.

Conclusion

We introduce a new method to learn (in a supervised context) a pretopological space based on its elementary closed sets: LPS multiple instances (LPSMI). This method is the continuation of the work done by Cleuziou and Dias [START_REF] Cleuziou | Learning pretopological spaces for lexical taxonomy acquisition[END_REF] where a pseudo-closure was modeled by a numerical vector and learned by a genetic algorithm. Due to the lack of expressiveness of the numerical formalism, we switched to a more appropriate logical modeling: a positive DNF defining a pseudo-closure operator. This new definition of a pretopological space allows to consider many more solutions while restricting the hypotheses space, thus making its exploration both easier and faster. LPSMI is also faster than its competitors in delivering results because its learning strategy explores the search space more efficiently thanks to an appropriate (intrinsic) quality measure.

Learning a pretopological space is a wonderful improvement in how one can take advantage of pretopology theory. In previous work, the pseudo-closure operator was hand-crafted and based on a collection of neighborhoods supposed to accurately model a given phenomenon. Learning a pseudo-closure operator allows one to construct a better combination among any collection of neighborhoods, such that only useful neighborhoods are considered in the learned pseudo-closure operator.

The learning of pretopological spaces remains an open problem, mainly due to its difficulties in scaling to large amount of data. Given an already trained pretopological space, computing its set of elementary closed sets can be costly depending on the propagation speed defined by the pretopological operator. Although, since we are currently only considering V-type pretopological spaces, the computation of the elementary closed sets can easily be speed up by merging compatible pseudo-closures. Let us say that we have computed a first round of pseudo-closures such that a({x}) = {x, y} and a({y}) = {y, z}, then we already know that a 2 ({x}) will contain z. Then, we can skip a pseudo-closure step by computing a(a({x})∪a({y})) instead of a(a({x})). However, the major concern comes from the learning algorithm, because we observed that the propagation speed to the elementary closed sets is reasonable. Indeed, the solution space is very large, especially given the small size of the inputs. A possible improvement to the current strategy of exploring the solution space could be to compute only partial closed sets and move as soon as the candidate solution gets too far from the target. As the time of writing, there is no satisfying solution for efficiently learning a pretopological space. Laborde [START_REF] Laborde | Pretopology, a mathematical tool for structuring complex systems: methods, algorithms and applications[END_REF] propose an alternative learning algorithm, but it remains rather restrictive since it assumes that an exact solution exists, which is far from realistic.

By applying the LPSMI algorithm to the task of learning a lexical taxonomy, we have shown that the pretopology theory is well suited to model the semantic relations between terms in a given domain. We have also shown that a model learned with LPSMI will almost always be preferable to a solution based on a single data source.

Work needs to be done to remove the dependency on the binary neighborhood. A naive solution to this problem would be to build many binary neighborhoods from many thresholds, but this would be very expensive in terms of space and time complexity. We plan to study solutions based on fuzzy pretopology [START_REF] Badard | Fuzzy pretopological spaces and their representation[END_REF] or any broader theory [START_REF] Khedr | Fuzzy soft pretopological spaces[END_REF]. Future works will also focus on other modeling of the pseudo-closure operator. For example, a pseudo-closure operator based on first logic order formulas could lead to even better expressiveness. We plan to learn, at the same time, a combination of continuous neighborhoods and a set of parameters modifying these neighborhoods (typically, a threshold) in the hope of reducing the false positive rate of the learned solution. We also plan to refine our estimation of the positive/negative bags covered by a solution, as a better approximation could lead to more accurate solutions.

LPSMI needs to be tested on a broader range of application cases such as the modeling of expansion behaviors in networks (social networks, biological networks, road networks etc. . . ). We have already shown the relevance of pretopology to model complex propagation in networks [START_REF] Caillaut | Learning pretopological spaces to extract ego-centered communities[END_REF]. Since this is the problem that motivated the learning of a pretopological space, we will continue to use our method to learn models useful for text mining, such as the task of building lexical taxonomies. We also plan to use it to learn temporal ordering models comb({1 . . . n}, i) expresses the power-set of {1 . . . n} reduced to its elements of size i. Thus, the size of the union of sub-lattices is calculated by alternatively adding and subtracting the sizes of the intersections between the sub-lattices. The intersection between several sub-lattices sharing the same top element is the sub-lattice whose biggest element is (obviously) and whose bottom element is the union of the bottom elements of the considered sub-lattices. Then the size of this intersection is expressed by 2 | |-|∪ j∈B ⊥j | .

