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Résumé

Aujourd’hui, la disponibilité de larges bases de données de
télédétection a rendu possible l’utilisation des techniques
d’apprentissage profond pour l’observation de la Terre.
Néanmoins, les modèles actuels sont conçus pour résoudre
un problème à la fois: la classification ou la génération
d’images. Nous présentons un nouveau modèle d’énergie
qui estime la distribution jointe entre les images et
leur annotation. Nous montrons que ce modèle a des
performances de classification comparables à celles de
l’état de l’art. De plus, il permet de s’attaquer à un
large éventail d’applications: de la synthèse d’images à
l’apprentissage semi-supervisé.

Mots Clef
Apprentissage profond, modèles d’énergie, modèles
génératifs, observation de la Terre.

Abstract

The large amount of data, available thanks to the recent
sensors, have made possible the use of deep learning
for Earth Observation. Yet, actual approaches tend to
tackle one problem at a time, e.g. classification or image
generation. We propose a new framework for Earth
Observation images processing which learns an energy-
based model to estimate the underlying distribution,
possibly estimated using non-annotated images. On the
varied image types of the EuroSAT benchmark, we show
this model obtains classification results on par with state-
of-the-art and moreover allows to tackle a high range of
high-potential applications, from image synthesis to high
performance semi-supervised learning.

Keywords
Deep Learning, Energy-based Models, Generative Models,
Earth Observation.
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Figure 1: Class-conditional samples generated by the
model. First two columns contain real EuroSAT samples.
Last five columns present JEM-generated samples.

1 Introduction1

The uptake of deep learning in Earth observation (EO) has
been massive in the recent years and has revolutionized
applications such as classification, segmentation, detection
or change analysis [3], [18], enabling also for building
or road extraction at global scale [10], [16]. It was

1Previous submission note: This work has been presented at the
International Conference on Learning Representations (ICLR), workshop
on Energy-based Models, 2021.



made possible thanks to large datasets and well-defined
tasks, i.e. settings adequate for discriminative learning of
feedforward neural networks. Yet, there is now a need for
addressing more complex tasks such as developing models
able to generalize well from few and scarce labeled data
for global mapping of the Earth or explaining decision-
making processes and simulating complex scenarios with
Earth observation data, e.g. to evaluate and mitigate the
effects of climate change.
The opportunity lies in modelling the joint distribution of
data and the various variables at stake rather than only
a posteriori outputs. Such generative models include
Generative Adversarial Networks (GANs) which have
been widely used in the last years [1], [9] but have
known issues such as being prone to mode collapse in the
estimated distribution.
Alternatively, we propose to use a Joint Energy-based
Model (JEM) [5], which allows us to learn to classify
and generate data at the same time. By plugging an
energy function into a single classification neural network,
we are able to generate images via Markov chain Monte
Carlo sampling (as shown in Fig. 1). Additionally, our
probabilistic model can measure compatibility of new data
with respect to the train data, enabling the possibility
of out-of-distribution detection. Furthermore, this hybrid
generative-discriminative model is particularly well-suited
for semi-supervised learning.
In this work, we establish the potential of joint energy-
based models for classification and image generation in
Earth observation. The key features of our approach are:

• High quality image generation following the global
distribution of the training data;

• Classification performances comparable with the
state-of-the-art approaches;

• Semi-supervised classification, even with very few
labels;

• Domain comparison using the energy function for
reliable applicability on new data;

• EO image inpainting for incomplete data.
The paper is organized as follows: Sec. 2 presents
joint classification-generation models and we report
experimental results for several applications in Sec. 3.
Finally, we conclude in Sec. 4.

2 Energy-based Models and JEM
Energy-based models. Inspired from statistical physics,
energy-based models [8] (EBMs) aim to capture
dependencies between variables, x ∈ X , through a
scalar function E : X → R, referred as the energy
function. Learning an EBM consists in finding an energy
function that associates low energy values to correct
configurations of variables, and higher energy values
to incorrect configurations. Then, the energy can be
considered as a measure of compatibility. EBMs can be

interpreted as probabilistic models, expressing the density
p(x) as:

p(x) =
exp(−E(x))

Z
,with Z =

∫
X
e−E(x). (1)

The advantage of training EBMs is that the energy value
parameterizes all the information about inputs. This
alleviates the burden of computing the normalization
constant Z, which is often intractable. Moreover,
this provides much more flexibility in the design of
learning models. Recently, EBMs have benefited from
the expressive power of deep neural networks to model
complex energy functions [4], [5], [15]. However,
applications to remote sensing are scarce [11], and have
never been coupled with image generation in this context.
The standard way of learning EBMs with deep learning
today is by maximum likelihood training. Let pθ be the
probability density of an EBM, whose energy function,Eθ,
is parameterized by a neural network of parameters θ. The
density of the model, pθ(x), can be fit to the distribution of
data, pdata(x), by maximizing the expected log-likelihood
function over the data distribution:

LML(θ) :=Ex∼pdata [log pθ(x)] (2)
=Ex∼pdata [−Eθ(x)]− logZθ

The gradient of the log-likelihood can be expressed as:

∇θLML(θ) = Epθ(x̃)[∇θEθ(x̃)]−Epdata(x)[∇θEθ(x)] (3)

To compute the gradient expressed in Eq. (3) one needs
to be able to sample from the model distribution pθ,
which is not possible. Current approaches approximate
pθ using MCMC methods, like Langevin dynamics [14].
This allows to approximately optimize the log-likelihood
objective and generate samples from the model.

