
HAL Id: hal-03339673
https://hal.science/hal-03339673

Submitted on 9 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

VampNet : Vampirisation non supervisée de réseaux de
convolution

Trong-Lanh Nguyen, Thierry Chateau, Guillaume Magniez

To cite this version:
Trong-Lanh Nguyen, Thierry Chateau, Guillaume Magniez. VampNet : Vampirisation non supervisée
de réseaux de convolution. ORASIS 2021, Centre National de la Recherche Scientifique [CNRS], Sep
2021, Saint Ferréol, France. �hal-03339673�

https://hal.science/hal-03339673
https://hal.archives-ouvertes.fr


VampNet : Unsupervised Vampirizing
of Convolutional Networks

Trong-Lanh R. Nguyen1,2 Thierry Chateau2 Guillaume Magniez1

1 Safran Electronics & Defence
2 Université Clermont Auvergne,

CNRS, SIGMA Clermont, Institut Pascal

trong-lanh.nguyen@safrangroup.com

Résumé
Nombre d’applications demandent la résolution simul-
tanée de plusieurs tâches. Nous proposons une méthode
non supervisée qui permet à partir de deux réseaux convo-
lutifs profonds A et B de créer un réseau B’ approximant B
en s’alimentant d’une partie des couches de A. Ce réseau,
nommé Vampire Network, permet de fortement réduire le
poids combiné des deux réseaux. Nous proposons ces con-
tributions : (1) nous montrons que des réseaux de même
architecture entraînés à des tâches distinctes ont des pro-
priétés de linéarité assez fortes entre couches; (2) Un algo-
rithme non supervisé, remplaçant des cartes de caractéris-
tiques du réseau vampire par une projection linéaire des
cartes du premier réseau; (3) Nous montrons que le réseau
vampire généré réduit fortement le nombre de paramètres,
donc les calculs du système global.

Mots Clef
Réseau de neurones, Compression, multitâche.

Abstract
Numerous applications need to concurrently solve multiple
tasks. We present an unsupervised method enabling to cre-
ate from two pre-trained neural networks A and B, a third
network B’ approximating B while feeding on a part of A’s
layers. This network, that we call Vampire Network, al-
lows to significantly reduce the combined weight of the two
networks. To these ends, we propose the following contri-
butions: (1) we show that two networks of the same struc-
ture but trained on different tasks display quite strong lin-
ear properties between their layers; (2) an unsupervised
algorithm replacing part of the vampire network’s features
by linear projections of features from the first network; (3)
we show that the vampire network thereby created signifi-
cantly reduces the number of additional parameters needed
to accomplish the second task, and thus the computational
load of the full system.

Keywords
Neural network, Compression, multitask.

1 Introduction
Deep Convolutional Neural Networks (DCNN) are widely
used for different tasks such as detection, semantic seg-
mentation or depth estimation. Since some applications
like autonomous driving need to combine theses different
outputs, Multi-task models seem to be a relevant solution.
It consists in generating networks performing several re-
lated tasks at once on the same input, effectively sharing
resources between tasks [2]. One major convenience of
such methods is the inductive bias that arises during the
training step, that allows one task to benefit from the train-
ing of others, both raising the convergence speed and the
generalisation abilities of the trained network [2]. Another
interesting property for embedded applications is the re-
duction of the model size due to some shared parts. How-
ever, most of proposed approaches assume that all tasks
must be trained jointly with available annotated data-sets.
Moreover, adding a new task without modifying the per-
formances of existing ones is also a important feature from
an industrial point of view.
We propose VampNet: 1) Given two DCNN networks NA
(that we will call Master network) andNB , already trained
on two different but related task A and B, we formulate a
framework to build a new network NB′ that approximates
NB under the challenging hypothesis:

• no annotated learning base is available,

• the master network NA must not be modified,

• the model size of the new networkNB′ must be lower
than NB

Since both networks estimate related tasks, they should
be correlated. We study this assumption and show that a
very simple linear relation can be applied to replace fea-
tures in NB by features from NA. The new generated net-
workNB′ is then called VampNet (from Vampire): it saves
some computation by using some simple linear projections
of NA features (so-called vampirizing thereafter) resulting
in a strong reduction of the size of the two merged net-
works. Figure 1 presents an overview of VampNet.