{x
F * Q ({x 1 }) F * ({x 1 }) ec(x 1 )
Given any i-permutation B of the equivalence class A k , we use the elementary coverage assumption to estimate the number of positive bags whose coverage, by Q, is not always ensured by all the elementary closed sets of the elements in B. That is, the number of positive bags which belong to, at least, one element of {ec(x)} x∈B .

∀B ∈ comb(A k , i), r + Q (B) = x∈B L F * Q ({x}) ∪ B, F * k - 1 
We have to subtract 1 in order to ignore the top element F * k , since a positive bag cannot be identified by a closed set.
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 51 Figure 1: The pseudo-closure expansion process starting from the set A = {x 2 } and extending to the closed set F (A) = {x 2 , x 3 , x 4 , x 5 }.
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 5 Figure 5: Two directed acyclic graphs describing the elementary closed sets of weak and strong pretopologies.

F
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 1718 ← c end end clauses ← sort clauses according to scores in decreasing order /* loop over the beam best clauses */ foreach c ∈ clauses[1 . . . beam] do beam_c ← F indBestClause(E, S * , P reds, Q, c, beam)
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 7 Figure 7: A target set of elementary closed sets S * and two candidate closure operators.
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 1 a({x}) = {x, y, z} 2. a({x}) = {x, y} and a({x, y}) = {x, y, z} 3. a({x}) = {x, z} and a({x, z}) = {x, y, z}
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 10 Figure 10: A collection of four neighborhoods.

Property 3 .

 3 Let (E, a) be a pretopological space of type V, two sets A, B ∈ P(E), the sub-lattice L [A, F (A)] intersects L [B, F (B)] if and only if A and B share the same closure.

. 3 . 2 .

 32 Number of positive/negative bags covered by a solutionWe have shown how to calculate the total number of positive and negative bags, without explicitly generating them. The number of positive bags covered by a solution Q, noted BAGS + Q , can be estimated by considering the number of bags covered by equivalence classes. For each equivalence class A k ∈ A, an estimate of the number bags + Q (A k ) of positive bags covered is computed thanks again to the inclusion-exclusion principle.
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 11 Figure 11: Moore's neighborhoods
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 12 Figure 12: Result of 9 simulations: from top to bottom, fire propagation is modeled by, respectively, Q Simple , Q M edium and Q Hard . From left to right, each grid is filled with 10%, 30% and 60% obstacles.
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 13 Figure 13: Performances of LPS algorithms on the learning task Q Simple .
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 14 Figure 14: Performances of LPS algorithms on the learning task Q M edium .
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 15 Figure 15: Performances of LPS algorithms on the learning task Q Hard .
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 16 Figure 16: Step by step propagation of a semantic relation. The expansion starts from the singleton {vessels}.

Figure 17 :

 17 Figure 17: The set {vessels, boats, ship} is expanded to the term "tugboats" by the conjunctive clause q Sand. ∧ q strmatch because "ships" is a hypernym of "tugboats" according to q Sand. and "boats" is a hypernym of "tugboats" according to q strmatch .

Figure 18 :

 18 Figure 18: Inclusion relations between a collection of elementary closed sets. A squared node is an elementary closed set of size 1 and represents a leaf of the lexical taxonomy.

Figure 19 :

 19 Figure 19: A learned taxonomy with vessels as root concept.

Figure 20 :

 20 Figure 20: Estimation of the number of positive bags engendered by x 1 that are covered by a solution Q. We supposeF * ({x 1 }) = {x 1 , x 2 , x 3 , x 4 } and F Q ({x 1 }) = {x 1 , x 2 }.Positive bags whose coverage is ensured by F Q ({x 1 }) are highlighted by the green area, which is L [{x 1 }, F * ({x 1 })[ \ ec(x 1 ).

