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Résumé
Puisque la majorité de la population vit en milieu urbain,
les villes connaissent de constantes evolutions et nécessit-
ent des outils de suivi efficaces pour apprécier leur évolu-
tion. Dans ce contexte, analyser les changements observés
entre deux dates est une question essentielle. En milieu
urbain, la plupart des changements se produisent le long
de l’axe vertical (avec des constructions ou démolitions
de bâtiments) et l’utilisation de données 3D est donc ob-
ligatoire. Parmi elles, le LiDAR constitue une précieuse
source d’informations mais les nuages de points 3D qu’il
produit consistent en des données éparses et non ordon-
nés. Les méthodes existantes consistent soit en une dis-
crétisation préalable des données en modèles numériques
de surface permettant d’appliquer des outils usuels du
traitement d’image mais conduisant à une perte import-
ante d’informations, soit en l’analyse directe de nuages de
points. Cette dernière approche n’a à notre connaissance
pas encore été abordée sous l’angle de l’apprentissage pro-
fond. Nous proposons donc un réseau siamois s’appuyant
sur des noyaux de convolution opérant sur les points 3D,
sur la base des bons résultats obtenus par les architectures
siamoises en détection de changements dans des images
2D et par le réseau KPConv en segmentation sémantique
de nuages de points 3D. Nous montrons quantitativement
et qualitativement que notre méthode surpasse de plus de
25 % (en termes d’intersection sur union pour les classes
de changement) les méthodes d’apprentissage automatique
existantes basées sur des attributs extraits manuellement.

Mots Clef
Détection de changement 3D, Nuage de points, Appren-
tissage profong, Réseaux Siamois, Convolution 3D, Carto-
graphie urbaine

Abstract
As the majority of the earth population is living in urban
environments, cities are continuously evolving and efficient

*This paper has been initially published in proceedings of the ISPRS
2021 Congress.

monitoring tools are needed to retrieve and classify their
evolution. In this context, analysing changes between two
dates is a crucial point. In urban environments, most
changes occur along the vertical axis (with new construc-
tion or demolition of buildings) and the use of 3D data is
therefore mandatory. Among them, LiDAR constitutes a
valuable source of information. However, with the diffi-
culty of processing sparse and unordered 3D point clouds,
most of existing methods start by rasterizing point clouds
(for example to Digital Surface Models) before using more
conventional image processing tools. This implies a sig-
nificant loss of information. Among existing studies deal-
ing directly with point clouds, and to the best of our know-
ledge, no deep neural network-based method has been ex-
plored yet. Thus, in order to fill this gap and to test the
ability of deep methods to deal with change detection and
characterization of 3D point clouds, we propose a Sia-
mese network with Kernel Point Convolution inspired by
Siamese architectures that have already shown their per-
formances on change detection in 2D images and on KP-
Conv network which achieves high-quality results for se-
mantic segmentation of raw 3D point clouds. We show
quantitatively and qualitatively that our method outper-
forms by more than 25% (in terms of average Intersection
over Union for classes of change) existing machine learn-
ing methods based on hand-crafted features.

Keywords
3D Change Detection, Point Clouds, Deep Learning, Sia-
mese Network, Kernel Point Convolution, Urban Monitor-
ing

1 INTRODUCTION
Due to anthropogenic activities and natural disasters, cities
are continuously evolving, yielding critical environmental
problems (e.g. air pollution and heat waves). United Na-
tions report that more than 50% of the earth population is
currently living in urban areas. Monitoring their evolution
is therefore critical and can be achieved with change detec-
tion from remote sensing data.



