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Aujourd'hui, la disponibilité de larges bases de données de télédétection a rendu possible l'utilisation des techniques d'apprentissage profond pour l'observation de la Terre. Néanmoins, les modèles actuels sont conçus pour résoudre un problème à la fois: la classification ou la génération d'images. Nous présentons un nouveau modèle d'énergie qui estime la distribution jointe entre les images et leur annotation. Nous montrons que ce modèle a des performances de classification comparables à celles de l'état de l'art. De plus, il permet de s'attaquer à un large éventail d'applications: de la synthèse d'images à l'apprentissage semi-supervisé.

The uptake of deep learning in Earth observation (EO) has been massive in the recent years and has revolutionized applications such as classification, segmentation, detection or change analysis [START_REF] Daudt | Urban change detection for multispectral Earth observation Using convolutional neural networks[END_REF], [START_REF] Zhu | Deep learning in remote sensing: A comprehensive review and list of resources[END_REF], enabling also for building or road extraction at global scale [START_REF] Mnih | Learning to Detect Roads in High-Resolution Aerial Images[END_REF], [START_REF] Yang | Building extraction at scale using convolutional neural network: Mapping of the United States[END_REF]. It was made possible thanks to large datasets and well-defined tasks, i.e. settings adequate for discriminative learning of feedforward neural networks. Yet, there is now a need for addressing more complex tasks such as developing models able to generalize well from few and scarce labeled data for global mapping of the Earth or explaining decisionmaking processes and simulating complex scenarios with Earth observation data, e.g. to evaluate and mitigate the effects of climate change. The opportunity lies in modelling the joint distribution of data and the various variables at stake rather than only a posteriori outputs. Such generative models include Generative Adversarial Networks (GANs) which have been widely used in the last years [START_REF] Audebert | Generative adversarial networks for realistic synthesis of hyperspectral samples[END_REF], [START_REF] Merkle | Exploring the potential of conditional adversarial networks for optical and SAR image matching[END_REF] but have known issues such as being prone to mode collapse in the estimated distribution. Alternatively, we propose to use a Joint Energy-based Model (JEM) [START_REF] Grathwohl | Your classifier is secretly an energy based model and you should treat it like one[END_REF], which allows us to learn to classify and generate data at the same time. By plugging an energy function into a single classification neural network, we are able to generate images via Markov chain Monte Carlo sampling (as shown in Fig. 1). Additionally, our probabilistic model can measure compatibility of new data with respect to the train data, enabling the possibility of out-of-distribution detection. Furthermore, this hybrid generative-discriminative model is particularly well-suited for semi-supervised learning. In this work, we establish the potential of joint energybased models for classification and image generation in Earth observation. The key features of our approach are:

• High quality image generation following the global distribution of the training data;

• Classification performances comparable with the state-of-the-art approaches;

• Semi-supervised classification, even with very few labels;

• Domain comparison using the energy function for reliable applicability on new data;

• EO image inpainting for incomplete data. The paper is organized as follows: Sec. 2 presents joint classification-generation models and we report experimental results for several applications in Sec. 3. Finally, we conclude in Sec. 4.

Energy-based Models and JEM

Energy-based models. Inspired from statistical physics, energy-based models [START_REF] Lecun | A tutorial on energy-based learning[END_REF] (EBMs) aim to capture dependencies between variables, x ∈ X , through a scalar function E : X → R, referred as the energy function. Learning an EBM consists in finding an energy function that associates low energy values to correct configurations of variables, and higher energy values to incorrect configurations. Then, the energy can be considered as a measure of compatibility. EBMs can be interpreted as probabilistic models, expressing the density p(x) as:

p(x) = exp(-E(x)) Z , with Z = X e -E(x) . (1) 
The advantage of training EBMs is that the energy value parameterizes all the information about inputs. This alleviates the burden of computing the normalization constant Z, which is often intractable. Moreover, this provides much more flexibility in the design of learning models. Recently, EBMs have benefited from the expressive power of deep neural networks to model complex energy functions [START_REF] Du | Implicit generation and modeling with energy based models[END_REF], [START_REF] Grathwohl | Your classifier is secretly an energy based model and you should treat it like one[END_REF], [START_REF] Xie | A theory of generative convnet[END_REF].

