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Résumé
Cet article présente la méthode de conception qui permet
d’étendre optiquement la gamme dynamique d’une caméra
panoramique pour la robotique. La large gamme de
radiance d’une scène est capturée en temps réel par
une combinaison de miroirs paraboliques, une lentille
télécentrique et des filtres à densité neutre.
Le premier prototype, nommé HDROmni, est constitué
de 4 miroirs et de 3 filtres à densité neutre. Il
augmente 100 fois la gamme dynamique de la caméra
utilisée. Plusieurs évaluations comparent la nouvelle
caméra avec des caméras à dynamique classique dans
plusieurs scènes difficiles. Elles montrent qu’en moyenne,
la qualité de la gamme dynamique de l’image double.
Des évaluations supplémentaires montrent que HDROmni
permet aussi d’accroître le nombre d’appariements de
points caractéristiques. Enfin, HDROmni engendre aussi
un domaine de convergence plus étendu et une meilleure
précision à convergence de l’asservissement visuel direct
(basé intensités de pixels) d’un robot mobile à l’extérieur.

Mots Clef
Vision omnidirectionnelle; imagerie HDR; asservissement
visuel.

Abstract
This paper presents the design method to optically extend
the perceptible dynamic range of panoramic vision for
robotics. The large range of scene radiance is captured
in real-time by a combination of paraboloidal mirrors, a
telecentric lens and neutral density filters.
The first prototype, named HDROmni, is made of 4
mirrors and 3 neutral density filters. It increases 100
times the perceptible dynamic range of the used camera.
Results in various challenging scenes compare the new
camera to low dynamic range ones. They show that the
dynamic range quality of images doubles, on average.

Supplementary results show significant benefit for feature-
based approaches, i.e. much more matched features.
Finally, HDROmni also causes a larger convergence
domain and a much higher positionning accuracy of direct
visual servoing (based on pixel intensities) of a mobile
robot outdoors.

Keywords
Omnidirectional vision; HDR imaging; visual servoing.

1 Introduction
Real-time panoramic imaging refers to a one-shot camera
of 360o × 180o field of view, or more. Such a field of view
is obtained with a fisheye lens [13] or with a catadioptric
optics including a curved mirror [27].
It decreases the acquisition time to make virtual
tours [25] and enhances video-surveillance capabilities
while avoiding the use of motorized cameras [5]. In
robotics, it improves robustness and accuracy of visual
odometry [32] as well as enlarges the convergence domain
of direct visual servoing [7].
However, when the illumination of the scene is
significantly different in several directions, the image
includes under- (Fig. 1b) and over-exposed (Fig. 1c)
regions due to the dynamic range (DR) of the camera,
that is lower than the scene DR. Indeed, the DR of
scene radiance is commonly between 80 and 120 dB [20]
whereas few CMOS sensors of linear response, in
machine vision cameras, reach 70 dB1, eg. 74.3 dB for
Sony’s IMX287 [12]. Even though sensors of (pseudo-)
logarithmic response overtake 80 dB of DR, eg. 100 dB
for ON Semicon’s MT9V032, there is still a gap to reach
120 dB. So, even when combining a fisheye lens with one
of such sensors, there are still risks of non perceived areas,

1Irradiance DR (iDR), computed with the max/min perceptible
irradiances, can be different from digital DR (dDR), computed from the
sensor bit depth (eg. ON Semicon’s 12bits MT9P031: dDR = 72 dB;
iDR = 60 dB [3]).



thus minimizing the interest of panoramic vision in scenes
of challenging lighting.

(a)

(b)

(c)

Figure 1: (a) HDROmni (filters zoomed, right) to overcome
the dynamic range limits of LDR panoramic images with
exposure times 0.25 (b) and 6.5 ms (c).

To handle the latter issue, one increases the DR of a camera
either with hardware processing on CMOS chip [31],
however not available to consumers yet, or by acquiring
several low DR (LDR) images of the same scene with
various exposure times, then merging them in a single
high DR (HDR) image [10, 11, 15, 21, 30]. The latter
methodology samples the range of scene radiance to
overcome the DR limit of a camera. However, it implies
a static camera in a static scene, which is not suitable for
robotics.
The camera motion can be estimated for compensation
in images before merging them. However, the DR of
images acquired successively [15], or in parallel [4], must
overlap significantly for image matching. Alternatively,
some design put optical masks, of spatially varying
transmittance, directly next to the photosensitive matrix of
the camera [24, 28]. Recently, neural networks are able to
predict the HDR image from a LDR one [16], [17], [19], to
increase the quality of a HDR image resulting of the fusion
of a LDR stack [29] or to cancel ghosting artifacts due to
camera shakes [18].
All the previous methods can almost directly be applied
to panoramic imaging, e.g. [14], but not for dynamic
robotics. Indeed, [15], the fastest learning-based HDR
video generation method we found, would induce a latency
of 590 ms, when considering a 20 Hz image acquisition
framerate: 150 ms to sequentially acquire three exposures
+ 440 ms to process 430x430 pixels2 (same resolution as
in the experiments of this article, see Sec. IV and V).
Hence, only the generalized assorted pixel camera [28]
and the parallel acquisitions of LDR images of different
exposures [4] may lead to real time and low latency
required by robotics applications, including control, thanks
to capturing, not just predicting, a high DR, although at the
price of hardware complexity or size.
We propose a new camera design approach between