3D Point Clouds (PCs) constitute a relevant source of re-
mote sensing data. Indeed, unlike 2D images, they provide
supplementary information related to the height which is
especially important in urban areas where most of perman-
ent changes occur on vertical axis. Moreover, urban en-
vironments are mostly composed of 3D objects involving
geometrical changes (e.g. new building construction), un-
like for example land cover changes that are visible through
radiometric measures at meter scale. Whether coming
from LiDAR sensor or a photogrammetric process, 3D PCs
are particularly interesting in urban environments as they
provide 3D geometric information on objects.
However, change detection in 3D PCs remains a difficult
task because of the unstructured nature of data that prevents
standard tools for 2D images from being straightforwardly
applied. While rasterization of 3D data into 2D matrices
of elevation, called Digital Surface Models (DSM) can be
seen as a valuable solution, this rasterization process im-
plies some loss of information since only highest points
are taken into account (thus leading to removing informa-
tion on the facades). Rasterization of the 3D PCs into 3D
voxels is somehow better, such a strategy is constrained by
the resolution and faces both loss of information and man-
agement of sparse voluminous data. This calls for meth-
odologies able to cope with 3D PCs directly, and to dis-
tinguish between real changes from those induced by 3D
acquisition. Indeed, multiple 3D scans of the same scene
lead to different point distributions.
Existing studies dealing with this problem relied on hand-
crafted features or distance computation. To the best of
our knowledge, deep learning has not been used to address
the problem of change detection and characterization dir-
ectly on raw PCs yet. Nevertheless, a recent study per-
formed change detection with deep neural networks on 3D
data [12]. In practice, the authors first rasterized their PCs
into DSMs and then applied Feed Forward or Siamese net-
works on those 2D matrices of elevation. A binary result
is obtained for each patch of the DSM. As we believe that
3D data could bring much more information to retrieve and
classify changes, our goal is to design a deep network able
to directly process PCs.
Thus, we build in this paper upon deep learning develop-
ments in change detection and PCs semantic segmentation
to propose a 3D point cloud change detection technique for
monitoring urban areas at the point level. After a present-
ation of related works on 3D point cloud change detection
in urban environments in Sec.2, we detail our proposed
framework in Sec. 3. Then, experimental settings and res-
ults are reported in Sec. 4. Finally we provide discussion
and conclusion in Sec. 5 and 6, respectively.

2 RELATED WORKS
In this section, we briefly review existing change detection
and characterization methods in urban environment which
rely on 3D PCs. Despite the availability of numerous meth-
ods that convert PCs into DSMs, we will not focus on these

studies since they are not directly related to the scope of our
paper.

Several techniques have already been proposed to high-
light and characterize changes in 3D PCs. One can roughly
classify them into three different families. The first one
consists in segmenting independently the scenes acquired
at the two dates and then characterizing changes based
on these two classified PCs. There are few studies us-
ing this so-called post-classification method especially for
urban environments. For example, after generating a build-
ing mask from LiDAR data, [1] manually extract build-
ing boundaries from aerial images. Then, resulted foot-
prints are compared in order to highlight changes in a 2D
map. Following this study, the approach in [5] relies on the
same idea: after retrieving 3D buildings roof planes at each
date, 3D building models are cross-correlated using size
and height information of building planes in order to clas-
sify them into categories of change. Among methods that
use only PCs information, [4] extracts ground points and
applies a region growing algorithm to retrieve each separ-
ated object. A classification of each remaining object is
then made through using a Random Forest (RF) algorithm
with several geometric and histogram-based features. The
authors suggested comparing small segmented sub-clouds
at each date in order to identify and classify changes. The
study in [10] also suggests to segment each PC in order
to extract buildings. Then, a 3D surface difference map
is created by computing a point-to-plane distance between
a point in the first set and the nearest plane in the second
set. A classification is finally performed to identify vari-
ous kind of changes (e.g. new dormer, addition of a floor,
. . . ). This last study shows that errors in the classification
part are propagated in the change detection part. As a con-
sequence, the final results highly depend on the scene clas-
sification accuracy.