However, applications to remote sensing are scarce [START_REF] Mou | Multitemporal Very High Resolution from space: Outcome of the 2016 IEEE GRSS Data Fusion Contest[END_REF], and have never been coupled with image generation in this context. The standard way of learning EBMs with deep learning today is by maximum likelihood training. Let p θ be the probability density of an EBM, whose energy function, E θ , is parameterized by a neural network of parameters θ. The density of the model, p θ (x), can be fit to the distribution of data, p data (x), by maximizing the expected log-likelihood function over the data distribution:

L ML (θ) :=E x∼pdata [log p θ (x)] (2) =E x∼pdata [-E θ (x)] -log Z θ
The gradient of the log-likelihood can be expressed as:

∇ θ L ML (θ) = E p θ (x) [∇ θ E θ (x)] -E pdata(x) [∇ θ E θ (x)] (3)
To compute the gradient expressed in Eq. ( 3) one needs to be able to sample from the model distribution p θ , which is not possible. Current approaches approximate p θ using MCMC methods, like Langevin dynamics [START_REF] Welling | Bayesian learning via stochastic gradient Langevin dynamics[END_REF]. This allows to approximately optimize the log-likelihood objective and generate samples from the model.

Joint energy-based models [START_REF] Grathwohl | Your classifier is secretly an energy based model and you should treat it like one[END_REF] extend a classic classifier architecture into an hybrid discriminativegenerative model, by simply re-interpreting the outputs of the classification network. Let f θ : R D → R K be a classification neural network, with K the number of classes. The idea of JEM is to express the joint distribution of images and labels as a joint energy-based model:

p θ (x, y) = exp(f θ (x)[y]) Z θ (4) 
The marginal distribution p θ (x) can be obtained by:

p θ (x) = K y=1 p θ (x, y) = K y=1 exp(f θ (x)[y]) Z θ (5) 
where f θ (x)[y] is the y-th entry of f θ (x). From ( 5), one may observe that the distribution p θ (x) is also an energy-based model, with the energy given by

E θ (x) = -log( K y=1 exp(f θ (x)[y])).
The model is then trained to maximize the joint log-likelihood, log p θ (x, y), factorized as:

log p θ (x, y) = log p θ (x) + log p θ (y|x) (6) 
As shown below, ( 6) is the key to obtain an hybrid model. Classification. The second term is related to p θ (y|x), which written as p θ (y|x) = p θ (x, y) / p θ (x) corresponds to the softmax output of a usual classifier. Thus it can be optimized using the cross-entropy loss, as a standard neural network.

Generation. The first term log p θ (x) corresponds to the generative part. It is trained as an energy-based model by approximating the gradient ∇ x p θ (x) using a sampler based on Stochastic Gradient Langevin Dynamics (SGLD) [START_REF] Du | Implicit generation and modeling with energy based models[END_REF] and thus, generates samples following:

x i+1 = x i -α 2 ∇ x E θ (x i ) + ε, x 0 ∼ p 0 (x), (7) 
with ε ∼ N (0, α) and p 0 (x) usually a Uniform distribution.

Pipeline. In practice, given the usual classification neural network (before softmax) f θ , the input image x ∈ R D passes through the network obtaining f θ (x) ∈ R K . Then two branches are applied:

• Classification: the softmax function is applied to f θ (x) to perform classification and compute the corresponding loss (usually, cross-entropy). • Generation: we compute the energy

E θ (x) = -log( K y=1 exp(f θ (x)[y]
)), generate samples using Eq. ( 7), and compute the loss corresponding to the maximum likelihood objective of EBMs in Eq. ( 2). These two losses are combined to optimize the final objective in Eq. ( 6).

Experiments

We perform experiments using the EuroSAT Dataset [START_REF] Helber | EuroSAT: A novel dataset and deep learning benchmark for land use and land cover classification[END_REF] which comprises 64 × 64 patches from Sentinel-2 images over 34 countries in Europe. Each patch is labeled with one of 10 land cover/land use classes (e.g. industrial, residential, highway, pasture, forest, etc.). Classes are well-balanced, with 2,000 to 3,000 examples per class, 80% of which are used for training. We use the EuroSAT RGB version.

Implementation details Following [START_REF] Grathwohl | Your classifier is secretly an energy based model and you should treat it like one[END_REF], we perform our experiments using a WideResNet-28-10 architecture [START_REF] Zagoruyko | Wide residual networks[END_REF], with no batch normalization. We train our networks with the Adam optimizer [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF], during 200 epochs, following the JEM training scheme. Pytorch [START_REF] Paszke | PyTorch: An imperative style, high-performance deep learning library[END_REF] is used for all implementations.

