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Interoperable Models for Dynamics and Shape Tracking of Soft Fingers

Steeve Mbakop1,2, Gilles Tagne1,2, Marc-Henri Frouin3 and Rochdi Merzouki1

Abstract— A lot of works highlight the soft material prop-
erties, used in grasping tasks by soft fingers. However, the
kinematics as well as the dynamics of these soft fingers are
strongly influenced by the material’s properties along their soft
structure. Due to their compliance, the soft grippers are more
often used to achieve form closure grasping which is safer than
force closure grasping. One main issue related to soft grasping
concerns the shape control of the finger, allowing obtaining
perfect compliance when attempting a form closure grasping.
In this work, we propose interoperable models based on
Pythagorean Hodograph and Euler-Bernoulli’s beam dynamics
to model both dynamics and shape of Fluidic Elastomeric
soft fingers. This makes a relationship between the physical
actuators and the virtual control points of the parametric
Pythagorean Hodograph (PH) curve which drive the finger
shape. The PH curve with its finite control points is used
to model and control the kinematics of the shape of the soft
fingers, characterized by an infinite degree of freedom (DoF).
This modeling will allow controlling the position of the virtual
control points of soft fingers. The results of this modeling are
validated numerically and experimentally with a soft finger
made up of Fluidic Elastomeric Actuators (FEA).

I. INTRODUCTION

In recent years, advances in materials science applied
to mechanics and mechanical design have allowed us to
propose better alternatives for robotic manipulations [1].
However, identifying and controlling the optimal shape of
soft robots present a challenging topic. This requires some
form of actuation computation of the soft robot gathering
conventional control methods and motion planning.

The conventional control methods mainly focus on com-
puting control that is based on the desired tip movement.
Several methods based on the Jacobian have been largely
investigated [2] [3]. Due to the complexity of the task, model
free-based techniques [4] have been proposed to inverse
the kinematics of the continuum robots. Such local control
methods which consider only the tip pose, cannot be suitable
to compute motions that require a global control of the
overall shape of the soft robots.

On the contrary, motion planning [5] enables the soft con-
tinuum manipulators to exhibit a global shape according to a
constrained environment. The literature is largely dominated
by the probabilistic approaches, which are sampling-based
techniques; namely the Rapidly-Exploring Random Graphs
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(RRG) [6], the Rapidly-Exploring Random Trees (RRT) [7]
and the Probabilistic Random Roadmap (PRM) [8]. However,
to implement a global shape control of the soft continuum
robots, an accurate model that maps the dynamic inputs
(physical input) to the geometry of the structure is more
than essential.

The real-time shape computation techniques are still lack-
ing in the literature. Some works such as [9], suggest using
learning approaches. The present paper aims to investigate
a model-based approach. Furthermore, a curvature dynamics
feed-back control has been proposed in [10] to track a refer-
ence posture curvature. However, the lack of a relationship
between the physical input and the adaptive robot shape
makes real-time implementation [5] difficult. In [2], a model-
based technique to control the pose of a soft-continuum arm
robot is suggested. But, the authors’ investigation is only
limited to the tip’s small displacement.

In this paper, to map the soft finger shape to its physical
input, an FEA dynamic model based on Euler-Bernoulli’s
beam modeling is proposed. The large deflections hypothesis
are considered. This dynamic model is interoperated with PH
curves based on prescribed length. This is to model the shape
of a soft finger, from a finite number of its PH virtual control
points. Also, one of the features of the PH parametric curves
is to enable inverting the soft finger dynamics.

The paper is organized as follows: In the second sec-
tion, the fundamentals of FEAs modeling based on Euler-
Bernoulli’s dynamics are largely investigated. The interop-
erable approach which maps the input pressure to a specific
finger posture is presented in the third section. These latter al-
lows capturing the relation between the physical actuation
and the finite virtual control points of the curve describing
the FEA shape. After simulating and experimenting with the
proposed approach for validation in the fourth and the fifth
section successively, conclusions and prospective works are
finally discussed in the last section.

II. EULER BERNOULLI MODELING OF FLUIDIC
ELASTOMERIC SOFT FINGER

This paper aims to establish the relationship between the
control input of a Fluidic Elastomeric soft finger (input
pressure Pin) and its shape curve. For this purpose, an ap-
proach based on parametric PH curves is used for kinematic
modeling of the shape, where the adaptive position of PH
control points is deduced from the Euler Bernoulli dynamic
model.