Conversely, pre-classification methods consist in first high-
lighting changes before characterizing them. As an ex-
ample in urban environment, [9] first establish an octree
from one of the two PCs, and then directly extract changes
in the other PC by identifying corresponding missing leaf
nodes. A clustering of changed points is made to remove
noise and separate the various changes. Finally, remaining
clusters are classified according to fixed rules concerning
the area, height or roughness. Here again, pre-classification
methods embed errors coming from the change detection
step in the characterization step. More generally, the more
steps there are in the method, the more errors can be
propagated to the final results.

This leads us to the last category of methods aiming to per-
form change detection and characterisation in one single
step. For example in [7], authors trained a RF algorithm
with hand-crafted features to directly obtain a classifica-
tion of their PCs according to the changes. To do so, the
authors extract features related to points distribution, ter-
rain elevation, multi-target capability of LiDAR at one date
and between dates. The stability is computed for each point



based on the distribution of the neighboring points in both
PCs. More precisely, it is defined as the ratio of the number
of points in a spherical neighborhood in the other PC and a
vertical cylindrical z-oriented neighborhood of the point in
the current PC. Then, a RF algorithm is applied to obtain a
supervised classification of changes.

To the best of our knowledge, there is no deep learning
method able to directly take as input two PCs and classify
changes at point level, despite the important progress made
recently in the processing of spatial data.

3 METHOD

3.1 Background

To tackle change detection and characterization in 2D
images, recent studies proposed to use a deep Siamese
Fully Convolutionnal Network (FCN). It consists in a usual
encoder-decoder network with skip connections. To ex-
tract features, both images will pass through the encoder
part which is made of two branches for both images. Each
branch is a succession of traditional convolution and pool-
ing layers in order to extract information on data at sev-
eral scales. The particularity of Siamese network is that,
at each step of pooling, the difference of extracted features
of the two branches is kept and concatenated in the corres-
ponding scale in the decoder part [3]. The two branches of
the encoder part may have shared weights if data are quite
similar in order to extract features in the same way. When
data are significantly different, for example if images are
coming from two types of sensors (e.g. optical and radar
sensors) weights could be independent, leading to the so-
called pseudo-Siamese network [11].

In order to address the 3D part of the problem, we sug-
gest to rely on deep networks able to perform semantic
segmentation directly on PCs. To this end, we consider
the recent Kernel Point Convolution (KPConv) [6] network
that achieved very good results on segmentation and clas-
sification tasks even on large urban Aerial LiDAR Survey
(ALS) dataset [8]. In a spirit similar to 2D image encoders,
its principle is to apply successive convolutions at vari-
ous scales. However, unlike images where the selection of
pixels involved in a kernel convolution is trivial, KPConv
adapts this operation to 3D PCs by selecting kernel-points,
i.e. points embedded in the specific neighborhood of each
convolution operation. KPConv authors implemented dif-
ferent kinds of networks inspired by traditional ones in 2D
images, replacing the convolution by the Kernel Point Con-
volution and the max-pooling operation by down-sampling
of PCs using strided Kernel Point convolution. Thus they
were able to implement a convolutional network KP-CNN
for PCs classification and FCN with skip links (KP-FCNN)
for PC segmentation.

We build upon these two principles to build our novel
framework that we are detailing now.

3.2 Our framework
To extend the Siamese principle to 3D PCs, we propose
here to embed the KPConv architecture in a deep Siamese
network where both PCs will pass through the same en-
coder with shared weights. Similarly to an usual encoder-
decoder with skip connections, at each scale of the decod-
ing part, we concatenate the difference of extracted features
associated with the corresponding encoding scale (see Fig-
ure 1). In practice, the computation of this feature differ-
ence is not obvious since PCs do not contain the same num-
ber of points and are not defined at the same positions, even
in non-changed areas. We suggest to compute this differ-
ence in each point of the second PC by retrieving features
of the corresponding nearest spatial point in the first PC.
In our study case, both data are PCs acquired by quite sim-
ilar sensors, thus we chose to use a real Siamese network
with shared weight between both encoder branches instead
of a pseudo-Siamese architecture.

