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Résumé

Le positionnement d’un modele CAO d’une piéce est ef-
fectué a partir de projections expérimentales par rayons X
(RX) afin de pouvoir I'utiliser comme information a priori
d’une reconstruction tomographique RX. La méthode pro-
posée est un asservissement visuel hybride en points ainsi
qu’en moments d’images. La robustesse et la précision de
la méthode sont testées sur six objets de formes variées
en considérant a chaque fois une centaine d’initialisations
différentes. Enfin, un pas vers I’automatisation compléte
du procédé est envisagé.

Mots Clef

Rayons X, Recalage 2D/3D, Estimation de Pose, Moments
d’images, Asservissement Visuel

Abstract

In this paper, a 2D/3D image registration is performed be-
tween X-ray projections of an object and its CAD model
to match the world and the CAD coordinate framework.
This operation is needed to apply a mask on voxels dur-
ing the tomographic reconstruction. The method presented
is based on visual servoing, whose features are points and
image moments. The robustness and precision of the algo-
rithm are tested on six objects. Finally, a step towards the
complete automation of the process is envisaged.

Keywords

X-ray, Image Registration 2D/3D, Pose Estimation, Image
Moments, Visual Servo Control

1 Introduction

X-ray Computed Tomography (CT) is now a standard non-
destructive technique to control and inspect objects in three
dimensions. However, this technique still suffers from a
very long acquisition time since more than one hour is typ-
ically needed for acquiring the hundreds of radiographic
images (or projections) used in the reconstruction pro-
cess. This work describes the first step of a more general
methodology, whose aim is to adress the specific challenge
of the deployment of CT in the production lines by reduc-
ing the number of acquired projections by a factor 10. To
achieve this goal, we propose to use in the reconstruction

algorithm a prior information coming from the geometrical
model (the so-called CAD model) of the object and use it
as a mask. In other words, instead of considering a cubic
matrix of voxels, we propose to use the CAD information,
when available, as a mask inside of which the reconstruc-
tion is performed. The number of unknowns is therefore
highly reduced, which allows a good quality of reconstruc-
tion from few projections. [1]. A prerequisite for applying
the mask is to perfectly position the CAD model according
to the real object’s position. The CAD coordinate frame-
work should match the world framework so that the pro-
jection of the CAD’s edges are superimposed to the ones
of the experimental image. Many studies have already ad-
dressed this Pose Estimation problem, but lots use extrinsic
markers, which is an important constraint.

This paper focuses on solving a pose estimation problem
without fiducials and using an optimiser based on visual
features. We propose to adapt existing approaches devel-
oped for cameras to our case due to the high similarity be-
tween X-ray images and visual images formation principle.
In section [2| we briefly review the existing methods for
solving the pose estimation problem. Section [3|details the
visual servo-control, and section 4] describes our approach
to the problem. Finally, in section[5] we present the perfor-
mance of our strategy.

2  Methodology

2.1 Pose estimation

Pose estimation problems early appeared in many areas.
The need to match the world coordinate frame and the sim-
ulation frame came out like an inevitable issue. In medi-
cal robotics, image registration enables image-guided radi-
ation therapies, and surgeries from its 2D radio images [2]].
In augmented reality, this technology allows the insertion
of virtual objects into the world frame [3]].

This paper focuses on matching a given CAD model
of any object to its position in real life. This prob-
lem means finding a rigid transformation T between
the world and CAD coordinate frameworks, which
aligns the given experimental X-ray projection of an
object to its simulated projection. Figure [1|illustrates the
pose estimation problem in the particular case of this study.



Figure 1: Illustration of the Pose Estimation Problem
( exp corresponds to the experimental X-ray image of the
object. sim stands for the simulated projection of the CAD
model. Red arrows represent the T transformation, made
of a rotation and a translation. The blue arrows illustrate
the pairing between points from simulated and target
projection.)

When a 3D model of the object is available, Direct Linear
Transform and Perspective-n-Point (PnP) methods are the
most common solutions [3]. From a set of n correspon-
dences between 3D points and their projection, one can
find the camera pose (i.e. the 6 degrees of freedom: roll,
pitch, yaw and three translations). PnP algorithms have
many variants. Some do not require prior correspondences
but are too computationally expensive for complex objects
[4]. Another kind of method to match a CAD model onto
reality is iterative inverse perspective matching [3)]. 2D
points from the image projection and CAD 3D points are
paired, and the cost function to minimise is defined as the
distances between 3D points and projection rays. This
algorithm is inspired by Iterative Closest Points methods.
Unfortunately, as the CAD model can be arbitrarily
complex, this method can be quickly computationally too
expensive.

