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Résumé

De nombreuses applications en géoscience nécessitent
d’estimer l’état d’un système physique. L’assimilation
de données fournit un cadre rigoureux pour le faire
lorsque des connaissances de la dynamique qui régit le
système et des observations de ce système sont disponibles.
Quand ce type de problème inverse est résolu sous une
forme variationnelle, le processus d’optimisation implique
la méthode de l’état adjoint pour un calcul efficace du
gradient. D’un point de vue informatique, cette méthode
est équivalente à l’algorithme de rétropropagation et est
mise en œuvre en utilisant la différenciation automatique.
Le récent développement des outils d’apprentissage
profond permet une mise en œuvre flexible de ces méthodes
et ouvre la porte à une modélisation hybride axée sur les
données et la connaissance. Ceci est illustré sur deux
problèmes d’assimilation d’images géophysiques.

Abstract

Many applications in Earth Sciences require the estimation
of a physical system state. Data Assimilation provides
a strong framework to do so when knowledge about a
governing dynamics and observations of such system are
available. If this kind of inverse problem is solved in
a variational form, the optimization process involves the
adjoint state method for efficient gradient computing. From
a computational perspective, this method is equivalent to
the backpropagation algorithm and is implemented using
automatic differentiation. The ongoing development of
deep learning tools allows flexible implementation of such
methods and opens the door to hybrid data-knowledge
driven modeling. This is illustrated on two geophysical
image assimilation problems.
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1 Introduction
Geo-scientific observations are imperfect by nature either
they are incomplete, noisy or indirect. Estimating the state
of physical systems using such data has led to a variety
of inverse problems. When involving knowledge about
the system evolution in the form of a dynamical model,
these problems are solved with data assimilation [1], a set
of techniques producing state-of-the-art results in various
numerical weather forecasting application. When it comes
to operational forecasting, meteorological centers tend
to use ensemble methods, such as the ensemble Kalman
filter [2], and variational methods such as 4D-Var [3].

Regarding variational methods, the optimal combination of
model and observations is done through the minimization
of a cost function where the control parameters are
roughly state variables to be estimated. As the state is
usually high-dimensional and the dynamics integration
computationally expensive, approximating the gradient
of the cost function using finite-differences is not viable.
Hopefully, we can rely on the adjoint state method [3]
to obtain explicitly this gradient in only one forward of
the dynamics and one backward of the adjoint dynamics.
Computationally, this implies having at disposal a discrete
adjoint of the numerical model which is non-trivial but can
be done with software based on automatic differentiation
like Tapenade [4].

Parallels between data assimilation and deep neural
networks architectures have already been drawn [5] and
we like to emphasis that adjoint backpropagation through
time steps or through hidden layers behave in a similar
manner. Even though the analogy is debatable, the
possibility to solve various kinds of variational problems
using flexible tools from the deep learning community, also
based on automatic differentiation, is real. When designing
a neural network architecture, only choices regarding the
forward model are made. During the optimization, the
adjoint network derived from the computational graph is



used to calculate gradients. This part is fully managed by
the software. We propose to use the same paradigm to
solve variational data assimilation problems, thus avoiding
explicit adjoint modeling that is also known to be an
operational issue [6].

In this work, we assimilate two set of images, one from
rain radar, and one giving sea surface temperatures, using
an advection model and the 4D-Var algorithm coded using
Autograd [7] from Pytorch. The code is available on
Github1. We compare the results with a reliable code
developed in [8, 9]. We observed that while this flexibility
comes at a computational cost, results are relevant and open
up perspectives on hybrid modeling connecting traditional
data assimilation methods and machine learning ones.

2 Data Assimilation Framework
2.1 Mathematical setting
A state vector X evolves over a discrete time t ∈ [0 : T ]
according to a partially-known dynamics M, see Eq. (1).
Partial and noisy observations Y are available through a
linear observation operator H, Eq. (2). A background Xb

gives prior information about the initial state, Eq. (3).