4 EXPERIMENTS
4.1 Urban change detection dataset
In order to train and test our method, we have developed
a PC simulator for urban datasets. Given a 3D model of a
city, one can introduce random changes and the simulator
generates a synthetic ALS above the city. Then, by adding
or removing buildings in the model, we can simulate their
construction or demolition. Our simulator allows us to gen-
erate unlimited sets of 3D PCs annotated according to these
two change classes, and to conduct experimental evaluation
in a well-controlled scenario. Besides, this is particularly
interesting for training deep networks that usually require
a large amount of labelled data. Besides, the simulator
makes possible to tune PC acquisition condition, a flight
plan being defined according to predefined parameters such
as resolution, overlapping between swaths and scan angle.
Finally, Gaussian noise can be added to simulate errors and
lack of precision in LiDAR range measuring and scan dir-
ection. Our resulted PCs have been checked by LiDAR
experts and seem similar to real acquisition.
We report in Table 1 all parameters used in our experiment
for the acquisition of PCs. We ran a simulation over the
city of Lyon, France at a challenging low spatial resolution
of 0.5 points/m2. To mimic real conditions, we added a
Gaussian noise of 5 cm in range measurement and 0.01◦ in
scan direction across track.

Parameter Value
Resolution 0.5 points/m2

Noise (range) 5 cm
Noise (scan direction) 0.01◦

Scan angle −20o to 20◦

Overlapping 10%
Height of flight 700 m

Table 1: Configuration of acquisition simulation.

Figure 2 presents a vertical view of the 3D model of Lyon



Figure 1: Our Siamese KPConv network architecture.

where all available buildings are shown (elevation is shown
in color with a color range relative to each subset). We
used several PC pairs for each area, and randomly sim-
ulated building construction and destruction between the
two dates by either selecting or filtering out each build-
ing from the reference 3D model. It could be seen as a
data augmentation process especially useful for supervised
learning. In particular, we generated 10 different pairs of
PCs over the training part, 1 for the validation part, and 3
for the testing part (see Table 2). The flight plan is set ran-
domly, so the swath will not be the same between pairs of
PCs, and each acquisition may not have exactly the same
visible or invisible parts. Notice that no registration errors
were considered here. Figure 3 shows three PCs acquired
by the simulator over exactly the same district, and extrac-
ted from the three simulations composing the testing set.
Finally, we generate for each simulation a pair of PCs with
different initial and final states (i.e. different buildings are
put into the city model from one pair to another thanks to
the simulator), and a different flight plan is set implying
various positions of points even on a same building. In-
deed, we can see in the three simulations of Figure 3 that
LiDAR scanning is not achieved in the same way, so scan
lines are not oriented similarly and various facades are vis-
ible.

Set # simulated pairs # points per date
Training 10 ≈ 1,600,000

Validation 1 ≈ 335,000
Test 3 ≈ 912,000

Table 2: Dataset description.

In order to test the ability of detecting and classifying
changes from 3D PCs only, our method does not require
any additional input beyond the 3D coordinates.

4.2 Experimental settings
Similarly to the segmentation task in KPConv experiments,
we do not feed the network on entire PCs. Indeed, the

Figure 2: Lyon dataset split into 3 distinct parts: training,
validation and test sets. Elevation is shown in color and is
relative to each subset.

PCs are too large to be segmented as a whole. Thus, KP-
Conv authors divided their dataset into small spherical sub-
clouds [6]. In our context of urban ALS PCs change de-
tection, we prefer to use cylinders aligned to the vertical
axis over spheres to cope with the privileged vertical direc-
tion of ALS data. By doing so, we avoid empty sub-clouds
and therefore dealing with complicated change pairs in the
training set (note that centers of cylinders are the same for
both dates). Indeed, if a sphere is centered at the top of
a building that does not include any ground point, and if
this building is demolished, then the sphere obtained in



