N

N

Superpixel-based matching of high-resolution deep
features for color transfer

Hernan Carrillo, Michaél Clément, Aurélie Bugeau

» To cite this version:

Hernan Carrillo, Michagél Clément, Aurélie Bugeau. Superpixel-based matching of high-resolution deep
features for color transfer. ORASIS 2021, Centre National de la Recherche Scientifique [CNRS], Sep
2021, Saint Ferréol, France. hal-03339667

HAL Id: hal-03339667
https://hal.science/hal-03339667

Submitted on 9 Sep 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-03339667
https://hal.archives-ouvertes.fr

Superpixel-based matching of high-resolution deep features for color transfer

Hernan Carrillo

Michaél Clément

Aurélie Bugeau

Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400 Talence, France

<prenom.nom>@labri.fr

Résumé

Dans cet article, nous proposons une nouvelle méthode
pour la mise en correspondance de descripteurs haute
résolution issus de CNNs en utilisant des mécanismes
d’attention.  Cette méthode s’appuie sur une stratégie
de pooling basée sur les superpixels pour calculer
efficacement les similarités non-locales entre des paires
d’images.  Pour illustrer [l'intérét de ces nouveaux
blocs méthodologiques, nous les appliquons au probléme
du transfert de couleur entre une image cible et une
image de référence. Alors que les méthodes précédentes
pour cette application peuvent montrer des problémes
de cohérence spatiale et colorimétrique, notre approche
s’appuie sur une correspondance non-locale robuste entre
des caractéristiques bas niveau de haute résolution.
Enfin, nous soulignons [l'intérét de cette approche en
montrant des résultats prometteurs en comparaison avec
les méthodes de I’état de ’art.

Mots Clef

Superpixels, mécanisme d’attention, transfert de couleur,
descripteurs de haute résolution, correspondances non-
locales

Abstract

In this article, we propose a new method for matching
high-resolution feature maps from CNNs using attention
mechanisms. This method relies on a superpixel-
based pooling strategy to efficiently compute non-local
similarities between pairs of images. To illustrate the
interest of these new methodological blocks, we apply
them to the problem of color transfer between a target
image and a reference image. While previous methods
for this application can suffer from poor spatial and
color coherence, our approach tackles these problems by
leveraging on a robust non-local matching between high
resolution low-level features. Finally, we highlight the
interest in this approach by showing promising results in
comparison with state-of-the-art methods.
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resolution features, Non-local matching

1 Introduction

Color transfer aims at changing color characteristics of a
target image by copying the ones from a reference image.
Ideally, the result must reach a visually pleasant image,
avoiding possible artifacts or improper colors. It covers
various applications in areas such as photo enhancement,
films post-production and artistic design.

Transferring the right colors requires computing
meaningful similarities between the reference and the
target images. These similarities must preserve important
textures and structures of the target image.  Most
works on color transfer have focused on choosing the
characteristics on which to compute similarities. These
characteristics can be hand-crafted or learned using
deep-learning methods. The first one extracts image
features by relying on manually predefined descriptors
(i.e., HOG [4], SIFT [15]), however there is no guarantee
that the descriptors are well suited for the task. The second
solves this issue by learning the features from image
dataset by leveraging on a training procedure, nonetheless
features dimensionality increases enforcing the usage
on low-resolution images. Features similarities can be
matched using global information of the images (i.e., color
histograms); or local information such as matching
small regions on the images (i.e., cluster segmentation,
superpixels decomposition). Finally, other efforts have
been made on color fusion in case of color from several
reference pixels are chosen to decide the target pixel color.
In detail, color fusion frameworks rely on a weighted sum
of spatial and color distances between neighbors reference
pixels and a target image pixel.

In this paper, we compute similarities from high-resolution
pre-trained deep learning features as this retains rich low-
level characteristics. Due to dimensionality issue, we
exploit existing superpixels extractor in order to match
these high-resolution features and perform color transfer.
The contributions are: 1) we propose super-features
which encode deep learning features using superpixels
decomposition; 2) we propose a robust non-local similarity
between super-features using an attention mechanism; and
3) we build upon [8] and include these similarities in a non-
local color fusion framework achieving promising results.



2 Related work
2.1 Superpixels

Exploiting superpixels representation allows finding
interesting region’s characteristics in images, such as
color and texture consistency [1]. Many advantages
can be derived using this type of decomposition, for
instance, dimensionality reduction by grouping pixels with
similar characteristics [25]. Additionally, this compact
representation helps to overcome high computational costs
on computer vision tasks such as object segmentation [24]
or object localization [7]. However, the irregular form of
the representation makes its usage difficult in computer
vision tasks, especially the ones using deep learning
approaches.  But some works have proposed some
representation to cope with this issue. For instance, [12]
uses a superpixel label map as an input image to a neural
network to extract meaningful information for clothing
parsing application. [11] presents the SuperCNN as a deep
neural network approach for salient object detection. It
uses superpixels to describe two 1-D sequences of colors
in order to reduce the computational burden. Nonetheless,
neither of the existing approaches effectively encodes deep
learning features for each superpixel.