When using a classical DCNN NB (i.e.: without skip con-
nections) replacing the full feature map of a layer has as
consequence that the preceding layers of the network do
not have to be computed anymore. This implies that the
deeper a full layer is replaced, the lower the resulting global
network size is. This is why we focus thereafter on vampi-
rizing a layer (i.e.: the full feature map of the layer).
We demonstrate our method on several public data-sets for
two related tasks: semantic segmentation and depth esti-
mation. Moreover, we provide a thorough ablation study to
analyse linear correlation between layers and the proposed
model that select the vampirized layer.
The next section presents some relevant works linked to
multitask learning, network merging and correlation based
feature analysis. Section three describes the core of our
model while section four shows and analyses the experi-
ments provided in order to evaluate the VampNet frame-
work.
In this paper we use the following nomenclature for convo-
lutional neural networks:

• a feature extracted by a convolutional layer is a sin-
gle channel of its output volume. Each element of a
channel is then a sample of the feature, as it is the re-
sult of a dot product with the convolution kernel for a
different patch of the input volume.

• a feature-map is the set of features computed by a
convolutional layer.

2 Related work
In order to assess the proposed VampNet model with the
wide literature, we consider three aspects: 1) correlation
based feature analysis, 2) neural network merging and 3),
multitask neural networks.

2.1 Correlation-based feature map analysis
Since the proposed method relies on the assumption that
there are linear links between features of two correlated
task networks, we first review relevant works dealing with
linear analysis for neural networks.
[7] uses Canonical Cross Correlation (CCA) between fea-
ture maps to compare learned representations. By compar-
ing in-training feature maps to their fully trained version,
the authors are able to study the training dynamics of a
network. They explore the application of CCA to model
compression.
[13] notes that multiple trainings of the same network start-
ing from different random initial states usually converge to-
ward solutions with similar performances, and that learned
feature maps of a same layer often correlate with each other
across the solutions. The authors show that it is possible to
find a one-to-one, then a few-to-one mapping between fea-
tures of the same layer of two versions of the same network,
using activations’ correlation as distance metric.

2.2 Multitask neural networks
Multitask learning [2, 14] encompasses learning methods
aiming to accomplish multiple tasks at the same time. The
main interest of this kind of approach is inductive bias: by
learning two different but related tasks, more meaningful
features are trained. Each task can thus benefit from fea-
tures that would not have appeared with its sole training
gradient.
Multitask neural network are the deep learning pendant
of multitask learning. Two families stand out fairly dis-
tinctively [9]: approaches that have a "hard sharing" of
weights, i.e. using a common body of computations, and
approaches that have a "soft sharing" of weights, i.e. giving
each task its own trainable weights but putting constraints
between them.

2.3 Networks merging
While in multitask learning specific networks are trained
to estimates several tasks, networks merging considers
two existing networks which are mixed to produce a
lightweight one. [12] introduces a post-training merging
and compression method based on the convolution kernels’
weights’ values. The approach consists in a separation of
kernels into 1 × 1 convolutions, a K-means clustering of
those new kernels, followed by an Huffman encoding of
the found centroids. A codebook can then be used to get
back the full kernels. The clustering step has the effect that
retrieved kernels are not exactly equal to the original ones.
The authors suggest to make up for the changes in perfor-
mances by fine tuning the model on the original training
data.
[10] proposes a cascaded architecture to speed up classi-
fiers’ ability to discard negatives, replacing a monolithic
network by a sequence of smaller classifiers called stages.
Stages are of increasing abstraction level and size, the later
ones only being computed if the earlier did not return a
negative result. Because each subsequent stage must be of
higher abstraction than the preceding one, building such an
abstraction at each stage would induce a substantial amount
of computing for examples that are not early rejected. To
avoid that, the author gives each stage access to all the fea-
tures extracted by the previous one, a stage only adding lay-
ers and/or channels to the preceding stage. All the stages
are trained at the same time under a composite loss. As the
sharing is unidirectional, the later stages do influence the
convergence of the earlier ones but not vice versa.
In this paper, we propose a model that starts from several
assumptions: 1) we have two existing trained networks like
in network merging, 2) no annotated data-set is available
like in unsupervised learning and 3) the function of the
master network should not be changed.