Markerless solutions have emerged, tracking methods
based on edges-detection or features-detection have
been widely developed to achieve good performance in
real-time [6]. The main drawback of those methods is that
they demand a pre-processing of the CAD as they deal
with features (lines, planes,...) and thereby lack generality.

2.2 Visual Servo Control

Though classically used to perform positioning or tracking
tasks, the visual servo-control strategy is also well-fitted

for pose estimation when combined with a reliable simula-
tion environment. Those methods have the advantages of
being robust thanks to the closed control loop and can be
easily generalised to any object.

Our study aims to propose a robust method, applicable to
all types of objects, fast, and with limited user intervention.
As this process can be automated, the choice of visual ser-
voing was made. Visual servo-control refers to a method
in which a visual sensor is used to control the movements
of a dynamic system with a closed-loop approach. Most
of the time, a set of features called s* is extracted from an
experimental image and compared to the same set of fea-
tures, called s(x), from the projection of the 3D model.
The vector x = (z,y, 2, Wy, Wy, w;) represents the pose of
the camera along the axis O, Oy, and O,. Visual servo-
control aims to minimise the error e:

e=(s—s") (1)

The principle of visual control is that each feature is as-
sociated with an interaction matrix Lo = %, also called
feature Jacobian, first introduced by [7]. This matrix de-
scribes the variation of the features s according to the cam-
era movement and is, along with features’ choice, the key-
stone to efficiently pilot the system. It allows determining
the camera kinematic screw v to apply to reduce the visual

€rror.
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As the object is motionless, the last term is zero. If an
exponential decrease of the error is imposed,

de

o= e (3)
de Oe 0s dx

dt " osoxdr Y ¥

Where ) is a positive constant. Then, the camera kinematic
screw can be expressed as:

v=-AL."(s —s%) 5)

Where L. is the Moore—Penrose inverse of the interaction
matrix. A closed-loop servoing is used to minimise the
error of the selected features. The vector v is calculated to
lead the camera and progressively match world and CAD
coordinate frameworks at each iteration.

3 Choice of visual features
3.1 Contour Points as Features

As the features used in servoing are not iconic, it is
possible to work with binary images. This strategy is



all the more advantageous because it is simple. Indeed,
producing realistic simulated projections of a CAD object
which can be compared to the experimental ones is tricky.
It requires several parameters to adjust [8]. The considered
approach consists of projecting the points of the CAD
model onto the detector plane. Then, the simulated hull
of the object is compared to the experimental image
after binarization. Therefore, contours points have been
perceived as the most natural and straightforward features.
Moreover, in our considered application case of in-line CT
inspection, the object is moving on a conveyor belt and is
all alone in the field of view of the detector, which makes
this binarization step easy to perform.

The interaction matrix for a point (z,y) on the projection
corresponding to the point (X,Y,Z) in the object is given
by :

d
-2 0

_ Z
Where d is the distance between the source and the

detector. A rough approximation of Z is often enough to
achieve good convergence.

N Ng

The matching between feature points s* extracted from
the experimental image and the current feature point s,
as illustrated by Figure [T} is done by the Iterative Closest
Point algorithm (ICP) [9].

However, even if contours points are often numerous, the
interaction matrix may become singular [10]. Moreover,
detecting contours can be difficult for some objects, and
matching points when the object has been rotated around
O, is often impossible. Thereby, the idea of using other
features like lines or ellipses has been explored. Those ap-
proaches are sometimes more efficient , but prior knowl-
edge of the studied object is needed. More generic features
like image moments have finally been considered [[11]].

3.2 Image Moments as Features

In discrete space, image moments of order (i+j) are defined

as:
My =Y @'y’ I(z,y) (7)
Ty

Where I(x, y) represents the pixel intensities. Given H the
projection of the object on the detection image, we choose:

I(way)={

Image moments are computationally fast to calculate and
can have physical interpretations. The fact that image mo-
ments rely on the whole image makes those features less
sensitive to noise and removes the need for a matching al-
gorithm. The biggest challenge with image moments ser-
voing is to choose them. A well-known sufficient condition

lif(x,y) e H
0 else

to achieve stability in the system is the interaction matrix’s
positive definiteness, but this condition is hard to use in
practice [12]. Most of the time, studies focus their features
choice according to the decoupling of the interaction ma-
trix. A full rank, decoupled feature jacobian with a low
condition number would lead to optimal movements.