Table 2 :

 2 Two closure operators F

* 1 (.) and F * 2 (.) leading, respectively, to elementary closed sets in S * 1 and S * 2

Table 3 :

 3 Example of computing the F-measure between two sets of elementary closed sets.

Table 4 :

 4 The set of vectors/instances Example of a multiple instance dataset for the simple jailer problem.

	Bag	Shape	Size	Instance labels Bag labels
		Squared	Big	1	
	1	Squared	Small	0	1
		Squared	Medium	1	
	2	Squared Triangular	Medium Small	1 0	1
		Rectangular	Big	0	
	3	Squared	Small	0	0
		Triangular	Small	0	

Table 6 :

 6 Bags engendered by the element x 2 and the features associated with each instance. The labels of the instance are hidden because they are not provided in a learning context.

Table 7 :

 7 Sizes of the different extracted sub-domains

Table 8 :

 8 Comparison of F-measures obtained by individual state-of-the-art methods with the (combining) LPSMI approach. The scores are labeled according to their rank.

Table 9 :

 9 Recall, precision and F-measure scores obtained by models learned by SVM, Decision Tree and our proposal, LPSMI, for the task of capturing the hypernymy relation of a given domain.

Table 10 :

 10 Logical formulas learned by LPSMI for each domain.

	Train domain	vehicles (mean) plants (mean) food (mean) animals (mean)
	wagons	0.25	0.13	0.05	0.19
	crafts	0.34 0.34	0.12 0.14	0.15 0.14	0.06 0.16
	motor vehicles	0.43	0.16	0.21	0.22
	bulbous plants	0.12	0.05	0.12	0.05
	aquatic plants	0.25 0.16	0.12 0.08	0.06 0.10	0.19 0.10
	grasses	0.12	0.06	0.12	0.06
	candy	0.19	0.06	0.13	0.07
	bread	0.12 0.15	0.05 0.05	0.13 0.13	0.05 0.06
	snack food	0.15	0.05	0.12	0.06
	reptiles	0.32	0.06	0.13	0.11
	fish	0.42 0.38	0.15 0.12	0.29 0.24	0.20 0.18
	birds	0.41	0.16	0.29	0.24

Table 11 :

 11 F-measure scores obtained by pretopological models for full domain reconstruction.

Table 13 :

 13 Performance of competing systems in Task 13 of SemEval 2016 on the domain food.

	Train domain	Recall Precision F-Measure
	vehicles	0.26	0.42	0.32
	wagons	0.31	0.00	0.00
	crafts	0.26	0.42	0.32
	motor vehicles	0.32	0.04	0.07
	plants	0.22	0.48	0.30
	bulbous plants	0.25	0.35	0.29
	aquatic plants	0.09	0.10	0.10
	grasses	0.25	0.14	0.18

Table 14 :

 14 Performances of LPSMI models, trained on different sub-domains, for the reconstruction of the taxonomy food.

Table 15 :

 15 Comparison of state-of-the-art methodologies using the cumulative Fowlkes and Mallows measure (F&M).
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By positive, we mean that the formula contains no negated literals.

The term closure function refers to the function which associates to each element x its (elementary) closed set F (x).

Even if {x 3 , x

} ⊂ F * ({x 1 }), x 1 / ∈ {x 3 , x 4 }, it is thus not reachable from {x 1 }

The reflexivity of the neighborhood function is imposed by the pretopological formalism.

https://www.wikipedia.org/

https://code.google.com/archive/p/word2vec/

https://CRAN.R-project.org/package=e1071

https://CRAN.R-project.org/package=rpart

Considering that elements with the same closure constitute a single node in the structure.

Precision and recall are available at alt.qcri.org/semeval2016/task13/index.php?id= evaluation.

