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Introduction 1.Motivation and related work

In recent years, 360-degree commodity cameras have become increasingly popular and affordable. These systems consist of multiple perspective cameras rigidly attached to the same support, or they combine wide-angle (fisheye) lenses and mirrors. Thanks to their ability to capture a scene from all around, these low-cost sensors offer new opportunities for image-based 3D reconstruction via multiview [START_REF] Furukawa | Multi-View Stereo : A Tutorial[END_REF][START_REF] Barazzetti | 3D modelling with the Samsung Gear 360[END_REF] or photometric stereo [START_REF] Ackermann | A Survey of Photometric Stereo Techniques[END_REF]. Photometric stereo methods rely on the image-intensity variations caused by illumination changes, to perform a perpixel estimation of the normal vectors of an observed surface, from which the shape of the 3D object can be ultimately recovered. The seminal work of Woodham [START_REF] Woodham | Photometric method for determining surface orientation from multiple images[END_REF] has been extended in several directions in the last decades : for example, in [START_REF] Abrams | Heliometric Stereo : Shape from Sun Position[END_REF][START_REF] Ackermann | Photometric Stereo for Outdoor Webcams[END_REF][START_REF] Abrams | The Episolar Constraint : Monocular Shape from Shadow Correspondence[END_REF][START_REF] Jung | One-day outdoor photometric stereo via skylight estimation[END_REF], the authors have relaxed the lighting constraints, and used outdoor images under natural sunlight illumination, to perform the 3D reconstruction. The so-called "uncalibrated" photometric stereo problem arises when no information about the illumination and/or geometry, and reflectance of the surface is available. This problem is well-known to be ill-posed and it has been the subject of extensive research lately [START_REF] Hayakawa | Photometric stereo under a light source with arbitrary motion[END_REF][START_REF] Basri | Photometric Stereo with General, Unknown Lighting[END_REF][START_REF] Quéau | Solving Uncalibrated Photometric Stereo Using Total Variation[END_REF][START_REF] Quéau | A Non-Convex Variational Approach to Photometric Stereo under Inaccurate Lighting[END_REF][START_REF] Papadhimitri | A New Perspective on Uncalibrated Photometric Stereo[END_REF]. Other extensions include near-field (i.e. local and non-strictly directional lighting) [START_REF] Mecca | Near Field Photometric Stereo with Point Light Sources[END_REF][START_REF] Logothetis | Semicalibrated near field photometric stereo[END_REF][START_REF] Logothetis | A CNN Based Approach for the Near-Field Photometric Stereo Problem[END_REF], more sophisticated surface reflectance models (i.e. "Bidirectional Reflectance Distribution Functions" or BRDF, other than the classical Lambertian reflectance) [START_REF] Tagare | A Theory of Photometric Stereo for a Class of Diffuse Non-Lambertian Surfaces[END_REF][START_REF] Higo | A Hand-held Photometric Stereo Camera for 3-D Modeling[END_REF][START_REF] Weinmann | Multi-View Normal Field Integration for 3D Reconstruction of Mirroring Objects[END_REF][START_REF] Lu | From Intensity Profile to Surface Normal : Photometric Stereo for Unknown Light Sources and Isotropic Reflectances[END_REF], the relaxation of constraints on camera placement [START_REF] Hernández | Multiview Photometric Stereo[END_REF][START_REF] Vlasic | Dynamic Shape Capture using Multi-View Photometric Stereo[END_REF][START_REF] Logothetis | A Differential Volumetric Approach to Multi-View Photometric Stereo[END_REF] and combinations thereof [START_REF] Shi | A Benchmark Dataset and Evaluation for Non-Lambertian and Uncalibrated Photometric Stereo[END_REF]. Alongside these recent developments, Woodham's original formulation has been also extended from orthographic to perspective projection in [START_REF] Tankus | Photometric Stereo under Perspective Projection[END_REF]. However, efforts have lagged behind research on consumer-grade vision sensors, and, to the best of our knowledge, no results exist in the literature for twin-fisheye cameras, such as the Samsung Gear 360, the LG 360 CAM, and the Ricoh Theta and Insta360 series. These cameras incorporate two fisheye lenses mounted back-to-back on the same support, and an array of prisms which direct the light beams towards two imaging sensors (see Fig. 1). Spherical cameras such as the Ricoh Theta V, are affordable and lightweight, they have a compact form factor, and they offer distinctive advantages over standard perspective cameras for the 3D reconstruction of large-scale environments. In fact, a single shot is sufficient to record the appearance of an entire complex scene. This obviates the need for stitching up images coming from multiple vantage points, a limiting factor for the use of perspective cameras. Robotics and consumer electronics have also recently benefited from the attractive features of twin-fisheye sensors, e.g. for image-based pose estimation [START_REF] Caron | Spherical Visual Gyroscope for Autonomous Robots using the Mixture of Photometric Potentials[END_REF][START_REF] Shan | Discrete Spherical Image Representation for CNN-Based Inclination Estimation[END_REF].