Joint energy-based models [5] extend a classic
classifier architecture into an hybrid discriminative-
generative model, by simply re-interpreting the outputs
of the classification network. Let fθ : RD → RK be
a classification neural network, with K the number of
classes. The idea of JEM is to express the joint distribution
of images and labels as a joint energy-based model:

pθ(x, y) =
exp(fθ(x)[y])

Zθ
(4)

The marginal distribution pθ(x) can be obtained by:

pθ(x) =

K∑
y=1

pθ(x, y) =

∑K
y=1 exp(fθ(x)[y])

Zθ
(5)

where fθ(x)[y] is the y-th entry of fθ(x).
From (5), one may observe that the distribution pθ(x) is
also an energy-based model, with the energy given by
Eθ(x) = − log(

∑K
y=1 exp(fθ(x)[y])). The model is then



trained to maximize the joint log-likelihood, log pθ(x, y),
factorized as:

log pθ(x, y) = log pθ(x) + log pθ(y|x) (6)

As shown below, (6) is the key to obtain an hybrid model.
Classification. The second term is related to pθ(y|x),
which written as pθ(y|x) = pθ(x, y) / pθ(x) corresponds
to the softmax output of a usual classifier. Thus it can be
optimized using the cross-entropy loss, as a standard neural
network.
Generation. The first term log pθ(x) corresponds to the
generative part. It is trained as an energy-based model by
approximating the gradient∇xpθ(x) using a sampler based
on Stochastic Gradient Langevin Dynamics (SGLD) [4]
and thus, generates samples following:

xi+1 = xi − α
2∇xEθ(xi) + ε, x0 ∼ p0(x), (7)

with ε ∼ N (0, α) and p0(x) usually a Uniform
distribution.
Pipeline. In practice, given the usual classification neural
network (before softmax) fθ, the input image x ∈ RD
passes through the network obtaining fθ(x) ∈ RK . Then
two branches are applied:
• Classification: the softmax function is applied to fθ(x)

to perform classification and compute the corresponding
loss (usually, cross-entropy).

• Generation: we compute the energy Eθ(x) =

− log(
∑K
y=1 exp(fθ(x)[y])), generate samples using

Eq. (7), and compute the loss corresponding to the
maximum likelihood objective of EBMs in Eq. (2).

These two losses are combined to optimize the final
objective in Eq. (6).

3 Experiments
We perform experiments using the EuroSAT Dataset [6]
which comprises 64 × 64 patches from Sentinel-2 images
over 34 countries in Europe. Each patch is labeled with
one of 10 land cover/land use classes (e.g. industrial,
residential, highway, pasture, forest, etc.). Classes are
well-balanced, with 2,000 to 3,000 examples per class,
80% of which are used for training. We use the EuroSAT
RGB version.

Implementation details Following [5], we perform our
experiments using a WideResNet-28-10 architecture [17],
with no batch normalization. We train our networks with
the Adam optimizer [7], during 200 epochs, following
the JEM training scheme. Pytorch [12] is used for all
implementations.

3.1 Generation results
As stated before, JEM, as a new training paradigm, allows
us to train a standard classifier not only to classify images,
but also to generate new ones.
Fig. 1 shows some class-conditional examples generated
by the network trained on the EuroSAT dataset. First two

columns present real samples from the dataset, while the
five last columns show images generated by the model.
Each row represents a class in the dataset. We observe that
JEM-generated samples are akin to real EuroSAT samples,
which is quantitatively supported by a KID score [2] of
0.06. Moreover, the model is capable to produce samples
for every class on the dataset, with a large variety of images
per class. However, some classes remain challenging.
For instance, forests (last row in Fig. 1) seem to be
difficult to generate, maybe due to the lack of texture
on forests patches. As a result, only 0.5% of generated
samples correspond to forests, even though the training
set is well-balanced. Industrial buildings (first row in
Fig. 1) would require finer and more rectangular outlines
to correctly match industrial buildings in the EuroSAT
dataset. Conversely, generated samples for highways,
rivers and various types of fields are remarkably similar to
real images. This appealing result means the model is able
to learn the true distribution behind the dataset and leads to
compelling applications. Generated examples may be used
for simulation or even for training new models.

3.2 Classification results

Labeled
samples/class

% of
labels Wide-ResNet JEM

2000 on avg. 100% 98.3% 97.6%

100 ∼ 5% 86.6% 85.1%
20 ∼ 1% 61.5% 67.7%
10 ∼ 0.5% 50.3% 59.5%
5 ∼ 0.25% 40.0% 49.8%
1 ∼ 0.05% 26.8% 37.5%

Table 1: Classification results (Accuracy % ) for JEM
applied on EuroSAT. First row: classic JEM setting trained
on the entire dataset. Following rows: models trained
using a fraction of labeled samples. Gray cells indicate
semi-supervised training, using the rest of the dataset as
unlabeled samples.