2.2 Color transfer

Color transfer techniques can be classified into three
classes: classic global-based methods, classic local-based
methods, and deep learning methods.

Global methods consider global color statistics without
any spatial information. It was initially introduced in [21]
which uses basics statistical tools (i.e., mean, standard
deviation) to match target and reference color information.
[17, 29] extend color matching on different color spaces to
find an optimal color mapping between the images. [6, 5]
propose a global illuminant matching based on optimal
transport color transfer for enforcing artifacts-free results.
More complex methods such as [16] rely on Gaussian
Mixture Models to create compressed signatures that
ensure a compact representation of color characteristics
between images. Nevertheless, these methods fail to ensure
spatial consistency on resulting colors.

Local methods relies on spatial color mappings (i.e.,
segmentation, clustering) to match local regions of
the target image and the reference image. [14]
uses superpixel level style-related and style-independent
feature correspondences. [2] implement a texture-
based framework for matching local correspondence.
Alternatively, [23] uses a probabilistic segmentation in
order to impose spatial and color smoothness among
local regions.  Still, the method does not provide
control over the matched superpixels. [8] overcomes this
limitation by proposing a constrained approximate nearest
neighbor (ANN) patches and a color fusion framework on
superpixels. However, in this type of local methods target
and reference images requires to share strong similarities.

Deep learning methods brings to the matching semantic-
related characteristics from the target image and reference
image. Recently [13] propose a deep neural network
architecture that leverages on color histogram analogy
for color transfer. ~ The later uses a target and a
reference histograms as input to exploit global histogram
information over a target input image. And [10] relies on
semantically meaningful dense correspondence between
images. Nonetheless, this type of methods relies on
pure semantic features (low-level features), which requires
images from similar scene or instances.

2.3 Attention as a non-local operator

Non-local operators were introduced in image processing
in [3] with the so-called Non-local means framework,
initially used to filter out image noise by computing a
weighted mean of all pixels in an image. Non-local means
allow remote pixels to contribute to the filtered response,
achieving less loss of details. It was then extended to
non-local features matching for super-resolution [9], or
inpainting [28], proving to achieve robust global features
similarities.

Non-local similarities in neural network architectures were
introduced in [26], called transformers architecture. A
transformer is an end-to-end neural network approach that
includes (self-)attention layers, which compute non-local
similarities between multi-level feature maps. This type
of architecture succeeds as a state-of-the-art method due
to the capacity and flexibility of these attention blocks.
The recent work [27] has bridged the gap between the
self-attention mechanism [26] and non-local means. They
stated that the self-attention mechanism captures long-
range dependencies between deep-learning features by
considering all features into the calculation.

Recently, the authors of [30] presented similarity
calculation between different feature maps (target and
reference images) based on attention mechanism. The
principal drawback of such mechanism is the non-
local operation, which has to be done on features with
low dimensions due to computational overhead. In
addition, low-resolution features usually do not carry
sufficient information for calculating a robust pairwise
similarity. For instance, deep features mainly carry high-
level semantic information related to a precise application
(i.e., classification) that can be less relevant for high-
resolution similarity calculation or matching purposes.

3 Method

We now present our color transfer method. It consists of
three blocks: 1) super-feature extraction, 2) super-features
matching, and 3) color transfer framework. In this section,
all these steps will be illustrated on the target and reference
images shown in Figure 1.

Our objective is to transfer colors from a reference RGB
image Ir € RH*XWX3 (o a target RGB image Iy €
REXWX3 — Concretely, this will be done by passing



Target image

Reference image

Figure 1: Example of input images.

colors from Ir to Ir based on pairwise feature-related
similarities.

3.1 Super-feature extraction

Let fr and fr be feature maps of the target image and
reference image, respectively. In the following, we will
consider features coming from pre-trained deep networks,
but our methods can directly be applied to any other hand-
crafted features. More precisely, we focus on features
extracted at the first layers of a deep network, as they
provide a long range of low-level features that suit diverse
types of images. These feature maps then have high
dimensions, typically the same size as the input image,
times several channel’s descriptors with H x W x C where
C = 64 or 128 for example.