Commonly, the area and centre of gravity (moments of or-
der zero and one) are used to control translations and the

orientation o = 1 arctan (—L—) (combination of mo-
H20—H02

ments of order tw20) to control the rotation around O, (see
[[13] for more details).

Howbeit, at least two other features are needed to control
the rotations around O,, and O,,. To have an interaction ma-
trix of rank six, one needs to use moments of order higher
than three since symmetries cannot be properly handled by
moments of order two. Features invariant to scale, transla-

tion or rotation, can be used to decouple L.

4 Our method: A hybrid approach
for increased robustness

4.1 Combining points and moments features
in a dual-view approach

In this work, we propose to use both contours points and
image moments. Those features are convenient for most
objects. Nonetheless, symmetries can lead to wrong image
registrations as the same projection can correspond to dif-
ferent positioning. More visual information is needed to
avoid those issues. Thereby, two perpendicular views are
now used for pose estimation. Multicamera systems are
already commonly used for image-based visual servoing.
The interaction matrix of the transverse view is expressed
in the frame of the first view with:

'Ley = *Le, - *W1 ®)
2 2 2

2, [(PR1 [Pti]x *Ra

Wy = ( 0 2R, )

Where [t]« is the the skew-symmetric matrix associated
with the vector t and (?R,% t1) is the rigid-body transfor-
mation between the coordinates frames, * L., and ?L.., are
the interaction matrices of the second view in the front and
its own frames, respectively.

Our proposed algorithm (see [1]) uses successively contour
points and image moments. The control with points being
much more robust, the first iterations are done with points
as features, then once a position close to the final position
has been roughly approached, image moments are used.
A visual error is calculated between the simulated and
target projections to measure how the registration performs
and to know when the preliminary rough convergence is
reached. The visual error represents the percentage of
pixels mismatched between the two images.

A new approach is proposed for the choice of moment fea-
tures. Usually, as described above, the user seeks to decou-



ple the interaction matrix. In this algorithm, translations
are managed thanks to the centre of gravity of the object
shape in the two views. In addition, to direct the rota-
tions, the most discriminating features are used. Among
a previously defined set of image moments (area, centroid,
central normalized moments and Hu’s moments of order
three and less), the features which have converged the least
are used for the servoing. Those features are considered
more informative and discriminant, thus allowing a more
precise registration. If the interaction matrix is singular
or ill-conditioned, more features are added. Usually, each
view uses the centroid coordinates and four additional fea-
tures.

4.2 Improving local minima handling

As stated by [[10], some configurations such as a pure rota-
tion of 7 around O, can lead to an infinite camera retreat.
Convergence to local minima also occurs. Two solutions
have been used. The first one inspired by [14] and [15]
decouples rotations and translations to avoid an infinite
camera retreat. In this algorithm, calculated movements
are not applied to the camera, but the inverse movements
are applied to the object in the framework centred on
itself. The most significant advantage of this method is
that rotations are now decoupled from translations. Worst
initial positions can now be handled as more significant
rotations can be applied. Moreover, this method tends to
keep the object in the field of view of the camera.

Another improvement to handle poor initial positions is to
test different viewpoints before starting the control loop.
The algorithm simulates some projections from views
around the initial position and then starts the servo-control
from the best one. There are many merit functions to find
the best view [2]. Here, the best view is not chosen accord-
ing to the moments but according to the ICP algorithm’s
ability to establish correspondences. This metric does not
quantify the resemblance of two images but rather if the
points to be matched by the ICP are present on the two
images. Indirectly, it transcribes the correctness of the
rotation around O, because rotations around this axis hide
points.

As the initialisation step improved the behaviour sig-
nificantly, the same strategy was implemented during
the control loop. The algorithm compares the current
point of view with two other ones rotated along O, and
picks the best view every ten iterations. This process,
further mention as simulated annealing, allows to explore
positions and avoid local minima.

5 Results and Analysis
5.1 Overall performance

The method has been tested on six objects with different
geometries: a screw, a car, an engine, a fox, a curved grate

and the statue of the Nike of Samothrace (see Annexe). The
magnification parameter is about 1.5 in every situation. For
each object, 100 tests were made with random initial posi-
tions ranging in +7/ 3 radians around each axis real po-
sition and an initial error on translations of & 2 cm along
each axis as well. A translation of 2 cm corresponds, in our
case, to a translation of 77 pixels. As the field of view is
relatively small, it represents a significant error. The results
are shown in Table E} For each object, the visual error and
its standard deviation are given for both views. The success
rate is the frequency at which the procedure resulted in an
accurate registration. For each object, a criterion on the vi-
sual error has been previously chosen so that a successful
registration corresponds to an almost perfect superposition
of the CAD and the experimental image.