A. Actuation modeling

The dynamic bending of a fluidic elastometic soft finger
is created from the compressed air pressure trapped in the
chamber at the tip (free end) of the actuator [11]. Knowing
that the static configuration of the soft finger corresponds
to the initial air pressure in the chamber, which makes the
equilibrium with the gravity effort.

Let us define: A = a2, the area of the cross-section of
the actuator, v, the size ratio of the actuator, b, the width
of the cross-sectional area and He, the height. The normal
force generated (see Fig. 1) by the input pressure on each
horizontal line of the actuator tip, being at a distance of h
from the bottom layer is given as follows:

dF = (vaPin)dh, (1)

where Pin denotes the input pressure. A and v are defined
as follows:

v =

√
b

He
, A = bHe. (2)

dF is the infinitesimal normal force acting on the cross-
sectional area due to the air pressure along with the infinites-
imal distance dh.

Fig. 1: Effort modeling at the cross-section

Then, the bending moment is deduced as follows:

Me =
∫
(h+(t + e))dF =

∫ He

0
(h+(t + e))(vaPin)dh, (3)

where t and e are respectively the thickness of the inexten-
sible layer and the thickness of the air channel, as presented
in Fig. 1. Assuming one control input Pin for a given portion,
the bending moment that acts on the soft structure can be
calculated by considering its value at the tip. It is perceptible
that the bending moment Me is proportional to the input
pressure Pin by a geometric constant Ψ.

Me =
0.5a+(t + e)v

v
a2Pin = ΨPin. (4)

B. Euler Bernoulli dynamics for soft finger

In the following development, it is assumed that the soft
finger length remains constant. For modeling purpose, a
soft finger is viewed as a thin cantilever planar beam. This
modeling is considered for the case of an under-actuated soft
finger robot with a high degree of freedom, whose bending
is due to the moment caused by the fluid trapped at the free
end of the structure. Therefore, the soft finger is supposed
to have a moment at the tip [12] [11].

Fig. 2: Planar beam modeling of soft finger

Let us consider a thin cantilever beam of length L sub-
jected to a moment Me which is applied at the free end of
the beam, as shown in Fig. 2.

We denote s (0≤ s≤ L) as the curvilinear coordinate along
the axial line, measured from the clamped end, θ(s) the angle
between the positive x-axis and the tangent to the neutral axis
at point s (Fig. 2). In addition, let M denotes the bending
moment at the location s, and dM its infinitesimal variation
(See Fig 3).

An infinitesimal element of the deflected beam is shown
in Fig. 3.

Fig. 3: Infinitesimal element

The equilibrium of bending moments yields:

dM = 0, (5)

where the boundary conditions for the structure are:

θ(s = 0) = 0,
M(s = L) = Me.

(6)

Additionally,

x(s = 0) = 0,
y(s = 0) = 0.

(7)

According to Euler-Bernoulli (EB) beam dynamics for large
deflection, the planar bending moment at each point of the
beam is described as follows:

M(s) = (E +Pin)I
1

R(s)
. (8)

where I is the static moment of inertia. (E + Pin)I being
the variable flexural rigidity of the inflated beam [13]. The
curvature κ(s) is described as:

κ(s) =
1

R(s)
(9)

R(s) is the local radius of curvature.
The above development is consistent with the end moment

due to a single dynamic input that acts on the soft structure.



By considering Eq. 4, it is stated from EB beam dynamics
that the curvature κ(s) of the structure can be expressed as
follows:

κ(s) =
Ψ

(E +Pin)I
Pin (10)

Regarding to boundary conditions, it is deduced that:

θ(s) =
ΨPin

(E +Pin)I
s (11)

It can be seen that the finger’s inclination angle is varying
linearly along the longitudinal axis. A circular arch p(s) is
obtained. Its first derivative, p′(s) reads with:

p′(s) = (x′(s),y′(s)),

x′(s) = cosθ(s),

y′(s) = sinθ(s).
(12)

Note that p′(s) is tangent to the curve at point s.

x(s) =
( (E +Pin)I

ΨPin

)
sin
([

ΨPin

(E +Pin)I

]
s
)
,

y(s) =
( (E +Pin)I

ΨPin

)[
1− cos

([
ΨPin

(E +Pin)I

]
s
)]

.