A critical drawback of using high-resolution features for
matching operations is the high computational complexity.
Let the number of features in a feature map be D =
H xW xC, then the complexity of the pixel-wise similarity
computation is O (D?). To solve this quadratic complexity
problem, we implement an encoding layer based on
superpixels representation. We first generate a superpixel
map using a superpixels decomposition algorithm on the
initial color images. Let us denote the target superpixel
map by St, and the reference one by Sg. Each of these
maps contains Ny and Ng superpixels respectively with
P; pixels each where i is the superpixel index. Next, we
extract features of size C' x P; for each superpixel. These
extracted features are then pooled by averaging channel-
wise and stacked as a matrix of size C' x N called super-
feature F'. Figure 2 illustrates this process. To sum up, the
initial feature maps pass from size H x W x C' to super-
feature encoding (F7p and Fr) of size Ny xC and, Ng xC,
making feasible operations such as correlation calculation
between large deep neural networks features.

3.2 Super-features matching

Our super-features provide a compact encoding to compute
the correlation between high-resolution deep learning
features. Here, we take inspiration from the attention
mechanism [30] to achieve a robust matching between
target and reference super-features.  The process is
illustrated in Figure 3. Mainly, we exploit non-local
similarities between the target and the reference super-

HxWxC

¥
[+

cxi

>
cXi

Super-
feature
F

Feature Map CHRP
f 1

Figure 2: Diagram of our super-feature encoding proposal.
This proposal is inputting a feature map of size H x W X
C, in which each superpixel is extracted and encoded in
vectors of size C' x P; pixels. Afterward, the vectors
are pooled channel-wise and, finally, stacked in the super-
feature matrix F' with size C' x N number of superpixels.
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Figure 3: Diagram of our super-features similarity
calculation. This layer takes a reference feature map fr
and a set of target feature map fr as an input, and outputs
an attention map at superpixels level by means of a non-
local operation.

features by computing the attention map as:
A = softmaxg (Mrgr/T). €))

The softmaxp operation normalizes row-wise the input
into probability distributions, proportionally to the number
of target superpixels Ng. Then, the matrix Mrp is a
correlation matrix between the target and reference super-
feature and is computed as:

(Fr(i) — pr) - (Fr(j) — pr)

M .a ) = ) ] 2
Tr(%, ) | Fr(i) — prlls |Fr() — prll, ?

where pr and pp are the mean of each super-feature.
We found that this normalization keeps correlation values
less sensitive to changes on 7 for different images. The
attention map (1) is the same non-local operator as the
one proposed by Zhang et al. [30]. However, their
computation requires low-level features due to the inherent
complexity problem (as mentioned in Section 3.1).

We solve this complexity problem thanks to our super-
feature encoding approach. Let n = H x W be the number
of pixels in an image. Then the number of features in a
deep learning feature map is D = n x C' which translate
in computational complexity as O(D?) = O(n?C?). In
contrast with our novel super-feature encoding, if we set
the number of superpixels in the order of y/n, then instead
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Figure 4: Direct super-features matching using different 7 values. Images on the first row depict our results for direct
matching on superpixel-level. The second row represents ours attention maps for each of the images above. The attention
map represents a probability distribution of the correlation between the target super-features (rows) and reference super-

features (columns).

we rewrite with D; = /n x C, resulting in O(D?)
O(n x C?). As C < n can be ignored, we go from
quadratic to linear complexity operation. As a result, we
can incorporate the correlation operation on large deep
learning features from both target and reference images.
Conversely, [30] can only rely on deep-level features,
usually the bottleneck features (i.e., H/8 x W/8 x C') for
similarities calculation.

To match colors at superpixels level, we rely on the
attention map .4 and the average of each superpixel color.
Specifically, we apply our attention map as a soft-weight
on the average colors, resulting then in a smooth colors
correspondence (see Figure 4).

Figure 4 also shows the influence of temperature 7 onto
the superpixels attention map. We can see that the
probability distribution is over-smoothed for larger values
of 7 (i.e., 7 = 0.1), meaning that several reference super-
features match one target super-feature. Otherwise, a small
7 value means a hard one-to-one matching between a target
and reference super-features (i.e., 7 =9 X 10~4).

3.3 Color fusion framework

Direct superpixel matching by averaging colors is not
sufficient to obtain visually satisfying results. Image
details are indeed lost at superpixel-level (i.e., door,
windows, etc., in Figure 4). Therefore we need to transfer
color at pixel level from our superpixels matching.

For clarity in further equations, we denote the position and
color centroids of a superpixel j in an image I as:

o Z €S(y p
X (i) = =P J)
() B
and > 1)
T(]) — peS () p

bj

respectively, where P; is the number of pixels in
superpixel j.