2The 440 ms are estimated from Table IV of [15] where 2.2 s are required
to obtain the HDR image from 3 exposures.

both latter seminal works [4], [28], i.e. easy to setup
outside the camera box while compact as a single camera.
Rigorously chosen neutral density (ND) filters are set
between the camera lens and several curved mirrors, to
make HDROmni, the real-time panoramic HDR camera
(Fig. 1a) featuring:

• Maximum DR by enlarging the range of perceptible
irradiances.

• Compactness, as existing catadioptric cameras.

• High precision positioning of mobile robot, outdoors.

The latter, considering HDROmni for photometric visual
servoing [7, 8], is one of the most challenging among
various real-time applications.
The rest of the paper details the design methodology
(Sec. 2) of the optical extension, then the analytical
description of environments where it can relevantly be
used (Sec. 3). After that, Section 4 presents the first
prototype as well as the evaluation of the DR quality of its
images. Finally, Section 5 evaluates visual servoing with
HDROmni w. r. t. the state-of-the-art, before conclusion
(Sec. 6).

2 Multi-view Dynamic Range
Extension

The multi-view dynamic range extension performed by
HDROmni consists in acquiring images of different
exposures in parallel. It is inspired from the ND filters-
based multi-camera system for 3D HDR TV [4] which
considers several (eight) cameras mounted on a rig,
each having the same exposure time for synchronization
purpose, but equipped with different ND filters, to optically
simulate various exposure times. The novelty, in our work,
is to consider real-time panoramic vision and a single
camera.

2.1 Single Panoramic Camera DR Extension
The same idea as [4] applies to panoramic vision.
However, combining a single camera and several
mirrors [23, 26] prevents synchronization issues and
may keep compactness. Particularly, [23], with four
paraboloidal mirrors, makes viewpoints much closer than
a rig of several panoramic cameras (Fig. 1a). Such
proximity of the four panoramic viewpoints allows the
HDR fusion from the basic superimposition of their LDR
image regions, under camera-scene distance assumptions
(Sec. 3.1).
We emphasize the fact that a multi-omnidirectional camera
is generally designed for multi-view perception, eg. 3D
reconstruction [9, 23]. However, the proposed panoramic
HDR camera design targets complementary perception to
increase the most the DR of the panoramic camera. Indeed,
in a multi-camera system [4], optical densities of ND filters
must be close to make neighbor image DRs overlap to



allow image matching. Inversely, our design method is not
constrained by such extra-processing. Hence, it selects ND
filters for the minimum overlapping of individual DRs so
that their combination reaches the largest DR.
Extending the four mirrors system of [23] with ND filters
allows acquiring simultaneously four exposures with a
single camera. As a first result, it virtually quadruples the
bit depth of the acquired digital image, thus adds two bits
to the bit depth of any machine vision camera. Such result
increases the digital DR of the camera, but the rest of this
section expresses optical densities of ND filters to increase
the most the irradiance DR of the camera.

2.2 Optical Densities for Complementarity
We consider a panoramic camera made ofM ∈ N∗ mirrors
and M − 1 ND filters. Each filter, in front of a mirror
(one mirror is directly seen), must be selected so that they
gradually decrease the irradiance to simultaneously capture
radiances in the scene, from the lowest to the highest.
Assuming the sensor irradiance equals the scene radiance,
the exposure e ∈ R+ is expressed proportionally to the
irradiance E ∈ R+ of the image plane, thanks to the
exposure time te ∈ R∗

+ [11]:

e = teE. (1)

Thus, the lowest irradiance that can be captured depends
on the exposure time, set following the application
requirements, e.g. 50 ms for 20 images per second. Then,
the ND filter free mirror gets the exposure e0 (of lowest E)
and each ND filter f ∈ [1,M − 1] ⊂ N achieves optically
an exposure reduction to allow the camera sensor getting
the highest irradiancesE. Consecutive exposures ef ∈ R+

of ND filters f are related by exposure ratios Rf,f−1 ∈
R+, whose expression depends on the camera response
function, either linear or non-linear as respectively recalled
and introduced hereafter.