Original contributions, organization and notation

In this paper, we adapt the general theory developed in our previous work [START_REF] Caracotte | Photometric stereo with central panoramic cameras[END_REF] for central panoramic cameras (i.e. vision systems which preserve the uniqueness of the projection viewpoint), to twin-fisheye cameras. We make standard assumptions on the lighting and reflectance models (i.e. directional lighting and Lambertian surfaces), and we leverage the unifying projection model [START_REF] Geyer | A Unifying Theory for Central Panoramic Systems and Practical Implications[END_REF][START_REF] Barreto | A unifying geometric representation for central projection systems[END_REF], tailored to multi-fisheye cameras [START_REF] Jamaluddin | 3D Reconstruction from Specialized Wide Field of View Camera System Using Unified Spherical Model[END_REF][START_REF] Gao | Dual-fisheye omnidirectional stereo[END_REF], to define a spherical image irradiance equation. Differently from [START_REF] Caracotte | Photometric stereo with central panoramic cameras[END_REF], the two subimages corresponding to each fisheye lens of the camera, are processed separately to estimate two per-pixel gradient fields, which are subsequently merged into a single one.

A drift-free normal integration algorithm is designed to process the joint gradient field and recover the radial distances, and thus the 3D shape of the scene observed by the camera. To estimate the light directions in real images, we took advantage of the specular highlights observed on multiple mirror balls inside the scene, and modified the algorithm in [START_REF] Schnieders | Camera and light calibration from reflections on a sphere[END_REF] to fit our spherical formulation. The overall 3D reconstruction pipeline has been validated with synthetic images, and with real-world images captured by the Ricoh Theta V camera in a laboratory environment.

The rest of this paper is organized as follows. In Sect. 2, we present the mathematical model of a twin-fisheye camera and the spherical image irradiance equation, and describe our 3D reconstruction pipeline. In Sect. 3, we present the results of the simulation experiments. In Sect. 4, we describe the algorithms developed for the calibration of the Ricoh Theta V camera and for the estimation of the light directions, and we discuss the results obtained with the realworld images. Finally, in Sect. 5, the main contributions of the paper are summarized and some possible directions for future research are outlined.

Notation : Throughout this article, as generally accepted in the literature, we shall use the term twin-fisheye to refer to the camera, and dual-fisheye to refer to the images captured by the twin-fisheye camera (see Fig. 1(a) and Fig. 1(c), respectively). The symbol R n denotes the n-dimensional Euclidean space, R m×n the space of m × n matrices, x the Euclidean norm of vector x ∈ R n , and R y (θ) and R z (ϕ), the 3 × 3 elementary rotations of an angle θ and ϕ about the yand z-axis, respectively. Finally, x, y denotes the scalar product of x, y ∈ R n , x indicates a normalized vector i.e. x = x/ x , x an estimate of vector x, and the equality by definition.

2 Estimation of radial distances from photometric ratios

Modeling of a twin-fisheye camera

In this work, we deal with twin-fisheye cameras, i.e. 360-degree cameras equipped with two identical fisheye lenses pointing in opposite directions (see Fig. 1), with special attention to the Ricoh Theta V camera, which will be used in our real-world experiments in Sect. 4.