Inspired by the formulation of [8], we compute the new
value I;(p) of each pixel p of the target as a weighted
average of reference superpixels representative colors:

i o~ 2 W) Ir()
It (p) = Nr :
Zj:l W(p, j)
The weight matrix W depends firstly on the distance

between pixel p and all target superpixels as in [8], and
secondly, on our attention map:

3

Nt
W(p,j) = Z d(p,i)A(i, j). &)

The intuition behind the attention map is the addition of
more relevant information about reference super-features
into the transfer process. The distance between pixel p and

superpixels centroids is computed over both positions and
colors:

(e @ -V )= (Ve ) -V (1) )
g

d(p,i) = e( ()

with position and color vectors being V' (p) = [p, I(p)] and
Vr(j) = [X7(j), Ir(j)]. and the spatial and colorimetric
covariances of pixels in superpixel :

e

Parameters 0; and §; weight the influence of color and
spatial information, respectively.

Finally, as in [8], after color fusion we apply a post-
processing step using a color regrain algorithm [18], which

52 Cov (p) 0

0 52 Cov (I(p)) ©)
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Figure 5: Color fusion framework results. A visual
comparison between [8] and our result.

eventually matches the color distribution of [r and the
gradient of I1. Figure 5 presents an example of our color
transfer framework compared to the result of [8]. Visually,
our results present better spatial consistency of colors. For
instance, the sky on our results has a more natural smooth
transition of colors. On the other hand, [8] results present
a non-natural transition of colors (i.e., yellow to blue).

4 Results

In this section, we first present the implementation details
used to validate our method and then provide a detailed
qualitative comparison between our results and four state-
of-the-art approaches.

4.1 Implementation details

Superpixels representation is done using the SLIC
algorithm [1], in which the number of superpixels depends
on the actual size of the image. Experimentally, we set the
number of superpixels as 3 x /1 where n is the number of
pixels in the current image.

To build feature maps, we rely on a pre-trained VGG-
19 [22] as our texture and color characteristics extractor,
due to its simplicity and its 95.24% accuracy on the
ImageNet Top-5 classes. However, our approach can
work with other types of CNN architectures regardless its
features dimensions.

In order to choose an optimal temperature 7 value, we
experimented on different images at distinct temperatures.
Empirically, we obtain promising results using 7 = 0.02.
In addition, all experiments have been run with §; =
10 and 6. = 0.1, as [8] recommend to favor spatial
consistency.

4.2 Comparison

We compare our method against four approaches:
[19] which proposes an automated color transfer based

on color distributions; [13] which implements a color
transfer approach based on color histogram analogy using
deep neural network; [20] that combines a gamut-based
strategy with scene illumination; and [8] which implements
the color fusion framework by leveraging on its proper
superpixels decomposition. All four mentioned approaches
had been considered state-of-the-art in color transfer, and
have open-source codes for a fair comparison. Each
method has been run with its default parameters.

Results comparing the four methods are shown in Figure 6.
Our results (last column) have more visually pleasant
colors and consistency in image texture, providing more
realistic color transfer results with respect to the other
methods.

For the first image (first row), [19, 20, 13] show over-
saturation on the illumination of their results. Although
this problem does not appear in [8] its result has a visible
halo effect on the colors of the sky (darker blue to light
blue). On the second image, most of the results fail to
transfer the blue in the sky of the desert to the sea onto
the target image, except for [8], which does it partially at
the cost of a saturate orange on the reflection of the water.
Our result for the second image corrects this issue making
a more pleasant result. Lastly, our third color transfer result
shows that fine details such as the line that divides the road
is caught, and distinguishes from other textures. Finally,
all compared methods achieve at least one over-saturated
result. However, our method ensures more realistic but
opaque colors. This happens for two reasons: 1) we rely
on average colors from superpixels regions that lead to less
saturated colors results; and 2) the attention temperature
7, which smoothes the weights. We believe our results
are more realistic, and we will study in future works if
saturated results keep this realism.

5 Conclusions

This paper proposed a new method for color transfer by
leveraging deep learning features and superpixels. At the
core of the method is our novel super-features matching
that uses high-level deep learning features from both target
and reference images. On top of that, we update the color
fusion framework proposed by [8] to consider our attention
map, which provides texture and color knowledge from the
reference image onto the final color transfer step. Finally,
our method achieves more visually consistent and realistic
results in comparison to the four state-of-the-art methods
considered. Work is underway on adapting the method
for transferring color from a reference color image to a
grayscale target image. Another essential extension will
be a generic method to handle and combine both low and
high dimensional features.
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Figure 6: Comparison of color transfer results. We compare our method with four different state-of-the-art approaches: [19]
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learning-based color histogram analogy. Finally, our method produces more realistic and pleasant results.
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