Exposure ratio for linear camera responses. In a few
words, the camera response function (CRF) relates pixel
brightness B ∈ [0, 255] ⊂ N (for an image depth of 8 bits)
to the scene radiance, assumed to be equal to E (1). Then,
for a camera of linear CRF, exposure ratios to acquire
several LDR images, to be fused as an HDR one, follow
the rule:

Rf,f−1 = ef/ef−1 = λ, λ ∈ R+ : λ ≤ 1, (2)

even for parallel acquisitions [24]3. Then,
additional exposures ef are recursively computed as
ef = ef−1Rf,f−1 [24], which is a geometric suite, i.e.:

ef = e0 [Rf,f−1]f . (3)

If λ (2) tends to 1, the quantization of the perceptible range
of scene radiance is the most regular, but the latter range
is limited, particularly with a small number M of various

3Contrary to [24], we consider e0 as the closest exposure to E = 0.

exposures, e.g. M = 4. Inversely, if λ tends to zero, the
perceptible range of scene radiance appears wide but at the
price of a poor quantization. In the worst case, it leads
to a single, partly useful, LDR image among the set of
acquired ones, so far from an HDR acquisition. In practice,
for cameras of linear response function, λ is set to 0.5 or
0.25 as a compromise [24].
In the next part, we propose a generalization of both the
expression of Rf,f−1 (2), for some cameras of non-linear
response function, and ef (3).

Generalized exposure ratio. The expression of
exposure ratios (2) must be extended to fit cameras of non-
linear CRF since they have a higher DR potential (Sec. 1).
Non-linear CRF can be approximated by polynomial [22]
or logarithmic functions [11]. However, in this paper, we
focus on the class of cameras whose non-linear CRF can
be piece-wise linearly approximated of an order 2 (Fig. 2a,
between irradiances of 0 and E0max).
Define E0max as the maximum perceptible irradiance for
exposure e0 and E0dis as the irradiance at which the
slope of the CRF changes. For a given exposure time,
brightnessesB0max andB0dis are measured for irradiances
E0max, respectively E0dis. Then, we define the range of
exposure ratios Rf,f−1 constraining the first slope of the
CRF of the second exposure, i.e e1, to lie between slopes
of both linear parts of the CRF associated to e0 as:

B0max −B0dis

E0max − E0dis
≥ 1

Rf,f−1
≥ E0max/E0dis. (4)

Then, setting Emd = E0max/E0dis, we generalize (2) as:

Rf,f−1 = λ/Emd. (5)

Obviously, if the camera is linear, Emd = 1 and (5)
simplifies as (2). Thus, the latter generalized expression
of Rf,f−1 fits both non-linear and linear CRF. Then, as
done in previous works, we can set empirically λ, but
bounded (4).
After that, in order to get the most complementary
exposures, we reformulate the expression of ef (3), such
that ef decreases faster than following a geometric suite, by
making the power of Rf,f−1 growing itself as a geometric
suite:

ef = e0 [Rf,f−1]m, m = 2f−1. (6)

Equation 6 first maximizes the range of perceptible scene
radiance. Then, it minimizes the resampling of radiance
ranges that were already, and better, sampled by higher
exposures. Figure 2 compares, on an example, the impact
of considering (3) (Fig. 2b) or (6) (Fig. 2c) on the range of
perceptible scene radiance and radiances resampling.

Optical densities of ND filters. The exposure ratio (6)
leads to densities of ND filters. We define the attenuation
factor kf of the f -th ND filter as:

kf = [Rf,f−1]−m, m = 2f−1 (7)



(a)

(b)
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Figure 2: Non-linear CRF of a single camera (a) and 4
exposures ef increasing as (b) a geometric suite and (c)
exponentially (λ = 1/2;Emd = 3/2 for both, to ease
comparison).