It is well known that some classes of fisheye cameras are approximately equivalent to a central catadioptric system [START_REF] Ying | Can We Consider Central Catadioptric Cameras and Fisheye Cameras within a Unified Imaging Model ?[END_REF][START_REF] Courbon | Evaluation of the Unified Model of the Sphere for Fisheye Cameras in Robotic Applications[END_REF]. Therefore, the unified central projection model can be used [START_REF] Geyer | A Unifying Theory for Central Panoramic Systems and Practical Implications[END_REF][START_REF] Barreto | A unifying geometric representation for central projection systems[END_REF]. We describe each fisheye lens of the twin-fisheye camera by its own set of intrinsic parameters P cj = a uj , a vj , u 0j , v 0j , ξ j , j ∈ {1, 2}, where a uj and a vj are the focal lengths in pixels in the horizontal and vertical directions, respectively, and (u 0j , v 0j ) are the coordinates of the principal point in pixels. The fifth parameter, ξ j , is the distance between the unit sphere's first projection center and the perspective second projection center of fisheye lens j, as described in [30, Fig. 2]. Following [START_REF] Caron | Spherical Visual Gyroscope for Autonomous Robots using the Mixture of Photometric Potentials[END_REF], we assume that the translation vector between the frames F c1 and F c2 of the two fisheye lenses is zero, to ensure the uniqueness of point of view. Moreover, we assume that the camera frame F c coincides with F c1 (they are shown separately in Fig. 1(b), for illustration purposes only). The extrinsic parameters of the twin-fisheye camera are then incorporated into the rotation matrix c2 R c1 , the orientation of F c1 relative to F c2 . The spherical image captured by a twin-fisheye camera can be represented by using the spherical coordinate system (ρ, θ, ϕ) [36, Sect. 2.5] :

     x = ρ sin θ cos ϕ, y = ρ sin θ sin ϕ, z = ρ cos θ, (1) 
where ρ ∈ [0, ∞) is the radial distance, θ ∈ (0, π) the polar angle and ϕ ∈ [0, 2π) the azimuthal angle.

Our ultimate goal in this paper, will be to estimate the radial distance (or range) ρ from multiple images of a 3D scene observed from the same viewpoint, but under different illumination conditions.

Spherical image irradiance equation

To solve the photometric stereo problem for central panoramic cameras under a Lambertian reflectance model, in our previous work [28, Th. 2], we have introduced the spherical image irradiance equation,

I(θ, ϕ) = α(θ, ϕ) L T ||L|| p 2 + q sin θ 2 + 1 R z (ϕ) R y (θ)     p q sin θ -1     , (2) 
where I(θ, ϕ) and α(θ, ϕ) ∈ [0, 1], denote the intensity and the albedo at point (θ, ϕ), respectively, L [p d , q d , -1] T is the illumination vector (the light source without attenuation is set at infinity), and

p 1 ρ ∂ ρ ∂ θ = ∂ ln ρ ∂ θ , q 1 ρ ∂ ρ ∂ ϕ = ∂ ln ρ ∂ ϕ . (3) 
Note that equation ( 2) only depends on the partial derivatives of ln ρ(θ, ϕ) with respect to θ and ϕ, but not on ln ρ(θ, ϕ) itself. As a consequence, the problem of recovering the radial distance ρ(θ, ϕ) from the image irradiance equation reduces to the problem of recovering ln ρ(θ, ϕ) from ( 2). Since the natural logarithm is a bijective function and ρ(θ, ϕ) > 0, estimating ln ρ(θ, ϕ) amounts to recovering ρ(θ, ϕ) = exp(ln ρ(θ, ϕ)). Photometric stereo relies on multiple images of the same scene observed from the same point of view, under n different lighting conditions. If we define the images and the corresponding illumination vectors, I i (θ, ϕ) and

L i [p di , q di , -1] T , i ∈ {0, 1, . . . , n -1},
respectively, then from equation ( 2), the ith-image irradiance equation is :

I i (θ, ϕ) = α(θ, ϕ) L T i ||L i || p 2 + q sin θ 2 + 1 R z (ϕ) R y (θ)      p q sin θ -1      .
By dividing the ith image by the kth (assuming that the latter is non-zero everywhere), we obtain :

I i (θ, ϕ) I k (θ, ϕ) = L k L T i R z (ϕ) R y (θ) p, q sin θ , -1 T L i L T k R z (ϕ) R y (θ) p, q sin θ , -1
T .

(4) By expanding the numerator and the denominator, and by collecting the terms containing p and q, the photometric ratio (4) can be rewritten as,

A i,k p + B i,k q + C i,k = 0, i, k ∈ {0, 1, . . . , n -1}, (5) 
where

A i,k = I i (θ, ϕ) L i L k , e θ -I k (θ, ϕ) L k L i , e θ , B i,k = 1 sin θ I i (θ, ϕ) L i L k , e ϕ -I k (θ, ϕ) L k L i , e ϕ , C i,k = -I i (θ, ϕ) L i L k , e ρ + I k (θ, ϕ) L k L i , e ρ ,
where {e ρ , e θ , e ϕ } is the basis set of unit vectors for the spherical coordinates [36, Sect. 2.3]. We can notice that system ( 5) is linear in p and q. Since two images are necessary to construct each of its equations, then three images are sufficient to recover the two unknowns p and q under ideal conditions. However, in the presence of image noise, the least-squares solution to system ( 5) is clearly preferable.