Generation results

As stated before, JEM, as a new training paradigm, allows us to train a standard classifier not only to classify images, but also to generate new ones. Fig. 1 shows some class-conditional examples generated by the network trained on the EuroSAT dataset. First two columns present real samples from the dataset, while the five last columns show images generated by the model. Each row represents a class in the dataset. We observe that JEM-generated samples are akin to real EuroSAT samples, which is quantitatively supported by a KID score [START_REF] Bińkowski | Demystifying MMD GANs[END_REF] of 0.06. Moreover, the model is capable to produce samples for every class on the dataset, with a large variety of images per class. However, some classes remain challenging. For instance, forests (last row in Fig. 1) seem to be difficult to generate, maybe due to the lack of texture on forests patches. As a result, only 0.5% of generated samples correspond to forests, even though the training set is well-balanced. Industrial buildings (first row in Fig. 1) would require finer and more rectangular outlines to correctly match industrial buildings in the EuroSAT dataset. Conversely, generated samples for highways, rivers and various types of fields are remarkably similar to real images. This appealing result means the model is able to learn the true distribution behind the dataset and leads to compelling applications. Generated examples may be used for simulation or even for training new models. 

Classification results

Labeled

Semi-supervision.

The following rows on Table 1 are dedicated to semi-supervised learning. Here, we leverage the use of unlabeled data with (extremely) few labeled samples (from 5% to 0.05% of the EuroSAT training set). If labels are available, we optimize log p θ (x, y) as in eq. ( 6), otherwise we marginalize it out and optimize log p θ (x) only. We observe that with only 5% of labeled data, the This result shows that: first, the energy function can be learned from very few annotated data, and, second, that the image distribution is well estimated such that conditional distribution p θ (y|x) is easily estimated from a small set of annotated training samples.

Out-of-Distribution Testing

Out-of-distribution (OOD) detection is the task of identifying anomalous or significantly different examples from the training ones. This is an essential capacity to assert if the model is able to correctly classify new samples, especially in applications involving real-world decisions.

We measure the capacity of the model to detect OOD samples by comparing in Fig. 2 the histograms of unnormalized log-likelihood values of the EuroSAT training set with different public EO datasets: OSCD [START_REF] Daudt | Urban change detection for multispectral Earth observation Using convolutional neural networks[END_REF] and ISPRS Potsdam [START_REF] Rottensteiner | The ISPRS benchmark on urban object classification and 3D building reconstruction[END_REF]. Samples which match EuroSAT distribution should get higher values of log p(x). On the leftmost histogram, we observe no difference between EuroSAT training and test sets, while for OSCD and Potsdam datasets, the log p(x) can be extremely small compared to the EuroSAT train set. This is quantitatively confirmed by computing the Kullback-Leibler (KL) divergence with respect to the model trained on EuroSAT. Indeed, KL is only 0.2 for EuroSAT test data, while for OSCD and Potsdam values are 28.2 and 25.6, respectively: more information would be needed to represent these datasets which differ in terms of location or appearance.

Measuring the Confidence of the Classifier

Since our model is able to perform OOD detection, we can use the unnormalized log p(x) value as a proxy for the confidence of its prediction. To illustrate, we apply EuroSAT-trained JEM to OSCD tiles. The tiles are split into 64×64 patches which go through the network to obtain the corresponding class and the estimated loglikelihood value per patch, leading to both classification and confidence maps.

We observe in Fig. 3 the results on a never-seen location from OSCD: Beirut. The segmentation map produced by the classifier is globally correct, however the model confidence, expressed as the model log-likelihood, varies. Indeed, low confidence happens on the most peculiar downtown districts, near the harbor and in Ras Beirut, which are areas the more likely to be different from training European cities.

Image Completion

The generative power of JEM can also be exploited to perform image completion. By using the iterative process described by Eq. ( 7), and the incomplete image as starting point x 0 , we can restore the missing pixels of an image. Fig. 4 shows some examples where the model is used for tasks such as inpainting (missing regions) or restoration (missing pixels due e.g. to sensor defects).

Discussion

We have introduced a new hybrid discriminative-generative framework applied to Earth observation data. The joint energy-based model leads to simultaneous classification and generation of images. Classification results are on par with state-of-the-art discriminative methods, while generated samples are, in general, of good quality and remarkably similar to real examples. We have also shown appealing remote sensing applications for this model: the ability to learn the energy function from unlabeled data and thus boost classification results with respect to a model 
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 1 Class-conditional samples generated by the model. First two columns contain real EuroSAT samples. Last five columns present JEM-generated samples.1 Introduction 1
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 2 Figure 2: Out-of-Distribution Detection using JEM. Out-of-distribution samples are assigned lower log p(x) values. Comparison between EuroSAT, OSCD and ISPRS Potsdam.
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 3 Figure 3: Classification on a never-seen OSCD city (Beirut). From left to right: Image, classification map and confidence map (unnormalized log p(x)).
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 4 Figure 4: Image completion on EuroSAT dataset. Two up rows: inpainting, 12.5% information missing at the center. Two bottom rows: pixel defect correction, 10% salt and pepper noise.
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