It simulates exposure ef (6) while the camera itself keeps
exposure time constant. Then, the optical density Df of
ND filter f is expressed as [1]:

Df = log10(kf ). (8)

2.3 HDR fusion
The M exposures acquired in parallel lead to M LDR
images ILDRj , one per mirror j ∈ [0,M − 1] ⊂ N.
When the ratio of scene depth over baseline is large enough
(see Sec. 3.1), the image disparity falls within a pixel,
thus is almost null. Hence, every ILDRj

can directly be
fused into a HDR image IHDR. For that, we consider
exposure fusion [21], the best HDR algorithm according
to the perceptual evaluation of Zeng et al. [30]. Exposure
fusion computes three quality measures: well-exposedness
(more weight to the pixels of brightness close to the median
intensity); saturation (standard deviation in the three color
channels) and contrast (Laplacian filter).
Writing cju = (cju, cjv)> ∈ R2 the coordinates of
pixel ILDRj (cju) of the digital image ILDRj , the weight
w(ILDRj

,cj u) ∈ [0, 1] is the product of the three quality
measures computed for this pixel. Weights are normalized
by dividing each w(ILDRj0

,cj0 u), j0 ∈ [0,M − 1] ⊂ N,
by the sum of weights at coordinates corresponding to
cj0u in all ILDRj . Thanks to the single orthographic
camera with multiple paraboloidal mirrors considered in
Section 2.1, assuming mirrors are of the same shape and
their summits define a plane parallel to the image plane
allows expressing each cju from cj0u by pure translation
in the image plane. The latter pure translation is computed
from principal points u0j and u0j0

of, respectively, ILDRj

and ILDRj0
, leading to cju =cj0 u + u0j − u0j0

. The
LDR images are then blended-in in a multi-scale approach
which considers the weights.
Figure 3 shows a 860 × 860 pixels HDROmni frame and
the resulting 430× 430 pixels HDR panoramic image.

3 Operational constraints
We model the disparity of the sensor (Sec. 3.1) in
order to define for which interval of depths the basic
superimposition of LDR views is valid for HDR fusion
(Sec. 3.2).

3.1 Disparity modeling

HDROmni is modeled as a rig of M panoramic
cameras cj each modeled by the unified central
projection model with intrinsic parameters
γj = {αuj

, αvj , u0j , v0j , ξj} [2]. Then, considering
the rig frame equals the camera frame Fc0 , without loss of
generality, extrinsic parameters are made of transformation
matrices cjMc0 ∈ SE(3) from Fc0 to Fcj [6].
Based on the latter knowledge, one
can express the observed disparities
δu = (δu, δv) ∈ R2, from two panoramic images,
associated to a 3D point X = (X,Y, Z)> ∈ R3 of the
scene. That link formally defines the relationship between
the scene depth and the image resolution to allow the
HDR fusion from the basic superimposition of LDR
panoramic images. In short, the disparity modeling is
here focused on the worst case, i.e. leading to the highest
disparity: a 3D point belonging to the median plane PM
(Fig. 4) between two mirrors and parallel to their axes of
revolution, supposed exactly parallel.
A 3D point c0X expressed in Fc0 transforms to
Fcj by composition of its homogeneous representation
c0X̃ ∈ P3 to the transformation matrix cjMc0 . Its digital
image coordinates cju (see Sec. 2.3) are computed as [6]:

cj ũ = prγj (cjX) = Kprξj (cjX), (9)

cj ũ ∈ P2 being the homogeneous representation of cju,
K ∈ Aff(2) gathering the scale factors (αuj

and αvj ) and

Figure 3: LDR panoramic regions of a HDROmni frame
(left) are fused as a HDR image (right). Striped areas are
ignored.



Figure 4: Geometric relationships of two coplanar mirrors.

principal point coordinates (u0j , v0j ):

K =

αuj 0 u0j
0 αvj v0j
0 0 1

 . (10)

In (9), prξj : R3 7−→ P2 is the projection function to
the normalized image plane, involving ξj , the distance
between the unit sphere center and the second center of
projection of the unified central projection model [2]:[

cjX
cjZ+ξjρ

,
cjY

cjZ+ξjρ
, 1
]>

= prξj (cjX) (11)

with ρ =
√
cjX2 + cjY 2 + cjZ2.

To simplify the disparity expression, we suppose, in
addition to the previously mentioned parallelism of
mirror axes of revolution, the coplanarity of mirrors,
thus simplifying transformation matrices cjMc1 to pure
translations in the mirrors plane PC (Fig. 4), which is
parallel to the image plane. Furthermore, by a wise choice
of the orientation of Fc0 , so that the Xc0 axis of its frame
is aligned with the origin of Fcj , cjMc0 is even simplified
to the translation tX1,j