Evolution: Xt+1 = Mt(Xt) + εmt (1)
Observation: Yt = HtXt + εRt (2)
Background: X0 = Xb + εb (3)

Uncertainties about dynamics, observations and
background are modeled by additive noises denoted
εb, εR and εm, respectively. These noises are quantified
by their assumed known covariance matrices B, R
and Q, respectively. For any given matrix A, we note
‖x − y‖2A = 〈(x− y)|A−1(x− y)〉 the associated
Mahalanobis distance.

This framework enables the use of irregularly-sampled
in time observations. As models Mt often stand for
numerical schemes approximating the integration of a
PDE-system, they may only differ by their total time steps.
For the sake of simplicity, we denote multiple integration
between two times Mt1→t2 . Obviously, this operator
depends of dynamical models Mt between those two times
but it is important to note that they also depends on εmt

which play a role in the evolution (see Eq.1).

Ultimately, Data assimilation aims at optimally combine
these various sources of information in order to produce an
estimate of the system state X.

2.2 4D-Var
Cost function. In a variational formalism this estimation
is done over a temporal window [0 : T ] via the

1https://github.com/ArFiloche/Py4DVar.git

minimization of a cost function denoted J . Different costs
composing J are associated to different error sources and
weighted accordingly with error covariance matrices.

J(εb, εm) =
1

2
‖εb‖2B +

1

2

T∑
t=0

‖εRt‖2Rt
+

1

2

T−1∑
t=1

‖εmt‖2Qt

What motivates this cost function is that under independent
Gaussian errors and linear model hypothesis, minimizing it
leads to the maximum a posteriori estimation of the state
vector.

Gradient. Usually, PDE-constrained optimization in
inverse problems is solved with adjoint state methods [10].
In our case of variational data assimilation, calculus of
variations provides an analytical expression of∇J :

∇εbJ = B−1εb −
T∑

t=0

[
Ht

∂M0→t

∂X

]>
Rt
−1εRt

∇εmt
J = Q−1εmt

−
T∑

t′=t+1

[
Ht′

∂Mt→t′

∂X

]>
R−1t′ εRt′

A detailed proof can be found in [11]. Computing such
gradients thus requires having numerical representations
of adjoint linear tangent models

[
∂M0→t

∂X

]>
. By using

deep learning tools based on automatic differentiation and
focused on backpropagation, we can obtain those gradients
with much less effort. Adjoint modeling being embedded
by the software deriving the computational graph, the only
requirement is to use differentiable operations.

Computational graph. In Figure 1, we present a
schematic view of the forward integration leading to the
calculation of J . Designing such forward mapping is very
similar to designing a neural network architecture and the
associated cost function.

control variable
known variable

numerical cost
passive tracer

Figure 1: Computational graph of J calculation

Algorithm. The algorithm optimizing the presented cost
function is named 4D-Var. It simply consists of alternating
forward and backward integrations to update control
parameters by gradient descent (see Algorithm 1). When
the dynamical model is considered imperfect, we use the
weak-constraint version of 4D-Var [12]. In the other
case, we use the strong-constraint version which is a
particular case supposing errors model, εm, to be null.

https://github.com/ArFiloche/Py4DVar.git


After convergence, the whole system state is estimated
and the end of the temporal window can be used as initial
conditions to produce a forecast.

Algorithm 1 – Weak-constraint 4D-Var
Initialize control variable εb, εm

forward: integrate X and compute J
backward: automatic differentiation returns∇J

while stop criterion do
update control variables:
εb, εm = optimizer(εb, εm, J,∇J)

forward: integrate X and compute J
backward: automatic differentiation returns∇J

return X

3 Motion Estimation
To test our approach, we use two different geophysical
systems evolving over a discrete space-time domain Ω ×
[0 : T ] where Ω is a bounded domain of Z2. At each time
Xt =

(
wt It

)>
is composed of a physical variable tracer

It and the associated motion field wt. Observations on I
are available at regular date in time but the w component
is never observed. This means that at observational date
t, the observation operator is a linear projection such that
HtXt = It. Having no prior information on velocity, we
simply use the first observation as background state so that
Xb =

(
0 I0

)>
. Regarding covariance matrices B, R and

Q, they are set in accordance with experiments conducted
in [8, 9]. The main goal of our assimilation process will be
to estimate wt hence the motion estimation naming.