Table 1: Results and Performance

Visual error Visual error

Objects . . Success Rate[%]
Front view  Transverse view

Fox 1.30 4+ 8.81 0.60 £ 2.06 98
Engine | 0.58 +1.27 0.39 + 0.73 80
Screw | 6.67 + 16.01 3.65 +9.84 81

Grate 2.37+4.52 3.46 +4.80 89

Car 2.57+3.77 2.25+3.01 88
Statue | 0.77 £0.51 0.87 + 0.69 100

The method shows good performances on all the studied
configurations despite the wide range of initialisations.
The differences observed can be explained by the presence
of angular contours or symmetries in the projections. Fox
and statue show a higher success rate because they are
asymmetrical and of approximately constant thickness. To
control the system with images moments, the hypothesis
that the object is plane has been made (see [11]). This
assumption is not verified in any of the cases, especially for
the grate and the car. Most objects have projections with
symmetries, leading to a more difficult servoing with im-
age moments, especially when the object is square-shaped
(o is not defined). The car and the grate have internal
contours, which allow better points matching with the ICP.
The screw is a particular case as the object has symmetry
around its main axis. Therefore, the transformation T
sought is not unique. Moreover, the thread of the screw
makes the pose estimation difficult.

In addition to being robust, the algorithm allows accurate
registration. Table [2] shows the average errors on position
and orientation for the six studied objects when conver-
gence is achieved. Despite the large standard deviations,
one can see that the pose estimation error on translations
is always below the millimetre and the orientation error is
under a degree.

To illustrate the operation of the method, the results on a
particular case are detailed. Figure 2] shows the movement



Table 2: Errors at convergence

Objects ErrF)r on Errf)r on
Translations [mm] | Rotations [°]
Fox 0.47 £0.10 0.115 4+ 0.286
Engine 0.60 +0.43 0.859 + 0.802
Grate 0.73 £0.59 0.343+0.171
Car 0.83 +0.55 0.859 £ 0.630
Statue 0.69 £ 0.36 0.343 +0.229

of the fox between its initial point and its target position.
First, the initialisation procedure has found a better start-
ing point than the initial (see Figure [7]and[§). Then, at the
tenth iteration, the simulated annealing procedure rotates
around Oy, bringing the fox near its final position. The
effects of the simulated annealing can also be seen in Fig-
ures 3] and ] These figures represent the convergence of
features from the front and transverse views. At the 215
iteration, the layering score was low enough to approxi-
mate convergence with points, so image moments-based
control started. This change is visible on the slopes of fig-
ure 2l Note that at the 50" and 60t" iterations, the simu-
lated annealing changed the path of the object. This change
brought the object slightly closer to its target position. The
features ¢1 and hu, in the front view got better while they
worsen in the transverse view. Even if the criterion for the
choice of views during the simulated annealing considers
the two projections, one may be favoured.

T T
a 25¢, 50 a 251, 50 a 25¢. 50
10 10

Figure 2: Object’s path. The initial point is (w, = —42.9°,
wy = 26.9°%, w, = 31.5° t, = 1.59mm ¢, = 9.28mm,
t, = 9.22mm) and the target position is
(wy = wy = w, =0.00°t, =1, =t, = 0.00mm)

5.2 Purpose of image moments as features

In all of the examples, good convergence can be achieved
with contour-based control. However, this technique rarely

allows for optimal convergence. ICP algorithm often
results in mismatches that help the first few iterations to
get the object roughly to its target orientation but does
not achieve the desired final accuracy. Nevertheless,
these mismatches are helpful because they allow the
servo-control loop to be robust and handle positions where
the image moments only would fail to converge.

Features error over iterations
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Figure 3: Features error over iterations from the front view
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Figure 4: Features error over iterations from the transverse
view

To illustrate the interest of combining the two types of fea-
tures, Figure 5] shows the final layerings between experi-
mental projections and simulated ones when only contours
are used. The registration is satisfactory but not optimal.
Figure [6] shows the final layerings when both points and
image moments are used. The results are better with the
hybrid method. Contours match almost perfectly.