= −d along Xc0 , d ∈ R+ being the
distance between origins of Fc0 and Fcj (see Fig. 4).
Then, since we focus on the maximum disparity
theoretically observable, it constrains c0X = d/2 (cjX =
−d/2), and since axes of Fc0 and Fcj are parallel and
their axes Xc0 and Xcj are coplanar, c0Y = cjY and
c0Z = cjZ.
Under the last assumption that the mirrors are exactly the
same, we have αu0 = αuj , αv0 = αvj and ξ0 = ξj . By
setting wisely the orientation of the camera photosensitive
matrix with respect to mirrors, the horizontal and vertical
axes of the image can be set parallel to both first axes of
Fc0 , leading to v00 = v0j . Then, applying (9) to c0X and
cjX leads to different horizontal coordinates u only, since
only c0X and cjX , and u00 and u0j , are different. Thus,
the expression of the disparity δu simplifies to δu only:

δu = c0u− cju− δu0, (12)

where δu0 = u00 − u0j is the transformation in the image
plane to match principal points of both panoramic image
regions. Then, it leads to:

δu =
αu0

c0Z + ξ0ρ
(c0X − cjX) =

αu0
d

c0Z + ξ0ρ
(13)

The latter disparity model is used to express constraints on
the scene and on the image definition to allow the HDR
fusion from the straightforward superimposition of LDR
panoramic regions in the next Subsection 3.2.

3.2 Scene depth and image definition
constraints

For a given image definition, (13) leads to the minimum
camera to 3D points distance ensuring the maximum
disparity lies in a pixel:

|δu| < 1 ⇔ αu0d
c0Z + ξ0ρ

− 1 < 0. (14)

c0Z being non-negative, to be visible by the camera, and
the constant intrinsic parameter αu0

denoting implicitly the
image definition. Thus, with variables c0Z and c0Y , the
function expressed as the left part of the above inequality
is a quadratic curve in the plane of equation c0X − d/2 =
0. That curve (Fig. 4, plotted in blue in plane PM ) is the
spatial border beyond which the approximation of unique
viewpoint shared by the four mirrors holds. The farthest
visible 3D point of that curve corresponds to c0Z = 0,
leading to:

(αu0
d/ξ0ρ)− 1 < 0 ⇔ αu0

d/ξ0 < ρ. (15)

Dually, for a given minimum distance ρ = ρmin between
the camera and the scene 3D point, we can deduce
the image definition boundary below which the unique
viewpoint approximation holds from (15), i.e.:

αu0
d/ξ0 < ρmin ⇔ αu0

< ρmin ξ0/d. (16)

However, as mentioned above, αu0
only defines implicitly

the image definition, since it includes also optical
parameters of the camera. Thus, to deduce the maximum
allowed definition of N0sup

×N0sup
pixels to satisfy (16),

we consider the scale factor αumax
associated to the

maximum definition Nmax ×Nmax pixels of a panoramic
region in the image of the used actual camera as the upper
boundary for αu0 . Then, for a given ρmin (16), and posing
αu0sup = ρmin

ξ1
d , we define the side definition N0sup as:

N0sup = min (Nmax αu0sup/αumax , Nmax) . (17)

The constraints provided by (15) and (16) are defined under
several simplifying hypotheses about the actual camera.
However, since they are obtained considering the worst
case of a 3D point belonging to the mirrors plane, those
equations are ensured valid for scene points out of that
plane.

4 HDROmni prototype evaluation
This section shows and evaluates the prototype of HDR
panoramic camera made following the design method of
this paper. Even if the method is general with respect to
the number of mirrors, we consider the four paraboloidal
mirrors case (M = 4), leading to select F = 3 ND filters.



4.1 Image DR Evaluation Metrics
In order to evaluate the DR quality of a given image I , we
exploit the weightsw(I,u) (Sec. 2.3), for pixel coordinates
u of I . Such a weight tends to 1 when I(u) is said to
represent naturally the scene, or 0, inversely. Then, we
compute the mean w̄(I) ∈ [0, 1] of allw(I,u). The highest
w(I,u), the best DR quality.
To take into account practical issues of the camera, its mast
reflection on mirrors is ignored in computing w̄(I).