3 Method
This section describes the core of the proposed model, re-
lying on that correlated tasks trained using two networks
with the same structure generate correlated Feature Maps
(FM) within the two networks. After defining how to com-
pute linearities between FMs, we propose a simple way,
using a convolutional operator, to replace a feature by a
linear projection of one vampirized from another task net-
work. Since replacing the full FM of a layer is very inter-
esting to save both computation time and model size, we
propose a layer selection relation to automatically choose
where replacing a layer while keeping a good trade-off be-
tween performances and computation budget.

3.1 Linearity between feature maps
Given two networks: NA and NB with the same structure
but trained on two different tasks (A and B), we are in-
terested in replacing some features of NB by linear pro-
jections of features of NA, without using any annotated
data. This strategy, called VampNet (NB acts like a vam-
pire when it gets some already computed features of NA)
is motivated by:

• The networkNA won’t be modified: it can be manda-
tory in some industrial contexts (i.e. such network has
already be certificated for task A).

• The resulting newNB network will save computation
time.

• We argue that if task A and B are correlated, The new
NB network will keep good performances.

Let FA,l(X) be a 3D-tensor function returning the feature
map associated to layer l ∈ {1, .., Nl} of network NA
for the input tensor X. Moreover, we define fA,lw,h,c(X)
a function returning the feature sample value for layer l,
channel c ∈ {1, .., N l

c}, and position w ∈ {1, .., N l
w},

h ∈ {1, .., N l
h}. FA,l

c (X) .
= FA,l:,:,c(X) is a function com-

puting the 2D-slice feature matrix from channel c of tensor
FA,l(X) and fA,lc (X) .

= vec(FA,l
c )(X) the vectorization of

FA,l
c (X). The linear relation between the feature computed

by channel c of layer l of networkNA and the feature com-
puted by the channel c′ of the same layer of network NB
can be expressed by:

fB,lc (X) =
[
fA,lc′ (X) 1

]
w (1)

with w a parameter vector of size 2.
Given a set of input images X .

= {X1, ...Xnx
}, estimating

w is given by the resolution of the following linear system:

fB,lc (X1)
...

fB,lc (Xi)
...

fB,lc (XNx)

 =



fA,lc′ (X1) 1
...

...
fA,lc′ (Xi) 1

...
...

fA,lc′ (XNx
) 1


w (2)

However, the number of equations of this linear system is
huge (Nx×N l

w×N l
h) and solving if becomes too complex.

We propose a sub-sampling strategy to reduce the number
of equations using only a subset of all possible pixels of the
features.
Let slw(i) and slh(i) be two sub-sampling functions pro-
viding width and height indexes of a feature of layer l for
i ∈ {1, .., N l

s} and with N l
s << N l

w ×N l
h. Sub-sampling

vectors associated to the network N. can be defined as:

f̂
.,l

c (X) .= ‖N
l
s

i=1F.,l
slw(i),slh(i),c

(X) (3)

with ‖ the concatenation operator. The linear equation 2
can be approximated from a new one changing full vectors
to sub-sampled ones. Several sub-sampling strategies can
be defined.

3.2 Ranking linearity between features
When data are standardized (zero-mean and unit-std), the
residue between the linear prediction and the set of target
values is a simple way to estimate linearity. We define
f̃
.,l

c (X) returning the standardized sub-sampled vector by

applying f̃
.,l

c (X) = 1
σ
f̂.,lc

.(f̂
.,l

c (X)− f̂
.,l

c ) with σ
f̂
.,l
c

the stan-

dard deviation (std) and f̂
.,l

c the mean of f̂
.,l

c (X) over X,
and compute the residue by:

rlc,c′ =
1

Nx

∑
X∈{X}

‖f̃
B,l

c (X)− [f̃
A,l

c′ (X), 1]w̃‖2 (4)

The residue provides a natural way to predict if two fea-
tures are correlated. We propose to compute a feature-wise
residue matrix between the same layer of networksNA and
NB .