(13)

In the case of two physical inputs the shape kinematics
can be expressed for two phalanges:

𝑙1
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y

𝑙2

𝑀2𝑀1

𝜁2

𝜁1

𝑂
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Fig. 4: Geometry features of an under-actuated soft finger

1) First phalange:

x1(s) =
(E1 +P1in)I1

M1
sin
(

M1

(E1 +P1in)I1
s
)
,

y1(s) =
(E1 +P1in)I1

M1

[
1− cos

(
M1

(E1 +P1in)I1
s
)]

,

with

M1 = Ψ1P1in +Ψ2P2in. (14)

2) Second phalange:

x2(s) =
(E2 +P2in)I2

ΨP2in

[
sin
(

ΨP2in

(E2 +P2in)I2
s+θ1(l1)

)
− sinθ1(l1)

]
+ x1(l1),

y2(s) =
(E2 +P2in)I2

ΨP2in

[
cos
(

ΨP2in

(E2 +P2in)I2
s+θ1(l1)

)
− cosθ1(l1)

]
+ y1(l1),

where (E1, I1,Ψ1) and (E2, I2,Ψ2) are the Young modulus,
the static moment of inertia and the geometrical constant (Eq.
4) respectively related to the first and the second phalange
of the soft finger. P1in and P2in represent the physical inputs
acting on the first and the second phalange respectively.

III. INTEROPERABLE PH-EB MODELS OF SOFT FINGER

The interoperable Model of the FEAs shows the relation-
ship between the physical control-input (actuation) and the
finite virtual control points of the PH curve, sufficient to
completely describe the shape kinematic changes during the
actuation. PH control points are fully defined by the end
(clamped and free end) point pose.

For that, let ps and p f describe respectively the clamped
and the free end positions of the soft finger with ds, d f their
respective directions under actuation (input pressure). From
Eq. 11-13, the pose of the free end point is computed while
the boundaries conditions are consistent with Eq. 6 and Eq.
7. Henceforth, the following holds:

ps = (0,0) ds = (1,0)
p f = p f (Pin), d f = d f (Pin).

(15)

The control points pk of the PH curve (driving the soft
finger posture) are determined with respect to [14].

Structure before actuation

Structure after actuation
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Fig. 5: PH virtual control points

As stated previously (Eq. 15), the EB beam dynamics
allows to define the end points pose as a function of the
physical input Pin.

With the knowledge of the above boundary conditions and
the length L, the following steps described the PH quintic
formulation, necessary for the shape computation.

A. End tangents of the PH curve of the soft finger

Let us define ζ (0 ≤ ζ ≤ 1), the normalized curvilinear
coordinate along the neutral axis of the soft finger. cooAc-
cording to [14], it exists a complex polynomial function
w, writing with Bernstein coeficient wk that ensures the
existence and the computation of a planar quintics PH (see
Eq. 16). In the considered development, the Pythagorean
condition is :

x′2(ζ )+ y′2(ζ ) = Γ
2(ζ ), (16)

where Γ represents the parametric velocity polynomial.
If we considered the following equation:

w(ζ ) = u(ζ )+ iv(ζ ) =
m

∑
k=0

wk

(
2
k

)
(1−ζ )2−k

ζ
k, (17)



where wk are obtained after the integration of the expression:

p′(ζ ) = w2(ζ ), (18)

with
wk = uk + ivk. (19)

Thus, the geometric invariant features namely the velocity
polynomial Γ, the unit tangent d and the curvature κ at
each point of the soft finger are expressed as follows [14]
respectively:

Γ(ζ ) = |w2(ζ )|,

d(ζ ) =
w2(ζ )

Γ(ζ )
,

κ(ζ ) = 2
Im(w(ζ )w′(ζ ))

Γ2(ζ )
.

(20)

From expression Eq. 20, the tangents ds and d f at end
points (clamped and free end respectively) can be derived as
follows :

ds =
w2(0)
|w2(0)|

= exp(iθ0),

d f (Pin) =
w2(1)
|w2(1)|

= exp(iθ1).

(21)

Hence, by considering:

w0 = νexp(i
θ0

2
), w2 = νexp(i

θ1

2
), (22)

the tangents constraints of Eq. 21 are satisfied. Now, with
all the above the following keeps valid:

w1 = u1 + iv1. (23)

B. PH curve the interpolation under length constraint

With the knowledge of the end points poses according
to the physical input [Pin], the equations that govern the
dynamics of the parametric PH curve should be carried out.

