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Résumé

Cet article traite du suivi de pose direct basé modèle
3D. Nous considérons la transformation d’images omnidi-
rectionnelles en Mélange de Gaussiennes Photométriques
(MGP) comme primitives directes. Les contributions sont
d’adapter l’optimisation de pose aux caméras omnidirec-
tionnelles et de repenser les règles d’initialisation et d’op-
timisation du paramètre d’extension du MGP. Plusieurs
évaluations montrent que cette approche augmente la taille
du domaine de convergence. L’application à des images
acquises avec un robot mobile placé dans un environne-
ment urbain, représenté par un grand nuage de points
3D coloré, montre une robustesse significative aux grands
mouvements inter-images par rapport aux approches di-
rectes qui utilisent uniquement l’intensité des pixels.

Mots Clef

Asservissement visuel, Vision Omnidirectionnelle, Suivi.

Abstract

This paper tackles direct 3D model-based pose tracking.
It considers the Photometric Gaussian Mixtures (PGM)
transform of omnidirectional images as direct features. The
contributions include an adaptation of the pose optimiza-
tion to omnidirectional cameras and a rethink of the initia-
lization and optimization rules of the PGM extent. These
enhancements produce a giant leap in the convergence do-
main width as demonstrated by the evaluations. Applica-
tion to images acquired onboard a mobile robot within an
urban environment described by a large 3D colored point
cloud shows significant robustness to large inter-frame mo-
tion, compared to approaches that directly use pixel bright-
ness as direct features.
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1 Introduction

Direct image alignment [1] and direct visual servoing [2]
(DVS) have significantly progressed during the last decade
in their respective communities, namely computer vision
and robotics. The best known direct approaches concern
visual odometry [3] and visual Simultaneous Localization
And Mapping [4] (SLAM). For a while, direct approaches
were known to save time by avoiding features processing
and to be of high accuracy whereas suffering of a nar-
row convergence domain [5]. While usually overcome by
encapsulation in a pyramidal scheme [6], the latter nar-
rowness was recently enlarged intrinsically by direct ap-
proaches relying on transforms of images : scale space [7],
frequency domain [8], photometric moments [9] or Photo-
metric Gaussian Mixtures [10] (PGM). The latter optimizes
the Gaussian extent of PGMs (Fig. 1 shows its impact on
PGM smoothness) together with camera pose degrees-of-
freedom. This allows to significantly enlarge the conver-
gence domain of DVS with conventional camera.

This paper investigates the application of PGM to omnidi-
rectional (panoramic) vision. The motivation comes from
the fact that the wider field of view of an omnidirectional
camera compared to a conventional camera (perspective-
like) allows more reliable 3D motion estimation [11] and
higher localization rates [12]. This is due to the possibility
to capture information better spread around the viewpoint.
This paper not only considers the PGM of omnidirectio-
nal images but its use in a direct approach for camera and
robot localization with respect to a 3D model of the en-
vironment. Interestingly, the bridge from Visual Servoing
(VS) to the full scale alignment of an image on 3D model
is well established as Virtual Visual Servoing [13]. It was
applied to direct 3D model-based pose tracking in omni-
directional images from pixel brightness [14, 15], making
full benefit of environment 3D point cloud with colors for
robot localization, though sensitive to the amount of inter-
frame motion.



(a) Image I (b) λ = 0.1 (c) λ = 3 (d) λ = 7

FIGURE 1 – (a) An acquired image I and (b-d) PGMs
G(I,λ ) for various extents λ .

Since it is hard to find more recent works of omnidirec-
tional image direct alignment with a 3D model of an en-
vironment, [14, 15] are considered as baselines. Despite
the variety of contributions in the field of neural networks,
only conventional or rectified images are considered as in-
put of pose detection [16] approaches. One could gene-
rate conventional images from omnidirectional ones [17]
to feed the latter methods but, in this paper, we focus
on using acquired images directly without geometric pre-
transformation. This way, one can think about conside-
ring large scale direct visual SLAM with omnidirectio-
nal images [18] but none implement yet localization wi-
thin a pre-built map. The latter functionality is handled by
handcrafted feature-based approaches. But even the state-
of-the-art ORB-based visual SLAM [19] fails in localizing
acquired omnidirectional images in a map that has been
pre-built from another camera, thus making hard to share
the map and requiring additional sensors to estimate the
full scale 3D pose of the camera.
The contributions of this paper benefit from both the use of
a pre-built 3D model of an environment and the properties
of omnidirectional vision and are summarized as :

— a 3D model-based visual tracking approach robust
to very large inter-frame motion ;

— a new solution of initialization and optimization
of the PGM extent, enlarging the convergence do-
main ;

— adaptation of the PGM to the omnidirectional ca-
mera geometry.