3.3 Vampirizing a feature using a convolu-
tional operator

The simple model we propose to replace a feature is two-
steps:

Selection of the closest feature in NA given the feature
FB,lc of channel c of layer l of network NB , we define the
association function providing the closest feature’s channel
for the same layer of NA by:

tlc(c)
.
= argmin
c′∈{1,..,N l

c}
rlc,c′ (5)

Replace by convolution The vampire network NB re-
places one of its features by the selected one of NA apply-
ing a linear projection. It can be done very simply using
a biased convolutional 1x1 kernel. Given a linear relation
estimated by w = [a, b]T between fB,lc and fA,l

slc(c)
, the as-

sociated feature of network NB can be replaced by:

FB,l
c = FA,l

tlc(c)
∗K (6)



A

B

A

B'

input

prediction

ground truth

VampNet{

Figure 1: Overview of the method: computations are spared by reusing results from a related network. In a first time, features
of two networksNA andNB are compared with each other by linear regression. Features fromNA with the smallest residuals
can then be used to predict features from NB by linear projection, thus creating the network N ′

B , approximating NB . In this
example, the displayed results are from fully replacing UNet layer 11.

with K a kernel of size 1× 1× (Nc + 1) defined by:

K
.
=
[
‖Nc
i=1a.δ

tlc(c)
i ‖ b

]
(7)

with δ the Kronecker function and ‖ the concatenation op-
erator. The bias b is provided by a virtual last channel with
unit values.

3.4 Vampirizing a layer
Replacing a layer is very important in order to save high
computational cost. When VampNet replaces a full layer,
it does not have to compute the layers before it anymore.
Vampirizing a layer is achieved by replacing all of its fea-
tures. The simple way to do that is by the strategy presented
in the previous subsection.

3.5 Automatic selection of the layer to be re-
placed

VampNet should produce a new model that approximates
the original NB net with a lower inference computation
cost. Choosing the layer to be replaced is very important.
The Deeper this layer is, the higher the computation gain
will be. However, we expect that the correlation decreases
along the layers. Since the new network must approximate
an existing one for a given task, we propose to define a
layer-to-vampirize selection function with two terms:

Computation budget loss Let Cl(NB) the computation
cost of the new network when replacing layer l of network
NB and C0(NB) the cost of NB without any replacement.
We propose to define a loss function by:

LC(Cl(NB))
.
=
C0(NB)− Cl(NB)

C0(NB)
(8)

Accuracy loss The new network should provide good
performances while using a large number of features com-
ing from a network trained for another task. Like in knowl-
edge distillation, we consider the output of NB as annota-
tions that should be estimated by N ′

B . We then propose

to estimate the accuracy between the two networks accord-
ing to the layer to be replaced with a typical metric for
the targeted task: LA. In the semantic segmentation case,
we choose to use the mean Intersection over Union metric
(mIoU).
We propose a layer-to-vampirize selection function that
combines both the accuracy and the computation budget
terms:

l̂v = argmin
l∈{1,..,Nl}

λLC(Cl(NB)) + (1− λ)LA(N l′
B) (9)

4 Experiments
4.1 Setup
Networks and Tasks. Since the proposed model applies
on convolution layers, we study it on fully convolutional
networks with encoders and decoders like the ones used
for segmentation or depth estimation tasks. We use the
UNet network as it is a fairly simple network with such
an encoding/decoding structure. However, the presence of
skip-connections (transmission of features from early lay-
ers to later non-adjacent ones) breaks the assumption that
when replacing a layer, the previous ones don’t have to be
computed anymore. We will compare the impact of such
connections into the network structure by comparing UNet
with a degraded version of it without skip-connections that
we will call Encode/Decoder-like (or ED-like). Figure 3
illustrates The evolution of VampNet model size related to
the vampirized layer with (UNet) and without (ED-like)
skip-connections. On the left figure, the model size (y-
axis) is computed as a ratio related to the original network
size. The middle and right figures illustrate the layers that
do not need to be computed (within the overlay areas) if we
choose to replace the layer 14 (red line in the left figure).
In this case, the new model size would be about 1% of the
original for both networks (that value can also be read in
tables 1 and 2). When using skip connections, some lay-
ers before the replaced one still have to be computed while



regression

Figure 2: Sampling Method : in a given layer, for a pair of features c from network NA and c′ from network NB , we take a
same random set of Ns pixels in the volumes extracted by both networks. Nh and Nw are the spacial dimensions, Nx is the
data-set’s size, and Nc is the number of features.