3D reconstruction pipeline

In the proposed 3D reconstruction pipeline (see the flowchart in Fig. 2), the processing steps from the inverse perspective projection to the estimation of the gradient field, are performed separately for each sub-image. This yields a per-pixel estimation of (p, q) in F c1 and F c2 . In the inverse perspective projection step, each pixel of the spherical image I i (θ, ϕ) is mapped into a pixel in the image plane I i (u, v), and into a corresponding 3D point on the unit sphere I i (x s , y s , z s ), i ∈ {0, 1, . . . , n -1}. The estimated gradient field on the image plane and unit sphere is denoted by (p(u, v), q(u, v)) and (p(x s , y s , z s ), q(x s , y s , z s )), respectively. In the fusion and resampling step, the two gradient fields are merged into a single one on unit the sphere, each hemisphere corresponding to a fisheye lens of the camera. In particular, along the equator, we set,

p(π/2, ϕ) = 1 2 p(π -π/λ, ϕ) + p(π + π/λ, ϕ) , q(π/2, ϕ) = 1 2 q(π -π/λ, ϕ) + q(π + π/λ, ϕ) ,
where ϕ ∈ [0, 2π), and 1/λ is the sampling interval (we set λ = 512 in our tests in Sect. 3 and Sect. 4).

Inverse perspective projection

Estimation of light directions

Estimation of gradient ¡eld: 

(p(θ, ϕ), q(θ, ϕ)) ρ(θ, ϕ) (X, Y, Z) n FIGURE 2
-Flowchart of the proposed photometric stereo algorithm, which takes n dual-fisheye images as input.

Next, as shown in Fig. 2, the unknown radial map ρ(θ, ϕ) is recovered by integration of the joint gradient field. Numerous methods exist in the literature to solve the integration problem [START_REF] Quéau | Normal Integration : A Survey[END_REF]. The popular variational approach considers a least-squares cost function and solves the corresponding 2D Poisson-equation [START_REF]Variational Methods for Normal Integration[END_REF]. Iterative methods [START_REF] Horovitz | Depth from gradient fields and control points : Bias correction in photometric stereo[END_REF], path integrals and grid-based basis functions [START_REF] Ackermann | A Survey of Photometric Stereo Techniques[END_REF], have also been proposed for the numerical integration. In this work, we use a drift-free method which takes the gradient field directly as input (cf. [START_REF] Caracotte | Photometric stereo with central panoramic cameras[END_REF]). Two geometric constraints were enforced to improve the quality of the reconstructed surface. As a result of the fusion and resampling step, the joint gradient field (p(θ, ϕ), q(θ, ϕ)) is defined over the full sphere (the two poles excluded). The first constraint is a periodic boundary condition, and it is referred to as the "Circularity Constraint". Since the radial distance must take the same values along opposite azimuth boundaries, we enforced ρ(θ, ϕ + ∆ϕ) = ρ(θ, 0) for ϕ = 2π with θ ∈ (0, π), where ∆ϕ denotes the step-size along the ϕ-direction used in the finite-difference approximation of ∂ ln ρ/∂ ϕ in (3). The second constraint, referred to as "Polar Constraint", is imposed on the contiguous grid points lying on the annuli around the North or South poles (i.e. the points with θ = 0 or θ = π, which are the singularities of the spherical coordinate representation (1)).

As such, all the points on the North and South annulus are considered as neighbors.

Simulation experiments

In this section, we present the results of our experiments with synthetic images, which allowed us to easily verify how critical our assumptions on the geometry of the scene and on the lighting conditions are.