The parametric velocity polynomial is then formulated
with regard to Bézier representation:

Γ(ζ ,Pin) =
4

∑
k=0

Γk

(
4
k

)
(1−ζ )4−k

ζ
k, (24)

Γk = Γk(Pin) are representing the related Bernstein coeffi-
cients, also termed in Pin:

Γ0 = |w2
0|, Γ1 = Re(w0w1)

Γ2 =
|w2

1|+Re(w0w2)

3
Γ3 = Re(w1w2), Γ4 = |w2

2|

(25)

The total arc length (which is a constant L) of the in-
extensible layer (neutral axis) of the soft finger yields to:

L =
1
5

4

∑
k=0

Γk (26)

By using canonical form of PH quintic, dynamics of
soft finger ends (clamped and free) is ensured trough the
following: ∫ 1

0
p′(ζ )dζ = 1 (27)

By using canonical form of PH quintic [14], one can easy
demonstrate the following:

2w2
1 +3(w0 +w2)w1 +3w2

0 +3w2
2 +w0w2 = 15. (28)

Taking in to consideration the inextensible properties of the
soft finger, Eq. 26 and Eq. 25 yields :

2|w1|2 +3(w0 +w2)w1 +3|w0|2 +3|w2|2 +w0w2 = 15L.
(29)

Now, when assuming:

(c0,s0) = (cos
1
2

θ0,sin
1
2

θ0), (c1,s1) = (cos
1
2

θ1,sin
1
2

θ1),

θm =
1
2
(θ0 +θ1), δθ =

1
2
(θ0−θ1),

(30)

and combining Eq. 21, Eq. 28-30, it is possible to compute
the Bernstein coefficients wk (Eq. 22) that drive the behavior
of the control points pk (see Eq. 34).

Finally, we obtain the following equation system:

4u2
1 +6(c0 + c1)u1ν

+(6c2
0 +6c2

1 +2c0c1)ν
2−15(L+1) = 0,

4u1v1 +3(c0 + c1)u1ν

+3(s0 + s1)v1ν(6c0s0 +6c1s1 + c0s1 + c1s0)ν
2 = 0,

4v2
1 +6(c0 + c1)v1ν

+(6c2
0 +6c2

1 +2c0c1)ν
2−15(L−1) = 0,

(31)

which describes the dynamics of Bernstein coefficient wk
(Eq. 22) that drive the behavior of control points pk (see Eq.
34).

C. The optimization of the Potential Bending Energy of the
curve

The potential bending energy of the soft finger refers to:

Ep =
1
2

EI
∫ L

0
|κ(s)|2 ds (32)

It can be written in its canonical form as follows:

Ep =
1
2

EI
∫ 1

0
|κ(ζ )|2|Γ(ζ )|dζ ,

|Γ(ζ )|= ds
dζ

.

(33)

The value of Ep (see Eq. 33) is optimized according to
[14] where the minimum value of ν ensures that, w1 is
minimal trough u1 and v1. This latter results in minimizing
the bending energy of the system with regard to the behavior
of a real physical system.



D. Computation of the position of the control points

The minimization of the potential bending energy of the
FEAs trough PH formulation leads to five virtual control
points to fully describe the related shape dynamics subject
to a physical input [Pin] :

p1 = ps +
1
5

w2
0(Pin), p2 = p1 +

1
5

w0(Pin)w1(Pin)

p3 = p2 +
1
5

2w2
1(Pin)+w0(Pin)w2(Pin)

3

p4 = p3 +
1
5

w1(Pin)w2(Pin), p f = p4 +
1
5

w2
2(Pin)

(34)

The above control points pk are all termed relative to the
input pressure [Pin] (see Eq. 6, Eq. 7 and Eq. 22).

The shape of the soft structure is recovered with:

p(h,Pin) =
5

∑
k=0

pk(Pin)

(
5
k

)
(1−ζ )5−k

ζ
k (35)

where pk = pk(Pin)

IV. SIMULATIONS

In the following section, the proposed PH-EB modeling is
validated numerically compared to Ansys modeling. To do
that, two scenarios have been considered. One with a single
control input of soft finger, the second with two independent
control inputs of two phalanges soft finger robot.