all preceding layers can be forgotten in the case of ED-like
networks (no skip connections). In the case of UNet and
similar architectures however, the first and last layers do
not contain much parameters in comparison to the central
ones which have a lot more channels, and computing them
does not cost a lot, it is visible as the low variation rate on
both sides of the left figure. The difference between the two
networks’ model sizes is drawn in green on the left figure.
Two tasks have been selected for experiments: 1) Depth
estimation that consists in estimating a dense depth map
from a monocular image [1, 4] and 2) semantic segmen-
tation that associates a semantic class to each pixel of an
input image [6, 8]. These two tasks are known to be quite
related [15]. Depth estimation is selected as the task to be
vampirized (A) and semantic segmentation as the task to
be approximated (B). Evaluation of the performance of
the semantics segmentation task is achieved using the clas-
sical Mean Intersection Over Union criteria (mIoU) on a
testing data-set.

Data-sets and Implementation details. Different data-
sets have been used to train depth estimation network
(called ND) and the semantic segmentation network
(called NS). ND was trained using ApolloScape [11]
(sequences from road n°3 for training and sequences
from road n°2 for validation) while NS was trained us-
ing Cityscapes [3] (2975 images). Related to Semantic
segmentation, we use the 19 default Cityscapes training
classes.
The implementation we use was made in the PyTorch
framework using a single GPU. For sub-sampling during
the linear analysis, we chose a selection function that get
a constant spatial coverage such as each sample covers
1/16th of the features For example, for input images of res-
olution 256× 256, the first layer’s output is also 256× 256
that is 65536 pixels, we sample 4096 of them. For the mid-
dle layers, the spatial resolution drops to 16 × 16 that is
256 pixels and we sample 16 of them. This is one of the
possible strategies that provides a computational solution.
Moreover, the analysis is achieved on as set of 1000 im-
ages.

4.2 Linearity
Feature-Based Linearity Since the main hypothesis of
VampNet is that a task B feature can be replaced by a lin-
ear projection of a task A feature, we first study the loss
of accuracy according to the number of replaced filters in
a layer. Figure 4 shows such evolution for several layers
(3, 7, 11 and 15) for both ED-like and UNet networks.
We define the loss of accuracy as the mIoU degradation:
a degradation of 0%means that the VampNet version of
the segmentation network outputs the exact same segmen-
tation maps as the original network. This figure shows that
the more features are approximated, the more the network
loses in accuracy, which is not surprising. However it also
appears that it does not increase according to the depth. It
means that two networks with correlated tasks share linear
information into deep layers: for example, replacing fea-
tures in layer 11 yields better results than replacing features
in layer 15 (for both tested networks). It is counter-intuitive
because we expected that features grow in abstraction lev-
els and should become more specific to the task [5].

Figure 4: mIoU degradation depending on feature replace-
ment ratio at varying depths, on the left for UNet and on
the right for ED-like.

Layer-Based Linearity Since the best strategy to reduce
the computation budget is to replace all the features of a
layer, the next experiment evaluates the loss of accuracy
(mIoU) according to the replaced layer (See figure 5). Like
in the previous experiment, we observe that mIoU degra-
dation does not increase monotonically according to the



Figure 3: Visualisation of saved computation: on the left, the evolution of the saved network volume ; On the right the two
studied architectures : UNet in the middle and ED-like on the right. The overlays are an example of what can be removed if
we choose to vampirize layer 14, shown as a red line on the left graph. The x-axis units of the left graph correspond to blue
arrows in the networks.

depth. The general shape of the curve outlines that layer-
wise linearity seems to be better in the decoder (from layer
10).