We report in Table 1 classification results over EuroSAT
for both fully supervised and semi-supervised settings. We
also compare each result to the Wide-ResNet baseline, i.e.,
our backbone trained without energy modeling.
Full supervision. Presented on the first row of Table 1,
JEM results reach the same level of performances as
clasification-only Wide-ResNet. The slight discrepancy
of the multi-task JEM might be explained by the intrinsic
regularization of the JEM model.
Semi-supervision. The following rows on Table 1 are
dedicated to semi-supervised learning. Here, we leverage
the use of unlabeled data with (extremely) few labeled
samples (from 5% to 0.05% of the EuroSAT training set).
If labels are available, we optimize log pθ(x, y) as in eq.
(6), otherwise we marginalize it out and optimize log pθ(x)
only. We observe that with only 5% of labeled data, the
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Figure 2: Out-of-Distribution Detection using JEM. Out-of-distribution samples are assigned lower log p(x) values.
Comparison between EuroSAT, OSCD and ISPRS Potsdam.

semi-supervised JEM and supervised Wide-ResNet still
reach the same level of performances. However, trained
with extremely few labeled examples (1% of the original
training set or less), the semi-supervised JEM model shows
its potential. The gap of performance between JEM and
Wide-ResNet gets bigger as labeled samples decrease in
number, from 6.2% when trained on 1% of labeled samples
to 10.8% of accuracy gap when trained on only 0.05% of
labeled samples.
This result shows that: first, the energy function can be
learned from very few annotated data, and, second, that the
image distribution is well estimated such that conditional
distribution pθ(y|x) is easily estimated from a small set of
annotated training samples.

3.3 Out-of-Distribution Testing
Out-of-distribution (OOD) detection is the task of
identifying anomalous or significantly different examples
from the training ones. This is an essential capacity to
assert if the model is able to correctly classify new samples,
especially in applications involving real-world decisions.
We measure the capacity of the model to detect
OOD samples by comparing in Fig. 2 the histograms
of unnormalized log-likelihood values of the EuroSAT
training set with different public EO datasets: OSCD [3]
and ISPRS Potsdam [13]. Samples which match EuroSAT
distribution should get higher values of log p(x). On
the leftmost histogram, we observe no difference between
EuroSAT training and test sets, while for OSCD and
Potsdam datasets, the log p(x) can be extremely small
compared to the EuroSAT train set. This is quantitatively
confirmed by computing the Kullback-Leibler (KL)
divergence with respect to the model trained on EuroSAT.
Indeed, KL is only 0.2 for EuroSAT test data, while for
OSCD and Potsdam values are 28.2 and 25.6, respectively:
more information would be needed to represent these
datasets which differ in terms of location or appearance.

3.4 Measuring the Confidence of the
Classifier

Since our model is able to perform OOD detection, we
can use the unnormalized log p(x) value as a proxy for
the confidence of its prediction. To illustrate, we apply
EuroSAT-trained JEM to OSCD tiles. The tiles are split

Figure 3: Classification on a never-seen OSCD city
(Beirut). From left to right: Image, classification map and
confidence map (unnormalized log p(x)).

into 64×64 patches which go through the network to
obtain the corresponding class and the estimated log-
likelihood value per patch, leading to both classification
and confidence maps.
We observe in Fig. 3 the results on a never-seen location
from OSCD: Beirut. The segmentation map produced
by the classifier is globally correct, however the model
confidence, expressed as the model log-likelihood, varies.
Indeed, low confidence happens on the most peculiar
downtown districts, near the harbor and in Ras Beirut,
which are areas the more likely to be different from training
European cities.

3.5 Image Completion
The generative power of JEM can also be exploited to
perform image completion. By using the iterative process
described by Eq. (7), and the incomplete image as starting
point x0, we can restore the missing pixels of an image.
Fig. 4 shows some examples where the model is used for
tasks such as inpainting (missing regions) or restoration
(missing pixels due e.g. to sensor defects).

4 Discussion
We have introduced a new hybrid discriminative-generative
framework applied to Earth observation data. The joint
energy-based model leads to simultaneous classification
and generation of images. Classification results are on
par with state-of-the-art discriminative methods, while
generated samples are, in general, of good quality and
remarkably similar to real examples. We have also shown
appealing remote sensing applications for this model: the
ability to learn the energy function from unlabeled data and
thus boost classification results with respect to a model



Figure 4: Image completion on EuroSAT dataset. Two up
rows: inpainting, 12.5% information missing at the center.
Two bottom rows: pixel defect correction, 10% salt and
pepper noise.

trained only with labeled data;the capacity of detecting
out-of-distribution samples to decide if the model can be
reliably used in a new domain or use-case; and image
completion or restoration of corrupted images.
However, large-scale deployment of JEM remains an open
issue, mostly due to computation time of the Monte
Carlo sampling. Yet, our promising results show how
interesting JEM can be to benefit a wide range of high
potential EO applications: simulation, domain adaptation,
interpretability.
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