A. Soft finger Design and finite element analysis

A FEA like actuator made up of Agilus30 soft material
was designed (see Fig. 13). Tensile testing on Agilus30
samples are performed using Instron. A general polynomial
form (Eq. 36) for incompressible material is adopted to
characterize the material.

W =
3

∑
i=1

Ci(I1−3)i, (36)

W denotes the strain-energy density function, Ci and Ii
represent the material constants. Ci were determined by
fitting the model to uniaxial tensile test data using Ansys
Software fitting process. They are used to calculate Young’s
modulus based on the Yeoh hyperelastic material model:

2C1 = µ (37)

and obviously,

E = 2µ(1+ν). (38)

The FEA’s properties are illustrated in Tab. I.

TABLE I: FEAs properties

FEA constant Values

L(black soft finger) 116 mm (soft finger Length)
l1(white soft finger) 63 mm (1st portion Length)
l2(white soft finger) 56 mm (2nd portion Length)
E(black soft finger) 0.36 Mpa
E(white soft finger) 0.4 Mpa

B. Simulation results

The validation step consists into two main steps: First,
an offline analysis (Section IV-B) is carried out where the
proposed PH-EB outputs are compared to those of Ansys and
to EB beam dynamics. Second, an online analysis (Section
V) gives the real experiments. In both cases, the results are
compared using a single control input for ’black soft finger’
and multiple control input for ’white soft finger’.

Fig. 6 and Fig. 7 shows several soft finger postures
according to different values of the physical control input
(respectively one and two control inputs). These results are
obtained from Ansys and PH-EB. The analysis of the Carte-
sian errors are described through Fig. 8 and Fig. 9. These
errors are evaluated according to the normalized curvilinear
coordinates along the soft finger length. In Fig. 8, only
one control input is used. Four postures have been studied,
starting from low input pressure (Pin = 30kPa) to high input
pressure (Pin = 90kPa).
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Fig. 6: Simulation of one phalange (black soft finger)

Fig. 7: Simulation of two phalanges (white soft finger)

Within the scope of the simulation, a maximum error of
∆amax ≈ 9mm can be observed.

Two independent control inputs are involved in Fig. 9.
The Cartesian errors has a maximum value of ∆amax ≈ 5mm
(Fig. 9). Fig. 10 and Fig. 12 show that the PH-EB is able
to reconstruct accurately the posture got from EB modeling.
The figures Fig. 8-Fig. 12 show convergence of the results
in-spite of some errors. In addition, it can be observed that
the PH-EB tends to lower the error of the prediction (see Fig.
9 and Fig. 11). This corresponds with the optimal bending
energy considered in the formulation. However, the accuracy
of the model tends to decrease with higher control inputs.
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Fig. 8: Errors Ansys/PH-EB of simulated shape reconstruc-
tion for one phalange black soft finger
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Fig. 9: Errors Ansys/PH-EB of simulated shape reconstruc-
tion for two phalanges white soft finger
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Fig. 10: Errors EB/PH-EB of simulated shape reconstruction
for one phalange black soft finger
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Fig. 11: Errors Ansys/EB of simulated shape reconstruction
for two phalanges white soft finger

This is relevant of the fact that, at higher pressures, the Euler-
Bernoulli assumptions may be no longer valid due to non
neglectful deformations that occur at finger cross-sections,
while there are fully considered by the Ansys computing.
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Fig. 12: Errors EB/PH-EB of simulated shape reconstruction
for two phalanges white soft finger

V. EXPERIMENTAL VALIDATION

The aim of this section is to validate experimentally the
soft finger modeling that relies on a finite number of control
points.

A. Data acquisition material

The experiments are carried on 3D printed soft fingers
(Fig. 13) using Agilus30 material with different stiffness.
Stratagys Connex 500 was used as the 3D printer. The shape
and displacements are measured using two different systems:
The Optitrack acquisition system and bending sensors are
embedded at the bottom of the unextensible layer. The
bending sensor of bendlabs brand (1-axis soft flex sensor)
is used to capture the angle at the end of finger portions so
that the curvature can be assessed. The Simulink Dspace 6 is
used to capture real-time data on the curvature given by the
sensors while monitoring the convenient air pressure thanks
to Festo servo valve. The validation scheme is described on
Fig. 14.