The rest of the paper shortly describes the PGM-based om-
nidirectional visual servoing, focusing on the contribution
regarding the new rules of initialization and optimization
of the Gaussian extent of PGMs. Then, Section 3 reports
their evaluation in a virtual environment made of 3D scans
of streets. Finally, Section 4 presents preliminary results of
direct 3D model-based tracking in omnidirectional images
transformed as PGMs, before conclusion (Sec. 5).

2 PGM for Omnidirectional Visual
Servoing

2.1 Photometric Gaussian Mixture
From an omnidirectional image I with M ∈N pixels, we ex-
press its PGM in the exact same way as [10] did for conven-
tional images, i.e., as a mixture of M Gaussians, sha-
ring a unique Gaussian extent parameter λ ∈ R∗+, weigh-

ted by brightness I(u), for the M pixels of coordinates
u = (u,v) ∈ Ω ⊂ N2 of the image. To distinguish image
coordinates from PGM coordinates, we write the latter
ug = (ug,vg) ∈Ω, leading to express a PGM sample as :

G(ug,I,λ ) = ∑
u

I(u)exp
(
−
(ug−u)2 +(vg− v)2

2λ 2

)
. (1)

The PGM of an image I is written G(I,λ ), for compact-
ness. Figure 1 shows the impact of λ on the PGM.

2.2 PGM-based omnidirectional visual ser-
voing

Visual servoing is similar to a Gauss-Newton optimization
that computes camera pose increments v ∈R6, minimizing
the error between a reference (desired) image and the one
to align, namely the current image. The current image is ac-
quired at pose r = (tX , tY , tZ ,θwX ,θwY ,θwZ) ∈ R6, with
||[wX ,wY ,wZ ]|| = 1 and θ ∈ [−π,π] representing the ro-
tation as axis-angle. The desired image I∗ is acquired at
pose r∗ ∈R6. Then, highlighting the dependence of PGMs
to the camera pose as G(r,I,λ ) for I and G(r∗,I∗,λ ∗) for
I∗, and by stacking all their samples (1) as, respectively,
G(r,λ ) ∈RM and G∗ ∈RM , we express the error vector to
regulate to zero :

e(r,λ ) = G(r,λ )−G∗ ∈ RM. (2)

In (2), the Gaussian extent λ is variable while λ ∗ of G∗ is
not [10], thus they are possibly different. λ is not constant
because it is optimized in addition to r by a Gauss-Newton
method computing iteratively increments as [10] :

[vT , λ̇ ]T =−µ [LG Jλ ]
+ e(r,λ ), (3)

where [ ]+ is the pseudo-inverse operator, LG ∈RM×6 is the
interaction matrix related to G(r,I,λ ) at pose r and Jλ ∈
RM×1 is the Jacobian of G(r,I,λ ) with respect to λ . The
latter matrix is the same as in [10]. However, LG is now
expressed for the unified central camera projection model
(UCM) [20] instead of the perspective one used in [10].
Considering intrinsic parameters αu ∈ R∗, αv ∈ R∗ as the
generalized focal length, u0 ∈ R, v0 ∈ R as the principal
point coordinates and ξ ∈R as the mirror shape parameter,
the UCM relates 3D points X = [X ,Y,Z]T ∈ R3 to digital
image points ug as :

ug = αuxg +u0 and vg = αvyg + v0, (4)

with xg = X/(Z + ξ ρ), yg = Y/(Z + ξ ρ) and ρ =√
X2 +Y 2 +Z2. Then, each line LG of LG is expressed as :

LG =

(
∑
u

∇ugG
)[

αu 0
0 αv

]
Lxg , (5)



where :

Lxg =



− 1+x2
g(1−ξ (γ+ξ ))+y2

g
ρ(γ+ξ )

ξ xgyg
ρ

ξ xgyg
ρ

− 1+y2
g(1−ξ (γ+ξ ))+x2

g
ρ(γ+ξ )

γxg
ρ

γyg
ρ

xgyg
(1+y2

g)γ−ξ x2
g

γ+ξ

− (1+x2
g)γ−ξ y2

g
γ+ξ

−xgyg

yg −xg



T

,

(6)
with γ =

√
1+(1−ξ 2)(x2

g + y2
g) [14]. This is the key dif-

ference in the computation of LG compared to [10].