To test the effectiveness of the proposed approach, we used Blender 1 to create a 3D virtual scene that we considered as our ground truth. We generated synthetic grayscale dual-fisheye images using the estimated calibration parameters of the Ricoh Theta V camera (see Sect. 4.1 for more details), under 14 different lighting conditions. The illumination vectors L i , i ∈ {0, 1, . . . , 13}, were positioned so as to light up each 3D point of the scene at least three times. To simplify the simulation process and reduce the number of input images to the 3D reconstruction pipeline, the self-occlusions were neglected. The quantization effect on 8-bit gray images was simulated by mapping

I i (θ, ϕ) ∈ [0, 1] ⊂ R ≥0 , i ∈ {0, 1, . . . , 13}, onto the discrete set {0, 1, . . . , 255}.
To assess the 3D reconstruction quality, we considered the angular deviation between the ground-truth and estimated normal vectors,

ε(θ, ϕ) = arccos( N(θ, ϕ), N(θ, ϕ) ),
being N(θ, ϕ) the actual normal at (θ, ϕ), and N(θ, ϕ) the normal estimated by our method.

To validate the overall image-processing pipeline, in our first test we considered a Geodesic Polyhedron with 80 faces and circumradius r (a 2-frequency subdivided icosahedron). Fig. 3(a) shows one of the 14 input dual-fisheye images, and Fig. 3(b) the estimated normal map (in false colors) computed with the formula (cf. equation ( 2)) :

N(θ, ϕ) = 1 p 2 + q sin θ 2 + 1 R z (ϕ) R y (θ)     p q sin θ -1     .
Note that the Mean Angle Error (MAE) is 0.35 • and not zero, because of the quantization error. Finally, Fig. 3(c) shows the external surface of the Geodesic Polyhedron reconstructed with the direct geometry-informed method described in Sect. 2.3. In our second and third test, we focused on two phenomena which occur when an image is recorded by a real camera. In fact, we studied the effect of gamma correction and of non-directional lighting on the quality of surface reconstruction. The second row of Table 1 reports the MAE for an increasing value of γ, and with (shaded columns) or without correction. Instead, the fourth row of the table reports the MAE for an increasing distance between a virtual point light source and the center of the Geodesic Polyhedron. To define such a distance, we considered integer multiples of the circumradius r of the polyhedron In our last test with synthetic images, we considered a more challenging 3D scene, called Room, which contains several depth discontinuities. The images for this scene were generated using the same procedure described above for the Geodesic Polyhedron. Fig. 3(d) shows one of the 14 grayscale dual-fisheye images, while the estimated normal map and final 3D reconstruction of one side of the scene are reported in Fig. 3(e) and Fig. 3(f), respectively.

Real-world experiments

In this section, we describe the calibration method used to estimate the intrinsic and extrinsic parameters of the Ricoh Theta V camera, and present the algorithm for the estimation of the light directions in real images. We conclude the section with a discussion of the results obtained with realworld images, and of some possible future improvements. 

Calibration of the twin-fisheye camera

The Ricoh Theta V is an omnidirectional camera consisting of a twin-lens folded optical system coupled with two photosensitive sensors (1/2.3" 12 MP CMOS). The two fisheye lenses point in opposite directions and provide a spherical field of view (see Fig. 1(a)).

The quality and resolution of the dual-fisheye images recorded by the Ricoh Theta V in the default live and video is relatively poor. To overcome this limitation, we developed a dedicated plug-in module to capture dual-fisheye images with the maximum possible resolution (5792 pixels × 2896 pixels) in still mode. Thanks to the plug-in, we can also manually change the camera settings, such as the exposure time, the aperture, the ISO sensitivity, and the quality (Q factor) of the output image.

To calibrate the Ricoh Theta V with HySCaS [START_REF] Caron | Multiple Camera Types Simultaneous Stereo Calibration[END_REF], we modeled it as a stereo system with two fisheye ca- meras sharing the same projection center (the translation vector between F c1 and F c2 was then set to zero). As in [START_REF] Caron | Spherical Visual Gyroscope for Autonomous Robots using the Mixture of Photometric Potentials[END_REF], we used a custom-made calibration rig consisting of six circles patterns glued inside two half cubes. Three images of the rig, one of which is reported in Fig. 4, were taken by the hand-held camera. This yielded, P c1 = {2492.8, 2496.0, 4311.0, 1464.1, 1.866}, P c2 = {2484.1, 2505.5, 1457.2, 1466.3, 1.848}, and c2 R c1 =   -1.000 -0.001 0.025 0.000 1.000 0.031 -0.025 0.031 -0.999

  ≃ R y (π).