3.1 Geophysical images

Rain radar images. In Figure 2, we display four
consecutive radar rain maps obtained from MeteoNet
network [13]. These images have been acquired over the
region of Brest during an extremely rainy episode occurred
on January 3, 2018. The time step is 5 minutes, and the
spatial resolution is approximately 1 square kilometer. We
propose to estimate the velocity map from 4 consecutive
acquisitions. As we do not have ground-truth, the fourth
acquisition will be extrapolated in time, using the estimated
velocity map, to provide forecasts at various short time
horizon. This is called Rain Nowcasting. Forecast images
will be compared to Radar rainmap acquisitions to provide
relevant performance statistics.

Sea surface temperature images. Figure 3 shows four
sea surface temperature maps (SST) over a small area
of the North Atlantic Ocean. Data were obtained from

Figure 2: Four successive acquisitions of rainfall maps.
Intensity unit is millimeter per hour

the Marine Copernicus Service2 and are the reanalyze
of satellite observations through a physical model of the
Ocean. Time step is of 1 day, and spatial resolution of
10 square kilometers. Similarly to rain maps, we propose

Figure 3: Four successive SST acquisitions of North
Atlantic. Intensity unit is Celsius degree

to estimate velocity maps from 4 consecutive SST maps.
Sea surface circulation data are available in Copernicus and
used as reference.

3.2 Dynamical model
The physical processes we consider can partially be
described by the linear and non-linear advection equations

2https://resources.marine.copernicus.eu/
?option=com_csw&task=results

https://resources.marine.copernicus.eu/?option=com_csw&task=results
https://resources.marine.copernicus.eu/?option=com_csw&task=results


in Eq. (4). The motion field w transports the passive tracer
I and also itself



∂I

∂t
+ w.∇I = 0

∂w

∂t
+ w.∇w = 0

∇I = 0, ∂Ω

w = 0, ∂Ω

(4)

The use of this model is physically justified in both
our geophysics experiments. For rain nowcasting on
a short time window, it describes well the transport of
storm cells by wind, cells formation being neglected.
The perfect model hypothesis is then acceptable and the
strong-constraint 4D-Var is sufficient to estimate cells
velocities (motion fields). For the estimation of sea
surface circulation (motion fields) from SST images, Eq (4)
constitutes an approximation of Navier-Stokes equations
used in the reanalysis therefore we use the weak-constraint
4D-Var.
Discretization of Eq. (4) in time and in space provides the
operator M. We use a semi-Lagrangian scheme [14] to
approximate linear and non linear advection (respectively
w.∇I and w.∇w terms). The semi-Lagrangian scheme
is an implicit scheme, and not subject to CFL condition.
That implies the time step can be chosen independently to
the space step and velocity magnitude compared to explicit
schemes. The implementation of this scheme in Pytorch
can be found in our github.

3.3 Regularization

As the motion estimation inverse problem is ill-posed,
we employ Tikhonov regularization. We enforce the
motion field to be smooth by penalizing ‖∇w0‖22 and
‖∇.w0‖22. At first glance those terms does not seem to
appear in the cost function J but as depicted in [15], they
can be implicitly included in the background error cost
1
2‖εb‖

2
B. This is done by using a Toeplitz matrix for B−1

where descending diagonals are filled with regularization
parameters. The same remark can be done about the model
errors εm that also should be constrained to be smooth.
This is embedded in matrix Q−1.

3.4 Forecast

At the end of the assimilation process, an estimation of the
full system state trajectory is available. This means that

at each time t we have an estimation X̂t =
(
ŵt Ît

)>
.

To produce a forecast at given time horizon, T + k, we
simply integrate the evolution model using the end of
the assimilation window as initial condition: X̂T+k =

MT→T+k(X̂T ). In the forecast set up, model errors εm
can not be estimated and therefore are not considered.