Figure 5: Final layerings with points as features (70
iterations)

Figure 7: Initial position (w; = —42.9 °, w, = 26.9 °,
w, =31.5°% 1, = 1.59mm ¢, = 9.28mm, ¢, = 9.22mm)

Figure 6: Final layerings with points then moments as
features (70 iterations)

5.3 Initialisation and Simulated annealing

As stated above, to choose the best starting point or for the
simulated annealing, the algorithm picks the view which
minimises the distance between the matched points for the
ICP algorithm. This choice is made to promote the al-
gorithm’s robustness at the expense of the speed of con-
vergence. A low distance indicates that the pairing of
points has been done correctly, so the error vector e is well-
calculated and that the object will be precisely positioned.
This distance does not give information on the relevance
of the current position. For example, a rotation around O,
shows the same distance as the target position with this cri-
terion. To illustrate the usefulness of the initialisation step,
Figures[7]and [ show the layerings before and after initial-
isation for the same configuration as in[5.1] Initialisation
greatly improves the image registration process.

To study the relevance of this choice, 100 tests carried out
on each object to check whether the initialisation step has
picked the best-envisaged position. The initialisation com-
pares 27 different views, each made at either -35°,0°r
+35°, along each axis of rotation around the initial posi-
tion. This choice was made to cover the 120° range de-
scribed earlier. Table [3]lists the initialisation step’s failure
rate, i.e. the frequency of an initial point choice that is
not the closest point to the target. Then, the frequency of
convergence of the points whose initialisation is not opti-
mal is measured. The convergence rates are chiefly lower
than those observed in Table [l A better merit function

Figure 8: Position after initialization step (w, = —8.59°,
wy = —7.66°, w, = —3.32°, 1, = 1.59mm ¢, = 9.28mm,
t, = 9.22mm)

for the next position choice could be found. However, it
would be too quick to conclude that bad initialisations are
the only ones responsible for convergence rate degradation.
The points with a failed initialisation are often particularly
far from the solution so that the ICP give incorrect results,
and the method does not succeed.

Table 3: Initialisation tests

Objects | Failure rate [%] | Convergence rate [%]
Fox 9 77.78
Engine 12 75.00
Screw 42 71.42
Grate 39 89.74
Car 19 68.42
Statue 11 100

5.4 Automatic pose estimation

A new initialisation has been developed to perform without
human intervention. Since the proposed method is gener-
ally functional over a wide range of initial positions, the
objective is to position the object in this range before start-
ing the servo-control loop. For this, the centroid of the
CAD model is placed between the source and the detector
automatically. Then, a search for the best starting position
by dichotomy is done. Namely, the initialisation presented



above is used recursively, each time reducing the angle of
aperture on each axis by two. When the aperture is below
7/3, the recursion stops. Results are shown in Table E}

Table 4: Automation of the process

Object Visual e.rror Visual enqr Success[%]
Front view  Transverse view
Fox 0.88 +£2.34 1.03 +2.94 90

6 Conclusion

In this article, a 2D / 3D registration method has been pro-
posed between X-ray projections and a CAD model using
visual servoing. A first robust but rough registration is per-
formed using contours points, then features based on image
moments are considered to achieve the required accuracy.
Increased robustness has been obtained thanks to a pose
initialisation step to avoid local minimum. These improve-
ments put together have resulted in a reliable, automatic
registration method applicable to a wide variety of objects.
This approach has been applied on simulated data and fu-
ture works will consist in considering real experimental im-
ages for computing the desired features. This step should
be straightforward since the chosen features are all com-
puted from the object contour, which will be easy to detect
in the radiographic images.
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Annexe

Algorithm 1: Hybrid method

Data: CAD file, 2 orthogonal experimental
projections /; and I, distance d between the x
ray source and the detector, detector size in
pixels, initial position T, threshold €, step A

Result: T

compute the projections P, and P, at T

T, P1, P, < T, Proj1(Ty), Proj2(To)

s], S5 = contours points from /; and I,

s1, S2 = contours points from P; and P»

st s=[s] s3].[s1 s2]

iteration = 0

while visual error > ¢ do

Lcl

=[]

v=-\L}(s—s")

T=T+v- At

recompute P;,P» and s

if iteration % 10 ==0 then

update T with simulated annealing

end
iteration = iteration +1

end
s],s5 = moments features from /; and I,
s1, S2 = moments features from P; and P,
s*,s=[s] s3].[s1 s2]
while visual error keeps decreasing do
Lcl
re= it
v=-AL}(s—s")
T=T+v- At
e=ls—s°|
recompute P;,P» and s
if iteration % 10 ==0 then
| update T with simulated annealing

end
iteration = iteration +1

end
return T

CAD Model of a curved grate from DIMOFAC project
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