Simulation 1 Simulation 2 Simulation 3

Figure 3: Variability of PCs generated by the simulator over the same district of Lyon. Elevation is shown in a relative color
range.

the second point cloud will be free of points and will dis-
turb the training of the network. To illustrate, examples of
two input cylinders are given in Figure 4. Let us consider
a point in the center of the building roof (center of Fig-
ure 4b). In this case, the corresponding sphere at the other
date could have been empty. Indeed, depending on the ra-
dius no ground points would have been visible. With tak-
ing cylinders we ensure that each of the sub-clouds contain
ground. At testing, cylinders are chosen regularly with an
overlapping to be sure that all points are seen at least once
by the network. For points seen several times, predicted
probabilities are averaged to decide the final label, simil-
arly to voting schemes. It should be outlined that classes
are largely unbalanced. Thus during training, centers of
cylinders are chosen thanks to a weighted random drawing.
The weight is set as a function of dataset balance, in order
to set the probability higher for smaller classes. This al-
lows our network to often see classes of change during the
training. Moreover, we perform data augmentation through
both random rotation around vertical axis for each selected
cylinder and random Gaussian noise at point scale.

At each layer of the network, PCs are subsampled via
strided KPConv to mimic strided convolution operations
with 2D matrices. The cell size of each subsampling de-
pends on the initial cell size dl0 which is fixed according to
the dataset. With our PCs resolution of 0.5 points/m2, we
have empirically observed that dl0 set to 1 m allowed us to
take all available points into account at the first layer. Then,
we set dlj = 2× dlj−1 for the following layers j. Experi-
ments were conducted with rigid kernels of 15 points. We
have empirically set the radius of cylinders to 50 m, fol-
lowing the recommendation of KPConv authors who fixed
the radius to 50× dl0.

Parameters settings have been largely influenced by ori-
ginal KPConv parameters. We thus use a Stochastic Gradi-
ent Descent with momentum to minimize a point-wise neg-
ative log likelihood loss, with a batch size of 10, a mo-
mentum of 0.98 and an initial learning rate of 10−2. Our
learning rate is scheduled to decrease exponentially. Un-
like KP-FCNN, we included a probability dropout of 0.5 in
the last classification layers. Also, in order to prevent from

(a) First cylinder

(b) Second cylinder

Figure 4: Example of input cylinders: the two input point
clouds (a-b) are colorized based on relative elevation.

over-fitting, we set a L2 loss regularisation with a factor
of 10−6. For this experiment, 325 epochs were required
to train the network. Finally, and as already indicated, in-
put cylinders are randomly chosen in training. Thus, the
number of input cylinders is another hyper-parameter to
set. After experimenting with a few configurations, best
results where obtained when 6000 pairs of cylinders were
seen by the network by epoch, which corresponds to 600
optimizing steps with a batch size of 10.
The whole development is made with PyTorch and rely on
KPConv implementation available in Torch-Points3D [2].

4.3 Results
We recall that, to the best of our knowledge, no deep learn-
ing method has been proposed for change detection and



characterisation at point scale yet. So we decided to com-
pare our results with those provided by [7] where changes
are retrieved and classified in one single step also, but us-
ing supervised classification of hand-crafted features. A
total of ten features have been re-implemented in python,
including the stability feature that greatly helps to detection
changes. We kept all features presented by the authors ex-
cept those concerning multi-target capability of LiDAR be-
cause our dataset does not contain such information. While
in the original work, authors have used a neighborhood ra-
dius of 1 m, we have observed that best results were ob-
tained with a value of 5 m (this is due to a different res-
olution between the datasets). Finally, we use the same
training set as for our Siamese KPConv network.
Let us remark that change detection problems are usually
strongly unbalanced. Indeed, the huge majority of points
or pixels are labeled as unchanged. Thus, precision or ac-
curacy scores do not seem to be fair measures to evaluate
performances. We thus report global results in Table 3 us-
ing the balanced mean accuracy (mAcc) and the mean of
Intersection over Union (mIoU). Besides, since most diffi-
cult classes to classify are classes of change, we also aver-
aged the IoU over the change classes (mIoU change). As
both methods give pointwise results, metrics are calculated
at each point of the testing dataset. Our method overpasses
the ML method for all metrics. Especially, if we focus on
change classes, we get an improvement of about 15 points
of IoU over classes of change in the same training condi-
tions and over the same testing dataset.