4 Results
In this section we present experimental results obtained on
both dataset. We compare our newly developed Pytorch
code with a C code, already used in several experiments [8,
9] where the adjoint dynamics is obtained with Tapenade.

4.1 Nowcasting on rain radar images
After strong 4D-Var assimilation of 4 rain radar images
(Figure 2) on a window representing a 15-minute period,
we integrate the estimated state further in time to produce
forecast at 10, 20, and 30 minutes horizons. As depicted in
Figure 4 both versions of the algorithm behave in the same
manner. Also, we note a smoothing effect which is an
issue of the semi-Lagrangian scheme and the counterpart
of an implicit scheme.
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Figure 4: Example of rainmap forecasts at three horizon
times produced by the C code and the Python code

When repeating the assimilation algorithm over sliding
windows, we can evaluate our forecast over longer time
period. In Figure 5 we consider a full day containing
almost 800 acquisitions. After each assimilation, the
forecasts are evaluated against the available ground truth
using RMSE on the tracer It. Dealing with rain
nowcasting, other metrics can be more informative than
RMSE but in our case it is enough to verify that both codes
produce comparable performances.

4.2 Sea surface circulation from SST images
The exact same process is applied for SST forecasting. The
3-day windows are assimilated with the weak-constraint
algorithm and forecasts at three horizon times as shown in
Figure 6. SST circulation being a slow evolving dynamics,
it is hard to visualize differences. However, we can
similarly calculate the RMSE between the tracer It and the
ground truth as plotted in Figure 7.
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Figure 5: Rainfall forecasts at 10, 20 and 30 minutes:
performances of C and Pytorch codes (RMSE)
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Figure 6: Example of SST forecasts at three horizon times
produced by the C code and the Python code
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Figure 7: SST forecast: performances of C and Pytorch
codes for three horizon times
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Figure 8: Performance of C and Pytorch codes, metric is
the EPE



In the particular case of SST data coming from an other
assimilation process, we have access to ground truth
motion fields w. In Figure 9, we can see assimilated
motion fields again the ground truth, colors standing for
motion vectors orientation [16]. We also can quantify these

(a) C+Tapenade (b) Pytorch

(c) Ground-truth

Figure 9: Example of velocity maps obtained with C and
Pytorch codes, compared to the ground-truth

differences over time by calculating the end-point-error
(EPE) between assimilated fields and the ground truth as
presented in Figure 8. Again, we can conclude that both
codes are roughly equivalent.

4.3 Discussion
The new code aims at replicating the reference as close
as possible. However results obtained are not exactly the
same and we believe it can be explained by several reasons.
First the gradients coming from regularization terms are
calculated manually in the C version but automatically
in the other one. Second, even though both codes use
an optimizer based on the same second order quasi-
Newton method, these optimizers came from different
development. C code uses the original implementation of
L-BFGS [17] written in Fortran by the authors. Pytorch
use its own implementation. Third, the order of successive
operations is not strictly respected which may lead to
numerical rounding differences.

Lastly, we compare in Table 1 computation time
needed in each cases using a standard CPU architecure.
Unsurprisingly, the C code version is much more faster,

the Pytorch simplicity could not be free. Also, we note that
the gap between versions is more important in the strong
case and this is because the C code has been optimized
using high performance computing technique based on
vectorization and parallel programming.

Code paradigm Rain (strong) SST (weak)
C-Tapenade 2.0 ± 0.3 s 25.8 ± 1.1 s
Pytorch 90.0 ± 43.6 s 71.3 ± 1.1 s

Table 1: Computation time

5 Conclusion
In this work, we showed that it is possible to use deep
learning tools outside the scope of neural networks. More
precisely, we employ them to solve geophysical inverse
problems requiring automatic differentiation for the adjoint
state method. Usually, solving such variational problems
numerically is non-trivial but these new tools make it much
more accessible. We compared the results we obtain with
a trustworthy code and show that there is no significant
difference in terms of performance. However, we found
that this simplicity and flexibility come at a computational
cost. Regarding Earth sciences and modeling, we truly
believe in this type of tools to unify data-driven and
knowledge driven methods.
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