Estimation of light directions from mirror balls

To estimate the illumination vectors L 0 , . . . , L n-1 using real dual-fisheye images, we adapted the light calibration method proposed in [START_REF] Schnieders | Camera and light calibration from reflections on a sphere[END_REF] for perspective cameras, to the spherical formulation considered in this paper. The method consists in observing the specular highlight generated by a light source on a mirror ball of known radius r m located at a distance D from the center O of the unit sphere of the unified central projection model (see Fig. 5). Algorithm 1 summarizes the main steps of our method for the estimation of the generic illumination vector L. The circle C corresponds to the intersection between the unit sphere and the cone with apex at O and tangent to the mirror ball. The light direction L, the viewing direction to the specular highlight, and the normal n h to the mirror at the point of incidence h, lie on the same plane. For the sake of simplicity, we approximated the specular highlight as a point, by considering its centroid.

Experimental results

To study the performance of our 3D reconstruction pipeline in a real setting, we built a 2 × 1.25 × 1.12 m 3 booth made of an aluminum frame covered by a black curtain, to sup-press the parasitic ambient light (see Fig. 6(a)). Two expanded polystyrene foam objects, Cat (23 cm tall and 14 cm at the widest point) and Teddy Bear (19 cm tall and 12 cm at the widest point), were placed inside the booth. The two objects, whose white matte surface complies with the Lambertian model, were illuminated with a 220 V, 5. Note that a deformation can be observed on the top of Cat's head, which is due to an incorrect estimation of the gradient field (p(θ, ϕ), q(θ, ϕ)) in this area.

Discussion

In this section, we provide some remarks on the obtained results, and discuss some possible improvements of our 3D reconstruction pipeline. The inaccuracies observed in our 3D reconstructions of Cat and Teddy Bear, can be attributed to several factors : uncertainty in the estimation of light directions, cast shadows, etc. However, the main sources of error appear to be the non-ideal illumination conditions, the photometric response of the Ricoh Theta V, and the spatial resampling of the gradient field. The results reported in Table 1 provide evidence for these errors, and support this conclusion.

In our tests with the synthetic images, the camera response curve was known and the assumption of directional lighting was strictly satisfied, as opposed to the experiments with real-world images. In the second test in Sect. 3, we studied the effect of gamma correction, in an effort to reproduce the nonlinear behavior of the Ricoh Theta V in the virtual camera. In the third test of Sect. 3, we moved a point light source progressively away from a known scene, to quantify its impact on the estimation of (p(θ, ϕ), q(θ, ϕ)). As is evident from Table 1, the farther the point light source, the smaller the MAE. In the real setup of Fig. 6(a), the distance between the LED lamp and the 3D scene ranges from 6.1 r to 8.7r, where r = 23 cm is half the minimum distance between Cat and Teddy Bear. In the reconstruction pipeline adapted to the dual-fisheye images, the interpolation phase occurs at a later stage than in [START_REF] Caracotte | Photometric stereo with central panoramic cameras[END_REF], i.e. during the fusion and resampling step (cf. Fig. 2). This yields a per-pixel estimation of the gradient field (p(θ, ϕ), q(θ, ϕ)), which more accurately reflects the input data. In future works, we plan to take advantage of the free tangent directions introduced in [28, Th. 2], to mitigate the effect of spatial resampling or to remove this processing step altogether.

As detailed in Sect. 2.3, the gradient fields estimated from the dual-fisheye sub-images processed separately, are merged together (by considering a pure rotation c2 R c1 between F c1 and F c2 ). The same procedure could be applied, in principle, to other generic multi-camera arrangements complying with the central projection model, as long as the intrinsic and extrinsic parameters are known.

Our experiments corroborated the proposed theory and successfully validated the overall 3D reconstruction pipeline.

The results obtained with relatively few real-world input images, provided further evidence in support of our method.

To reproduce the results of Sect. 3 and Sect. 4, our image dataset, plug-in for the Ricoh Theta V, and Matlab/Blender code, can be freely downloaded at the following address : home.mis.u-picardie.fr/∼fabio/PhotoSphere.html