2.3 The two stages strategy : new rules
In (3), λ is optimized for the ideal behavior of PGM
VS [10], i.e., a large convergence domain (large λ ) and a
high precision at convergence (λ tends to λ ∗, set small). To
achieve this ideal behavior, [10] reports a sequence of two
PGM VS, that we name here Rule0 : Step 1 with a large λ ∗

(exact value depends on experiments) and λ = αλ ∗, with
α = 2, at initialization ; Step 2 with constant λ = λ ∗ = 1.
Step 1 allows the large convergence domain and Step 2 al-
lows precision.
In our experimental convergence study (Sec. 3), we obser-
ved that setting λ = 2λ ∗ at the initialization of Step 1 may
lead to unexpected divergence. As such setting can lead to
a current and a desired PGM of very different orders of
magnitude, we assume it is the cause of the problem.
Instead of looking for an hypothetically ideal factor α , we
propose to remove such factor and set λ = λ ∗ large at the
initialization of Step 1. We name this new rule Rule1. Then,
we define Rule2 that keeps Step 2 with λ = λ ∗ = 1 (or
smaller) but we relax the constancy of λ for more cohe-
rence with respect to Step 1, more freedom and to use the
exact same control law (3). The following Section 3 vali-
dates the adaptation of the PGM to omnidirectional came-
ras and evaluates the latter introduced rules.

3 Evaluation in a virtual environ-
ment

The virtual environment is a point cloud of four streets
in a city. The point cloud is a registration of thirteen 3D
scans with Red-Green-Blue photographic colors, all acqui-
red with a Lidar scanner Faro Focus 3D. The virtual camera
simulates the UCM (Sec. 2.2) implemented with a vertex
shader in the Unity 3D software (http://unity.com) brid-
ged to our C++ implementation. Camera intrinsic parame-
ters match those of a real catadioptric camera (Sec. 4) cali-
brated classically by observing known chessboards [21].
This evaluation compares the PGM omnidirectional VS
(PGMoVS) with Rule0, Rule1 and Rule2, and the seminal
Photometric omnidirectional VS [14] (PoVS). Only virtual
images are considered for fair quantitative comparison as
previous works of visual odometry evaluations did [11].

(a)

(b) (c) (d) (e)

(f) (g) (h)

FIGURE 2 – Convergence domain evaluation : (a) Visua-
lization of a parallelepiped formed by 64 initial camera
poses (gold arrows) around a desired one (blue arrow) ; (b-
h) Images rendered at the seven desired poses.

3.1 Protocol
In order to evaluate the convergence domain, 64 ini-
tial poses r are generated around various desired poses
r∗ with combinations of transformations tX = {−8m,8m},
tY = {−2m,2m}, tZ = {−1.5m,1.5m}, θwX = {−10◦,10◦},
θwY = {−10◦,10◦} and θwZ = {−15◦,15◦}. The initial
positions form together a volume included in streets of
about 12m width (Fig. 2a). For variety, we consider 7 de-
sired poses r∗ spread within the 3D model (Fig. 2b-2h).
For PGMoVS, we limit Step 1 to 120 iterations, and 250
iterations in total for both steps. For all three rules, we have
chosen λ = 15 in order to have sufficient overlapping area
between G and G∗. The control gain µ in (3) is set to 0.2
for every VS.

3.2 Results
Figure 3 shows the cumulative distribution of the 448 final
position errors for each of the four VS compared. Setting a
convergence threshold equal to 2cm, Rule2 achieves a 97%
success rate while Rule1 and Rule0 respectively achieve
78% and 70%. For Rule1 and Rule0, Step 2 may converge
to a local minimum, whereas for Rule2 most of the local
minima are removed, allowing to reach the global mini-
mum. In contrast, all the PoVS diverge, which is not surpri-
sing as initial errors allowing PoVS to converge are known
to be below 1.3m [14] whereas initial errors are greater than
8m in this evaluation.
These results show that the new Rule2 significantly outper-

http://unity.com


forms the previous Rule0 and is hence, considered for the
next experiment of 3D tracking (Sec. 4).
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FIGURE 3 – Cumulative distribution of position errors.