Figure 5: mIoU degradation depending on vampirization
depth for full feature map replacement, on the left for UNet
and on the right for ED-like.

4.3 Trade-off selection between the accuracy
and computational budget

This section studies the couple accuracy, computation bud-
get and the influence of the function that selects the layer
to be replaced.
Tables 1 and 2 present the couple mIoU degradation and
size ratio related to the replaced layer for the two networks.
It confirms that replacing encoding layers does not provide
good performances for both accuracy and computational
budget. Regarding UNet, mIoU degradation is below 10%
for layers 9 to 11: the first decoding layers. The model
size decreases along layers but we observe a high reduc-
tion between layers 9 and 11. This is directly linked to the
network auto-encoder-like structure with many parameters
near the embedded middle representation. The UNet vari-
ant without skip connection does not seem to follow the
same variations and mostly presents a degradation of about
10% at layer 11.
The layer to be replaced must be selected according to the
desired trade-off between the accuracy and the computa-
tion budget. Adjusting this trade-off is achieved by a se-
lection function that uses a hyper-parameter λ described in
section 3.5. Figure 6 studies the evolution of the accuracy

Table 1: mIoU degradation and size ratio for a given vam-
pirization layer (UNet)

layer mIoU degradation size ratio
0 96.94% 99.99%
1 76.38% 99.86%
2 58.02% 99.74%
3 72.18% 99.22%
4 93.73% 98.96%
5 57.30% 96.87%
6 34.25% 95.82%
7 14.31% 87.47%
8 15.46% 83.30%
9 4.88% 49.90%

10 8.44% 20.67%
11 8.14% 12.31%
12 42.66% 5.01%
13 10.08% 2.92%
14 23.82% 1.09%
15 35.57% 0.57%
16 34.89% 0.17%
17 26.02% 0.04%

Table 2: mIoU degradation and size ratio for a given vam-
pirization layer (ED-like)

layer mIoU degradation size ratio
0 71.97% 99.99%
1 26.87% 99.86%
2 50.27% 99.60%
3 78.27% 99.08%
4 90.77% 98.03%
5 72.70% 95.95%
6 67.40% 91.77%
7 37.75% 83.42%
8 90.04% 66.72%
9 42.63% 33.31%

10 35.03% 16.61%
11 10.55% 8.26%
12 24.53% 4.09%
13 43.36% 2.00%
14 33.04% 0.95%
15 28.43% 0.43%
16 36.23% 0.17%
17 22.26% 0.04%



Figure 6: Evolution of the size ratio and mIoU degradation
when varying λ from 0 to 1, on the left for UNet and on the
right for ED-like.

Figure 7: 2D parametric representation of the accuracy loss
and model compression rate according to the selected layer
to be replaced selected for λ ∈ [0, 1], on the left for UNet
and on the right for ED-like.

loss and model compression for λ ∈ [0, 1]. For small val-
ues of λ, the mIoU degradation is low while the model size
ration is about 50% for UNet and 8% for its variant with-
out skip connection. As λ increases, the mIoU degradation
also increases while the model size ratio decreases.
Figure 7 shows, according to selected layer to be replaced
when λ ∈ [0, 1], a 2D parametric representation of the ac-
curacy loss and model compression rate. Since we want
to minimize both the degradation and model size, the best
layer to be replaced is the one that provide an accuracy loss
/ size ratio, near the origin. This graph confirms that layers
11 is a good candidate for both networks. It will be selected
for λ = 0.5.
Figure 8 Shows some output examples from using Vamp-
Net on layer 11 of UNet for a semantic segmentation task
with depth estimation as master network. The UNet orig-
inal segmentation network has 28M parameters while it
VampNet approximation reduces the model size to 3M
(12.31% of the size, that is 87.69% compression). Dif-
ferences mainly occur on class boundaries and for small
objects