Bending

sensor

2-phalanges soft finger with two FEAs

1-phalange soft finger with one FEA

Markers

Fig. 13: Black and white soft finger robots

B. Results and discussions

In the first experiment, the black soft finger robot is
actuated from Pin = 30kPa to Pin = 90kPa. Fig. 15 shows the
shape obtained from control points (PH-EB) and the shape
tracked with the Optitrack system by using Pin = 30kPa as
single input.

The PH control points are plotted with those of PH-EB.
Also, the position of Optitrack markers are plotted (see Fig.
16).



Fig. 14: PH-EB interoperable model validation
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Fig. 15: Shape reconstruction experimental results at 30 Kpa

Fig. 15 is showing that the control points are driving the
global curvature of the soft finger.

To evaluate the accuracy of the shape compared to the real
one, the relative error to the curvilinear coordinates along the
soft finger is presented in Fig. 16. It shows a maximum error
of εmax ≈ 4mm.
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Fig. 16: Errors between PH-EB and real shape for one
phalange (black soft finger)

Ansys multiphysical modeling shows κ ′30 = 9.1, while the
real tracked curvature is κ = 8.9 and the calculated curvature
from PH-EB is about κr30 = 8.5. Other tests are performed
using a single physical input pressure of Pin = 90kPa to assess
the proposed PH-EB modeling. The related Cartesian error
is reported in Fig. 16.

In the Fig. 18, a particular case of multiple inputs
Pin=[55kPa 50kPa] is analysed using the white soft finger
robot. Only one PH curve has been used to model the
phalanges.
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Fig. 17: Shape reconstruction experimental results for 90kPa
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Fig. 18: Shape reconstruction experimental results for
Pin=[55kPa 50kPa]

As stated previously, the position of the control points
drives the posture of the soft structure to the desired one.
To analyse the feature of the PH based modeling, several
comparison tests have been made.

The error between the real-time tracked shape and the
Ansys multiphysics modeling is presented in Fig. 20 and Fig.
19. It is shown in Fig. 21 that the maximal tracked errors
εmax ≈ 10mm. Also, the curvature analysis confirms the PH
curve features for shape reconstruction. Ansys multiphysics
modeling shows κ ′ = [26.05 18.35] for the first and the
second phalanges respectively. It is indicated that the real
tracked curvature κ=[25.9478 18.2306] compared to PH-EB
modeling is κr= [26.3 18.1].

Based on the real experiments, it is shown that Ansys
modeling gives better results (see Fig. 20 and Fig. 19)
compared to the PH-EB or single EB dynamics (16 and Fig.
21). These results could be explained by the fact that Ansys
computing approach takes into account several aspects of the
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Fig. 19: Errors between Ansys and real shape for two
phalanges (white soft finger)
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Fig. 20: Errors between Ansys and real shape for one
phalange black soft finger
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Fig. 21: Errors between PH-EB and real shape for two
phalanges white soft finger

finger dynamics such as fluid thermodynamics which is not
considered in the frame of the proposed interoperable model-
ing. Also, the material dilation due to the fluid pressure hasn’t
been considered. This latter might induces a permanent
change of the static moment of inertia which has been taken
as a constant in the frame of this work. All these modeling
uncertainties lead to some errors compared to real tracked
data. However, the proposed PH-EB or EB modeling can be
implemented in real-time comparing to Ansys multiphysics
modeling. Also, PH-EB indicates an accurate reconstruction
of shapes for different postures of soft fingers, generated
from on multiple control inputs, comparing to a single
EB modeling. This means that with independent controlled
phalanges, PH curve allows an accurate reconstruction for
the shape of the overall soft finger robot.

VI. CONCLUSION

In this paper, an interoperable modeling for Fluidic Elas-
tomeric soft finger robot has been proposed. It is based on
properties of Pythagorean Hodograph curve for kinematic
shape reconstruction of infinite degree of freedom soft struc-
ture and Euler-Bernoulli beam for dynamics modeling of
Fluidic Elastomeric Actuators. The aim is to express the
relation between the physical inputs of the Fluidic Elas-
tomeric Actuators and the finite control points position of the
parametric PH curve of the soft finger. It has been shown that
the modeling approach can reconstruct accurately the shapes
of the soft finger with different postures, generated from one
or multiple physical inputs. It is expected in future works
that this model be applied for shape control of soft finger
robots for adaptive compliance during the grasping tasks.
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