4.2 The actual new camera
Following our optical design method (Sec. 2), we first
estimate experimentally the CRF of the considered IDS
UI3250-LE camera. It exploits an e2v EV76C570 CMOS
sensor (DR of 50 dB, with the used global shutter mode).
The choice of the latter camera was mainly made for the
evaluation of the optical extension of DR. Indeed, that
camera is capable of 10 s exposure times, necessary to
estimate the actual CRF of the camera when using filters
of high density, for its comparison with expected CRF.
The camera is set in a dark room with a 350 lumen LED
light source. Then, pointing the camera to the surface
of a cardboard box, assumed Lambertian, illuminated by
the light source, images are recorded with exposure times
from 1 ms (T0min) to 30 ms (step: 1 ms). As exposure
varies proportionally with respect to exposure time or
irradiance (1), varying the exposure time as described
above simulates proportional variations of irradiance, thus
radiance (since the considered object is Lambertian) that
our cheap, but easy to reproduce, experimental setup does
not allow to quantitatively vary. Since the proportional
factor is unknown, the below CRF appear as functions of
normalized irradiance.
A CRF is got using the brightness of a unique pixel in
the central area of the box for various exposure times.
However, due to the experimental setup, the brightness as
a function of exposure time is noisy. Thus, brightnesses
are slightly smoothed by local regression (sliding window
of 30% of the total data) using weighted least squares
of a second order degree polynomial model (Matlab
Curve Fitting Toolbox). The brightness saturates for
T0max = 21 ms. The normalized irradiance is then given
by E0n = T0n/T0max, with T0n ≥ T0min, E0max = 1
being its maximum.
As the CRF of the used camera is not linear (Fig. 5a),
we apply the piecewise linear approximation of the
generalized exposure ratio modeling (Sec. 2.2) toward
the ND filter densities computation. Thus, such CRF
approximation leads toE0dis ≈ 2/3, so thatEmd = 1

2/3 =

3/2.
Then, to stick to the state-of-the-art [24], we set λ = 1/2
(Eq. (5)) so that the generalized exposure ratio becomes
Rf,f−1 = 1/2

3/2 = 1/3. Finally, following (6), (7), and (8),
we get the ideal optical densities of the three ND filters as
D1 = 0.47, D2 = 0.96 and D3 = 1.90.
The closest products available on the market are three

absorptive, round-shaped, ND filters of optical densities
D̂1 = 0.6, D̂2 = 0.9 and D̂3 = 2.0, which respectively
attenuates the exposure by k1 = 1/4, k2 = 1/8 and
k3 = 1/100 factors (compared to 1/3, 1/9 and 1/81 for the
ideal optical densities). Setting these ND filters between
the camera lens and three of the four paraboloidal mirrors
(Fig. 1a acquiring images as shown in Fig. 3, left), the
HDROmni prototype increases 100 times the DR of the
used camera, thus from 50 dB to 90 dB.
Then, to evaluate the actual camera dynamic range with
respect to expectations brought by the use of ND filters, the
CRF of every panoramic region of the acquired HDROmni
image is measured and plotted (Fig. 5b) with respect to
normalized irradiance E0max. Due to the most dense ND
filter, exposure times of HDROmni ranges from 1 ms to
2500 ms (only to plot the CRF).
Figure 5b shows that the maximum normalized perceptible
irradiance is 120 times E0max

, instead of the expected
100 times. The range and quantization of the perceptible
irradiance is improved with respect to a unique image
of a single LDR camera. However, obviously, with
4 different exposures only to cover a normalized range
of irradiance of [0, 120], the quantization of normalized
irradiance E ∈ [8, 120] is much lower than for E ∈
[0, 8[ (same observation for the range [0, 100]). Then,
the following subsection evaluates the HDR image quality,
after the fusion of LDR panoramic regions of the acquired
HDROmni image.

4.3 Dynamic range image quality evaluation
As defined in Section 3 some rules about image resolution
and scene depth ρj must be followed to permit the HDR
fusion. The four mirror centers of the HDROmni prototype
make a square of d = 0.03 m side. The maximum
resolution of each panoramic LDR image in the used
camera is Nmax = 430. The HDROmni prototype was
calibrated [6] with checkerboards. Considering the means
ξ = 0.89 and α = 157 of intrinsic parameters ξj and,
respectively and together αuj , αvj , for j ∈ [0, 3] ⊂ N, we

(a)

(b)

Figure 5: (a) Measured CRF of UI3250-LE, piecewise
linearly approximated ((d1) and (d2)), (b) measured CRF
for the 4 panoramic regions of the acquired HDROmni
image.



found, thanks to (15), that beyond depth ρj = 5.30 m the
disparity falls within a pixel of the maximum 430 × 430
pixels resolution per LDR image.
Then, the dynamic range of HDROmni is evaluated
outdoor in 9 challenging scenes of clear, bright sky with a
few clouds, presented in the supplementary video. We kept
the maximum resolution Nmax = 430 as working outdoor,
where the distance constraint is always met. Hence, (16)
leads to N0sup = Nmax = 430 pixels. To gain space, only
3 of them are presented below. These scenes are mainly
made of white flat and curvy concrete walls, windows and
both bright sun highlight and dark shadowed areas (Fig. 6).
The second scene (Fig. 6b) also features colorful small
walls. The other scenes (rest of Fig. 6) are parking lots.