4 Experiment : tracking by align-
ments

To perform direct 3D model-based tracking using omni-
directional images transformed as PGMs, we compute the
desired PGM (G∗ in (3)) from an image captured by an
actual camera. The current PGM, G, is computed from an
omnidirectional image rendered as in Section (3). Bright-
ness of both images are centered and normalized to im-
prove their consistency [15]. Tracking in a sequence of ac-
quired omnidirectional images is done by successive exe-
cutions of the virtual control law (3) with Rule2. The ca-
mera pose for the current acquired image is initialized with
the optimal pose of the previous one in the sequence. The
initial pose for the first image of the sequence is set ma-
nually.
The sequence of omnidirectional images is acquired by
an IDS UI-1545LE-M-GL camera (30 images per second)
equipped with a RemoteReality omnidirectional catadiop-
tric optics (double mirror). The camera was attached to a
Mobile Robots Pioneer 3AT, manually piloted at walking
speed (3 km/h, on average) in streets 1. The robot embeds
a SICK LMS-200 Lidar (single horizontal measurement
plane) used by the robot software for SLAM, considered
for qualitative (not synchronized) comparisons (Fig. 4a).
This section shows an extract of a 350m sequence, focusing
on a part of about 4.35m when the robot leaves a sidewalk to
cross a street (Fig. 4b). Although short, the latter part fea-
tures a sequence of 210 images at the beginning of which
an uneven ground leads the robot to shake while moving
straight forward. Although the images are sharp (Fig. 4c),
some inter-frame motion are large due to the shaking mo-
vements of the robot.
Tracking by direct alignment from PGMs (PGMoT), and
from brightness (PoT) for comparison, have been conduc-
ted on this sequence using 1 frame every N frame(s). Va-
rious N values were used in order to simulate different ro-
bot speeds (e.g., N = 20 simulates an average displacement
speed of about 45km/h). Figure 4a shows all the estimated

1. Please see : https://www.youtube.com/watch?v=

gJ9dbjBkd3Y.

(a)

(b) (c) (d) (e)

FIGURE 4 – Direct 3D model-based tracking with PGMoT
and PoT using 1 frame every N frame(s) : (a) Estimated tra-
jectories on (b) challenging uneven ground where images
as (c) are acquired ; (d-e) Superimposition of the last ac-
quired and optimal virtual images (N = 20) : (d) PoT, (e)
PGMoT.

trajectories and the manually registered Lidar SLAM one,
in order to evaluate the tracking. Due to the motion bet-
ween consecutive images PoT struggles to precisely track
the robot displacements and thus provides noisy trajecto-
ries. PoT is actually strongly influenced by the value of N.
Indeed, the larger N, the more the drift. For N = 20, PoT
diverges due to too important inter-frame motion for its li-
mited convergence domain. By contrast, PGMoT remains
consistent and succeeds to track the robot displacement
even for higher N values. The poses estimated with PG-
MoT are more reliable, precise and thus produce smooth
and accurate trajectories qualitatively on par with the Lidar
SLAM.
Figure 4d shows the superimposition of the last real and
virtual images of the sequence, rendered at the optimal
pose computed with PoT for N = 20. The poor alignment is
particularly visible in the areas highlighted in red whereas
PGMoT leads to a much more precise alignment (Fig. 4e).
We also compare these results with ORB-based visual
SLAM [19] (OpenVSLAM), extended to the unified ca-
mera model (UCM, Sec. 2.2). In short, while a sparse map
and an erratic trajectory can be estimated from the se-
quence of acquired omnidirectional images (Fig. 4c), they
are up to a scale factor, furthermore variable as there is no
loop closure in the sequence of images. We haven’t found
any way to automatically fix the scale despite the several
investigations made. First, the sparse map is too sparse to
be registered 2 with the dense point cloud of the 3D mo-

2. with geometric algorithms of https://www.cloudcompare.org

https://www.youtube.com/watch?v=gJ9dbjBkd3Y
https://www.youtube.com/watch?v=gJ9dbjBkd3Y
https://www.cloudcompare.org


del. Second, a sparse map could be obtained from rendered
images of the 3D model but not any acquired image could
be localized in that map, even when built from images ren-
dered at optimal poses obtained with PGMoT. So there is
no way to compare quantitatively OpenVSLAM to PGMoT
that reliably succeeds in the full scale estimation of camera,
hence robot, poses.

5 Conclusion
This paper expresses omnidirectional direct visual ser-
voing, representing images as Photometric Gaussian Mix-
tures. Evaluation in virtual scenes of photographic appea-
rance shows a significant increase of the convergence do-
main compared to the previous state-of-the-art photome-
tric omnidirectional direct visual servoing. The new rule of
Gaussian extent initialization and optimization also shows
a significant improvement over the state-of-the-art rules.
Experiments of direct 3D model-based tracking of the 3D
model of a city in omnidirectional images acquired within
streets of the same city show the new tracking succeeds
where large inter-frame motion prevents the success of the
former state-of-the-art one.
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