Metric (%) Ours [7]
mAcc 96.24 91.14
mIoU 93.27 74.53

mIoU Change 90.22 63.41

Table 3: Quantitative results (best in bold) of our Siamese
KPConv network compared to RF + hand-crafted features.

We also measured the IoU for each class. As explained
in Sec. 4.1, three different pairs have been used for gen-
erating the testing set. Table 4 reports the results of both
methods over the three pairs of PCs and the overall results
for the testing set. Notice that most interesting results are
visible in IoU of new building or destruction classes. As
expected, results on the unchanged class are excellent. As
for changed classes, the network is able to retrieve and cor-
rectly classify changes in both classes even if a lower score
is obtained for the destruction class. We can observe both
that [7] leads to results of lower quality, but also of high
variability among the sets. Conversely, our Siamese KP-
Conv provides stable results, no matter the configuration
of acquisition of the two PCs, highlighting the capacity of
generalizing results to different pairs of PCs.
As shown in Figure 5 and Figure 6, applying our method on
two PCs (a) and (b) leads to changes (d) in accordance with
the ground truth (c), e.g. the main new building and the
destruction are well identified by the network. While the
RF method shown in (e) leads to numerous misclassifica-

Per class IoU (%)
Area Method Unchanged New building Destruction

1
Ours
RF

99.32
98.29

96.21
80.08

82.97
70.81

2
Ours
RF

99.47
95.54

96.37
52.99

85.57
61.35

3
Ours
RF

99.31
96.46

95.04
64.57

85.18
58.37

Total Ours
RF

99.37
96.76

95.87
65.71

84.57
63.51

Table 4: Per area IoU scores (best in bold) of our Siamese
KPConv network compared to RF + hand-crafted features.

tions, our results seem more in accordance with the ground
truth, as confirmed by numerical measures. We also re-
mark that there is almost no confusion between changed
class, thus when a change is detected it is most of the
time well classified. One can see that the RF method with
hand-crafted features has difficulties to predict changes on
facade: on Figure 5, most of visible facades are identi-
fied as new buildings; the same remark holds for the back-
ground facade in Figure 6. Looking at PCs (a) and (b) of
Figure 5, we observe that underlying LiDAR flights were
different between the two acquisitions, which induces hid-
den parts in the first PCs. Thus, on the second PC, some
points appeared on facade of unchanged building because
of the different viewpoints of the LiDAR during the ac-
quisition. This specificity of LiDAR acquisition constitutes
a challenge for change detection methods since the build-
ing has to be seen as a whole. Based on our experiments,
our method is more robust and able to understand more
globally changes whatever the scale. This is especially true
in hidden facades or at the ground with building shadows
that generate wrong classification as shown in Figure 5 (e).
Table 4 confirms this trend with per area results. Indeed,
higher results are obtained in the first pair of PCs where the
flight plan is almost the same between the two acquisitions.
The RF method faces a much stronger gap of performance
than our method.
Main differences with ground truth remain at boundaries
of change objects or in some difficult situations as shown
in the close-up view of Figure 6. Indeed, in our data-
set, ground contains small hills. When a building at the
bottom of the hill is low, its roof can be near the ground
level of higher ground points (see Figure 6) which im-
plies confusion between ground and building roof. Our
method considers there is a new building but the dividing
line between new construction and unchanged part is not
totally exact. Moreover there is a deconstruction just near
this place which makes the task even more difficult. Un-
surprisingly, the labels returned by the RF method are all
mixed up.