HDROmni images are acquired in each scene. Their LDR
panoramic regions (first 4 columns of Fig. 7) are fused into
an HDR image (last column of Fig. 7).
We consider the DR image quality criterion of Section 4.1
to evaluate quantitatively the perceptible DR extension
provided by the HDROmni prototype with respect to
common omnidirectional camera. Writing w̄(IHDR) the
DR image quality of the HDR fusion and w̄(ILDRj )
the ones of the four LDR panoramic regions, their ratio
w̄(IHDR)/w̄(ILDRj

) ∈ R+ is greater than 1 if the DR
image quality of IHDR is better than the other one.
IHDR always leads to a higher DR quality than any
ILDRj

. Indeed, the mean of the ratios between the 9
HDR images and the best LDR ones in each dataset is
2.0. The computed ratios for three challenging scenes of
Figure 6a, 6b, 6c are displayed in Table 1. The 6 others are
shown in the accompanying video. The DR increase varies
from case to case. Indeed, the highest increase ratio is
17542 in scene 2 in Table 1 (IHDR of Fig. 7j with respect to
ILDR0

of Fig. 7f), where it is obvious that only decreasing
a bit the exposure time would improve the image content.
It is confirmed by the ratio w̄(IHDR)/w̄(ILDR1) = 3.87
in scene 2 (Tab. 1). Visual comparison between Figures 7g
and 7j qualitatively confirms the quantitative comparison.
Despite the lower exposure of ILDR1

with respect to
ILDR0 , a large part of the image (sky and top parts of
a building) is still over-exposed, contrary to IHDR. It is
also interesting to note that decreasing the exposure, while
solving the overexposure of the sky, underexposes the rest
of the field-of-view and decreases the DR of ILDR2

and
ILDR3

compared to ILDR1
(Tab. 1, Scene 2). The latter

(a) (b) (c) (d) (e)

Figure 6: Scenes for evaluating HDROmni ((c), (d): same
scene, different weather).

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 7: Panoramic LDR images of an acquired
HDROmni image (shown split in the 4 first columns) and
the fused HDR image (right). A scene per row.

observation is nothing but another illustration of the LDR
of the camera that the fusion of the four ILDRj

in IHDR
solves.
The analysis of Scene 1 and Scene 3 leads to similar
conclusions than for Scene 2, obviously with shifts in the
LDR image number the closest to the IHDR of the scene,
in term of DR, since scenes as well as illumination are
different. Furthermore, the default 50 ms exposure time
is set for the first and second scenes, whereas the exposure
time in the third scene was manually decreased to 43 ms to
allow one of the four ILDRj

to get the image of widest DR
the camera could acquire (Fig. 7l). Despite that change,
the DR quality of IHDR is still twice the one of ILDR1

in
Scene 3.

4.4 Evaluation on feature matching
In three scenes (Fig. 6c-6e), 30 images were captured
while the robot moved straight for 2 m (datasets 1, 2,
3). SURF features (OpenCV 4.1.0 implementation, with
default parameters) were detected in every acquired LDR
images and the resulting HDR image. Then, features were
matched between consecutive images in each sequence.
False matches were manually counted (2.74 for HDR
images and 1.17, 1.01, 1.07 and 0.17 for LDR ones, on

j = 0 j = 1 j = 2 j = 3

Scene 1 1448.47 5.66 2.47 6.96
Scene 2 17542.76 3.87 4.58 12.35
Scene 3 4.71 2.09 3.92 25.80

Table 1: IHDR dynamic range quality increase relatively
to the four ILDRj .



average). As results, HDROmni allows detecting, at worst,
36% more features than a LDR camera. Furthermore, there
are, at least, 26% more matches in successive HDR images
than in LDR ones (on average, 433 matches with HDR,
but 221, 306, 257 and 19 for LDR). SURF detection and
matching results are shown in the supplementary video.