Transitive edges are ignored, which explains the differences with previous results.

http://ontolearn.org/

https://alt.qcri.org/semeval2015/task17/

We observe that some models do not sufficiently regulate the propagation of relations, thus generating many cycles and making their evaluation impossible in practice.

of events, in texts, based on annotated corpora such as TimeBank-Dense [23].

A. Number of positive bags covered by a solution

The number of positive bags covered by a solution Q (the number of true positives) is estimated by subtracting the estimated number of rejected (or not yet covered) positive bags from the total number of positive bags in the MI dataset. Due to the complexity of the pseudo-closure operator, it is not possible to accurately count the number of rejected positive bags in a reasonable time span. We propose a method to estimate this number.

We consider a finite set E, a set S * of target elementary closed sets and a solution Q under construction. For any element x ∈ E, we consider the true/right subset of its learned elementary closed set, denoted

The definition of the pretopological space (E, a Q ) of type V guarantees, for any element x ∈ E and any set

according to the isotonic property (Definition 3). This means that any set containing x will be correctly expanded, by the pseudo-closure operatora Q (.), to at least all elements of F * Q ({x}).

In what follows, a (strong) assumption is made that all positive bags (x, A) such that F * Q ({x}) ⊆ A ⊂ F * ({x}), i.e. the bags described by the sub-lattice L F * Q ({x}), F * ({x}) , are not covered by Q. This is the elementary coverage hypothesis.

Definition 4 (The elementary coverage assumption). For any x ∈ E, the set of positive bags whose coverage (by Q) is not ensured by the elementary closed set learned from x (F Q ({x})) is defined as follows:

is the set of positive bags (1) engendered by x and (2) rejected by Q if we consider the only knowledge provided by F * Q ({x}). This is a high estimate because the positive bag (x, A) can be covered by Q while not being considered as such by ec(x). This case occurs when A is strictly between

In such a case, the positive bag (x, A) is theoretically covered but ec(x) marks it as rejected. This problem can be solved by computing the closure of each super-set of F * Q ({x}), which is terribly inefficient in practice. Although this is not a dramatic problem because it only affects non-elementary closed sets, which are not reflected in the final DAG structure.

A low estimation of the positive bags whose coverage (by Q) is provided by the elementary closed set of an element x ∈ E can be computed by subtracting the size of ec(x) to the total number of positive bags engendered by x.

Figure 20 illustrates how the number of covered positive bags is estimated.

The whole set of positive bags engendered by the element

. Thus, we assume that all sets above {x 1 , x 2 } (i.e. ec(x 1 )) are not properly expanded as well. This seems wrong since For all x ∈ E, we can estimate (by a lower bound) the number of positive bags engendered by x and covered by Q, by subtracting the number of bags not yet covered from the number of bags engendered. But, as with the calculation of the total number of positive bags, care must be taken when several elements share the same elementary closed set. We again use the inclusion-exclusion principle to compute a better estimation of the positive bags not covered by Q. We define the function r + Q : ∪ A k ∈A P(A k ) → N which, given a subset B of an equivalence class A k , produces an estimate of the number of positive bags engendered by the elements in B whose coverage by Q is not always guaranteed by all the elementary closed sets of the elements in B.

On a general purpose, we first define how to compute the size of the union of n sub-lattices L 1 , . . . , L n having the same upper element, noted , and different lower elements ⊥ 1 , . . . , ⊥ n .

Then, for any equivalence class A k ∈ A, the estimated number of positive bags engendered by (the elements of) A k and covered by Q is calculated as follows:

The estimated total number of positive bags covered by Q is finally deduced, thanks to Property 3, by summing bags + Q (A k ) for all A k ∈ A. The inclusion-exclusion principle is, again, used to estimate the number of positive bags whose coverage is ensured by the elementary closed sets of elements of the equivalence class A 1 . First, for all x ∈ A 1 the number of positive bags engendered by x whose coverage is ensured by F Q ({x}), i.e. bags + (x) -|ec(x)|, are summed. Therefore, the positive bag (A 1 , {x 1 , x 3 }) is counted twice. This error is removed by subtracting the number of positive bags whose coverage is ensured by both