5 DISCUSSION
Looking at figures in Table 4, one can observe that the class
of deconstruction has worse results than the new building
class. This might be due to the dataset itself. Indeed, de-



(a) (b)

(c) (c’)

(d) (d’)

(e) (e’)

Figure 5: Visual change detection results. (a-b) the two
input point clouds ; (c) simulated changes (purple: no
change, blue: new construction, yellow: destruction) ; (d)
our results; (e) results with [7] method; (’) denote close-up
views.

construction parts are labeled according to the convex hull
of the demolished building at the ground level. Thus, when
building ground footprint is not convex, some unchanged
ground points are possibly labeled as changed in concavity
of buildings. This could leads to some difficulties during
the training to understand well what is deconstruction. By
exploring visual results of destructed buildings, we notice
that prediction were sometimes closer to building bound-
aries than the annotations. Despite this, most of points are
well annotated.
The dataset challenges the methods with the chosen low
resolution for the LiDAR (0.5 points/m2). Notice that in
their publication, [7] tested their method on LiDAR with a
high resolution of 12 to 16 points/m2. This could explain
the lower results obtained with their method. In such ac-
quisition conditions, our method seem to be a better solu-
tion.
However the dataset has a challenging low resolution. It
is still a bit simplistic as only ground and buildings are
present in the area. Even if buildings may have a complex
form (e.g. churches), there is no vegetation or mobile ob-
jects in our dataset. Similarly, there is only two classes of

(a) (b)

(c) (c’)

(d) (d’)

(e) (e’)

Figure 6: Visual change detection results. (a-b) the two
input point clouds ; (c) simulated changes (purple: no
change, blue: new construction, yellow: destruction) ; (d)
our results; (e) results with [7] method; (’) denote close-up
views.

change (construction or destruction). Conversely [7] con-
sider about eight classes of changed or unchanged labels.

Finally the better results achieved with our method come
with a more complex training process. In our case, it took
about approximately 30 hours to train the network from
scratch on a Titan RTX Graphical Processing Unit (GPU).
Whereas training the RF algorithm takes only 19 min on a
CPU. These results are not specific to our network and are
systematic when considering using deep methods. Since
the dataset is quite large, the whole test set (900,000 points
per date) cannot be given to the network. Indeed, we need
to divide it into 5567 cylinders, leading to an inference time
of 20 minutes. To compare, the inference time for the RF
algorithm is about 4 minutes.



6 CONCLUSION
In this paper, we tackle change detection and characterisa-
tion in urban environment. To do so, we proposed a novel
deep learning method which takes as input bi-temporal raw
PCs and gives final results at the 3D point level. Our
method is inspired by 2D change detection deep networks
using Siamese architecture and deep network used for se-
mantic segmentation in 3D PCs, in particular Kernel Point
Convolutions. To the best of our knowledge, this is the first
deep network able to cope with change detection and char-
acterisation in 3D PCs. We have compared our Siamese
KPConv network to a more traditional existing method re-
lying on RF algorithm with hand-crafted features. An im-
provement of about 27 points of IoU over classes of change
has been observed. The main advantage of our network
seems to lie in its ability to understand structured objects
at a global scale, thus leading to a correct classification of
hidden part and shadows. Indeed, such a problem remain
challenging when dealing with 3D PCs data because the
point distribution could highly change even on unchanged
parts of a scene.
Our simulated dataset remains quite simplistic. So it would
be interesting to test our method on more complex data
and especially on real data. However, only a few multi-
temporal 3D PCs dataset are publicly available and none
of them contain annotations related to the changes. Still,
we plan to consider the Actueel Hoogtebestand Nederland
(AHN) dataset that provides a semantic labeling per date at
the point level and comes with three dates. We thus plan
to update the labels according to the changes and to fur-
ther assess our method on this updated dataset. Besides, it
would be interesting to vary acquisition conditions thanks
to our simulator in order to test our method on even more
challenging conditions such as noisy PCs.
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