5 HDR panoramic visual servoing
The real-time property of HDROmni allows its use in
robot control. We consider the panoramic photometric
visual servoing (pPVS) of a Pioneer 3AT mobile robot [7].
Shortly, photometric visual servoing is the robot control
law that automatically drives the robot from an initial
pose to the desired pose, only using pixel brightnesses of
images: the difference between the desired image, acquired
at the desired pose, and the current image is minimized
over time. [7] shows that pPVS’s convergence domain
(up to 1.2 m) is much wider than using a conventional
camera [8] (up to 0.4 m, in ideal conditions) while both
are very precise at convergence. In our experiments, we
observe a decrease of precision outdoors, particularly in
scenes of high dynamic range. Inversely, HDROmni leads
to constantly precise performance of pPVS, even in scenes
of challenging illumination, only thanks to HDROmni,
since the control law is not changed.
To distinguish between the original pPVS and the one using
HDROmni, we name the former LDR-pPVS and the latter
HDR-pPVS. We also consider a third pPVS, namely LDR-
4-pPVS, that considers the HDROmni camera without the
ND-filters. In this case, since filters are not used, the 4 LDR
images have the same exposure and their exposure fusion is
approximately their mean. Comparing LDR-pPVS, LDR-
4-PVS and HDR-pPVS makes clear the impact of using
several mirrors, on the one hand, and ND-filters, on the
other hand, with respect to the state-of-the-art pPVS [7].
A total of 32 experiments done in the same three scenes as
in Section 4.4 is reported for quantitative evaluation. 8 of
them are shown in the supplementary video. In each scene,
a single desired pose is considered for four initial poses at
500, 1000, 1500 and 2000 mm backward the desired pose.
Then, LDR-pPVS, LDR-4-PVS and HDR-pPVS are run
from these initial poses. The distance between the final
pose of the robot, i.e. where the control law no longer
makes the robot moving, and the desired pose is reported
in Table 2.
Experiments of LDR-pPVS and LDR-4-pPVS in low DR
scenes show that the fusion of four mirrors prevents
divergence of pPVS (see results for initial errors of 1500
and 2000 mm in the first low DR scene parking lot
1, Tab. 2). In parking lot 1, LDR-pPVS is in line
with [7], showing a possible border of the convergence
domain of pPVS between 1 and 1.5 m. Interestingly, our
implementation of LDR-pPVS could converge even with
an initial error of 2 m in parking lot 2, showing more
favorable for pPVS.
Still in low DR scenes, HDR-pPVS always increases the

positioning precision (see mean final errors of Tab. 2 for
low DR scenes), particularly in the parking lot 2 where,
even if the sky was full of clouds, the DR of that scene was
higher than at parking lot 1. Thus, as using four mirrors
without ND-filters does not contribute as much as when
combined with ND-filters to form the HDROmni camera,
LDR-4-pPVS is not considered in further experiments.

Experiments of LDR-pPVS and HDR-pPVS in the scene
of high DR show HDR-pPVS outperforms LDR-pPVS
by a factor of almost 10, regarding the mean final error.
Interestingly, the final error of LDR-pPVS is almost
constant, for the four initial poses, highlighting it converges
to a local minimum. Indeed, in LDR images considered
by LDR-pPVS, some parts of the field-of-view are under-
or over-exposed (Fig. 8a). So the inherent lack of details
prevents the control law to reach the true desired pose,
contrary to HDR-pPVS for which HDR images are mostly
well-exposed (Fig. 8b) leading, at convergence, to an
almost null difference between current and desired images
(Fig. 8d).

Furthermore, for the three scenes, the mean final errors are
almost the same for HDR-pPVS (31.3 to 36.5 mm), unlike
the ones computed for LDR-4-pPVS (36.3 and 87.5 mm)
and LDR-pPVS (64.5 to 585.0 mm).

(a) (b) (c) (d)

Figure 8: Parking lot 1 of high scene DR. Desired images
for pPVS: (a) LDR (b) HDR. Differences between the
image at convergence and the desired image for (c) LDR-
and (d) HDR-pPVS.

Scene Initial error Mean
l. DR 500 1000 1500 2000 error

L. 1 low 65 75 600 1600 585.0
L4 1 low 5 40 60 40 36.3
H. 1 low 30 45 35 25 33.8
L. 2 low 10 8 100 140 64.5
L4 2 low 10 20 140 180 87.5
H. 2 low 15 20 20 70 31.3
L. 1 high 330 310 330 353 323.3
H. 1 high 11 22 51 62 36.5

Table 2: Positioning errors for 3 different pPVS: LDR (L.),
LDR-4 (L4) and HDR (H., ours) (unit: mm) in various
outdoor scenes. Bold values indicate the lowest mean final
errors.



6 Conclusion and future works
We have introduced a design method for extending
optically the dynamic range of panoramic vision with a
single camera in real-time. The first HDROmni prototype
extends more than 100 times the dynamic range of the
used machine vision camera. In scenes of challenging
illumination, it doubles, on average, the dynamic range
image quality. Such contribution allows detecting and
matching more features, for future benefit to visual
odometry, for instance. It also significantly improves the
positioning precision of direct visual servoing in scenes of
challenging illumination.
Future works will improve the prototype and combine it
with neural networks-based HDR rendering approaches for
better visual appearance of HDR images for the human eye.
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