5 Conclusion
We introduced vampire networks, an approach to reduce
the cumulative size of two networks performing related
tasks by replacing features of one of them by a linear pro-
jection of the features of the other, while leaving that last
one’s performances untouched. We explained our method
of selecting which features to replace by analysing the lin-

earity between them, and of computing the projection pa-
rameters, all of this in an unsupervised fashion. We showed
that while replacing some features in a layer can somewhat
reduce the needed resources, the true potential appears if
we are able to replace a whole layer, in which case big por-
tions of the vampire network can be discarded at once. We
also showed how skip-connection can impede that allevi-
ation. Our approach is oriented toward reducing the size
of the vampire network; by approximating its features we
overall reduce its accuracy, which is a problem that we do
not solve here.
In future works we plan to explore several ideas: taking in-
spiration of what is done in [13], actually training the pro-
jection instead of computing it, potentially replacing it with
a shallow neural network could prove interesting. We could
also use a multiple regression instead of a singular one to
predict features. The goal of our approach being to add
new tasks in a cascading manner, experiments with more
than two task, meaning multiple source networks, should
also be done. A last idea would be to see how well this
method works with networks of different architectures.

References
[1] Ibraheem Alhashim, Peter Wonka, High Quality

Monocular Depth Estimation via Transfer Learning,
ArXiv, 2019.

[2] Rich Caruana, Multitask Learning, Machine Learn-
ing 28, 1997.

[3] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. En-
zweiler, R. Benenson, U. Franke, S. Roth, and B.
Schiele, The Cityscapes Dataset for Semantic Urban
Scene Understanding, Proc. of the IEEE Confer-
ence on Computer Vision and Pattern Recognition
(CVPR), 2016.

[4] Eigen, David and Puhrsch, Christian and Fergus,
Rob, Depth map prediction from a single image us-
ing a multi-scale deep network, Advances in neural
information processing systems, 2014.

[5] Kozma, Robert and Ilin, Roman and Siegelmann,
Hava T, Evolution of abstraction across layers in deep
learning neural networks Procedia computer sci-
ence, 2018

[6] Long, Jonathan and Shelhamer, Evan and Darrell,
Trevor, Fully convolutional networks for semantic
segmentation, Proceedings of the IEEE conference
on computer vision and pattern recognition, 2015.

[7] Maithra Raghu et al., SVCCA: Singular Vector
Canonical Correlation Analysis for Deep Learning
Dynamics and Interpretability, NIPS’17: Proceed-
ings of the 31st International Conference on Neural
Information Processing Systems, 2017.



Input

Depth estimation

Ground truth
semantic segmentation

Semantic segmentation
without vampirization

(28M parameters)

Semantic segmentation
with vampirization

(3M parameters)

Semantic segmentation
difference

Figure 8: Examples of results for a vampirization of layer 11 of the UNet network, with from top to bottom: the input image,
the output of NA, the ground-truth of task B, the output of NB , the output of N ′

B , and the error mask between NB and N ′
B .

[8] Olaf Ronneberger et al., U-Net: Convolutional Net-
works for Biomedical Image Segmentation, MIC-
CAI: Medical Image Computing and Computer-
Assisted Intervention, 2015.

[9] Sebastian Ruder, An Overview of Multi-Task Learn-
ing in Deep Neural Networks, ArXiv, 2017.

[10] Martin Simonovsky et al., OnionNet: Sharing Fea-
tures in Cascaded Deep Classifiers, ArXiv, 2016.

[11] Xinyu Huang et al., The ApolloScape Open Dataset
for Autonomous Driving and its Application, IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 2019.

[12] Yi-Min Chou et al., Unifying and Merging Well-
trained Deep Neural Networks for Inference Stage,
IJCAI: Proceedings of the Twenty-Seventh Interna-
tional Joint Conference on Artificial Intelligence,
2018.

[13] Yixuan Li et al., Convergent Learning : Do differ-
ent neural networks learn the same representations ?,
ICLR, 2016.

[14] Yu Lin Zhang et al., An overview of multi-task learn-
ing, National Science Review, 2018.

[15] Amir R. Zamir et al., Taskonomy: Disentangling Task
Transfer Learning, CVPR: The IEEE Conference
on Computer Vision and Pattern Recognition, 2018.