Conclusion and future works

In this paper, we have studied the photometric stereo problem for consumer-grade twin-fisheye cameras, which provide 360-degree images of a given scene. Building upon our previous work and a novel spherical image irradiance equation, we have proposed a full 3D reconstruction pipeline, whose effectiveness has been demonstrated via experiments with synthetic and real images taken by a Ricoh Theta V camera. This project is currently underway, and in future works we would like to validate our photometric stereo algorithm using dual-fisheye images of an outdoor scene under natural illumination conditions. The preliminary results presented in this paper being promising, our ultimate aim is to apply our 3D reconstruction pipeline to digital cultural heritage [START_REF] Mouaddib | E-Cathedral : In Silico Monumental Heritage[END_REF].
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 1 FIGURE 1 -(a) Front, side and top view of a twin-fisheye camera, the Ricoh Theta V (image courtesy of Ricoh), and schematic of the optical system with the two fisheye lenses, prisms and CMOS sensors ; (b) F c is the camera frame, and F c1 , F c2 , the coordinate frames associated to the two fisheye lenses (top view) ; (c) Example of dual-fisheye image taken by the Ricoh Theta V : the left and right sub-images correspond to the two fisheye lenses.
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 112 Pc 2 I 0 (u, v), . . . , I n-1 (u, v) I 0 (xs, ys, zs), . . . , I n-1 (xs, ys, zs) L 0 , . . . , L n-Rc 1 (p(xs, ys, zs), q(xs, ys, zs))

FIGURE 3 -

 3 FIGURE 3 -Synthetic images : 1st row, Geodesic Polyhedron, 2nd row, Room. (a),(d) Sample input dual-fisheye images (grayscale) ; (b),(e) Estimated normal maps in false colors ; (c),(f) 3D reconstructions : for the sake of clarity, the external surface of the reconstructed Geodesic Polyhedron is shown in (c), and only one side of the reconstructed Room is shown in (f) (the sofa is visible on the left and the chest of drawers on the right).

FIGURE 4 -

 4 FIGURE 4 -One of the dual-fisheye imagex used for the calibration of the Ricoh Theta V camera. The calibration rig comprises six orthogonal circle patterns and it is visible in the two sub-images (the image is rotated by 180 • to improve readability).
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 5 FIGURE 5 -Estimation of the light direction L from the specular highlight observed on a mirror ball of radius r m and center O m (top right). The unit sphere of the unified camera model, is depicted at the bottom left.
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 35 LED lamp with the following optical specifications : luminous flux 350 lm, CIE R a 80, temperature 4000 K (cool white), and beam angle 36 • . A binary mask was applied to the dual-fisheye images of Cat and Teddy Bear, to subtract the background. We considered the three RGB channels separately, and normalized the corresponding pixel intensities using the formula,I(θ, ϕ) = I(θ, ϕ) -min I(θ, ϕ) max I(θ, ϕ) -min I(θ, ϕ) ,where the min and max are evaluated over θ ∈ (0, π) and ϕ ∈ [0, 2π). Overall, 11 images of Teddy Bear and 12 images of Cat were processed.The experimental setup and one of the images captured by the Ricoh Theta V are shown in Fig.6(a) and Fig. 6(b), respectively. The estimated normal and albedo maps of Cat and Teddy Bear are reported in Fig. 7(a) (the albedo map was computed with the method described in [41, Sect. 4.1]). Finally, Fig. 7(b) and Fig. 7(c), which show the 3D reconstruction of the test objects, demonstrate the effectiveness of the Circularity and Polar Constraints in the normal integration step.

Algorithm 1 :FIGURE 6 -

 16 FIGURE 6 -(a) Experimental setup : LED lamp, Ricoh Theta V camera, and test objects (Cat and Teddy Bear). The four mirror balls used to estimate the light directions via Algorithm 1, are visible on both sides of the test objects ; (b) One of the dual-fisheye images captured by the Ricoh Theta V.

FIGURE 7 -

 7 FIGURE 7 -Real-world images : (a) Estimated normal map in false colors (top), and estimated albedo map (bottom) ; results in dual-fisheye format (left), and close-up views (right). (b),(c) 3D reconstruction of Cat and Teddy Bear (clockwise from top left : three-quarter, full face, and profile view).

TABLE 1 -

 1 Geodesic

	γ	1.2	1.2	1.5	1.5	2.2	2.2
	MAE [deg.]	0.75 0.36 2.02 0.37 4.22 0.41
	Distance	2 r	5 r	10 r 15 r 20 r 25 r

Polyhedron : (1st and 2nd row) Mean angular error (MAE) in degrees for an increasing value of γ : the shaded columns report the values obtained with the gamma correction. (3rd and 4th row) MAE for an increasing distance between the point light source and the camera. MAE [deg.] 21.53 3.67 1.54 1.14 0.89 0.70
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